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Abstract This paper describes a general approach for the construction of approximations of the Koopman
operator associated with deterministic continuous semiflows over a complete metric space X. A primary contri-
bution of the paper is the derivation of rates of convergence for approximations of Koopman operators for large
classes of evolution equations. The rates of convergence in the paper are derived in two substantially different
scenarios. If the state space X is compact, we consider when the samples Ξ are dense in the entire state space
X. We also study cases when samples are dense in a limiting subset Ω ⊂ X that is a proper subset of X. Two
general classes of methods are described in the paper, referred to as intrinsic and extrinsic methods. Intrinsic
methods define bases of approximation from kernels that are defined in terms of, or having knowledge of, the
limiting set Ω. Extrinsic methods use kernels that do not depend on the knowledge of the limiting set Ω. In both
types of approximations, the regularity of the underlying set and the smoothness of the space of functions on
which the Koopman operator acts determine the rate of approximation. In the strongest error bounds derived
in the paper, it is shown that the error in approximation of the Koopman operator decays like O(hΩn,Ω)

p where
hΩn,Ω is the fill rate of the samples Ωn in the limiting set Ω and p is an exponent related to the choice of the
kernel and the smoothness of functions on which the Koopman operator acts. Such error bounds are obtained
when either the limiting subset Ω = X, when it is a proper subset Ω ⊂ X that is sufficiently regular, or when
it is a type of smooth manifold Ω =M .

Keywords Koopman Operator · Orbital Koopman Operator · Koopman Operator Convergence Rates ·
Reproducing Kernel Hilbert Spaces · Projection-based Koopman Approximations

Mathematics Subject Classification (2020) 37 · 93

1 Introduction

In this paper we derive a family of error estimates for the approximation of certain kinds of Koopman operators
that are defined for deterministic semidynamical systems. Koopman operators for semiflows in discrete time Uf ,
as well as orbital Koopman operators for continuous time semiflows Uϕ, are studied. Here f and ϕ are functions
that govern the evolution of a discrete dynamical system and the state trajectory generated by a continuous
dynamical system, respectively. For each of the two Koopman operators, two different approximations are
considered: (i) projection-based approximation, (ii) data-dependent approximation. The principal theoretical
results of this paper consist of estimates that make precise in what sense these approximations of the Koopman
operators converge to their infinite-dimensional counterparts.

Error bounds are derived for cases when the Koopman operators act on a reproducing kernel Hilbert (RKH)
space HX that is embedded in a Sobolev space. The RKH space HX of functions over X = R

d is defined
in terms of a reproducing kernel K : X × X → R. The Koopman operator approximations are built using
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finite-dimensional spaces of approximants HΩn = span{Kξ|ξ ∈ Ωn} with Kξ := K(ξ, ·). Here, the term Ωn
represents a set of samples collected along the trajectory of the dynamical system. The assumption is that the
collection of samples becomes dense in a limiting set Ω as n increases. That is, the set Ξ = ∪n∈NΩn is dense
in the limiting set Ω ⊆ X. The theorems presented in this work illustrate that the convergence rate depends
on (i) the smoothness properties of the native space HX , (ii) the structure of Ω. In particular, we prove that
the convergence rate is directly proportional to the smoothness of HX . In addition, convergence results are
described such that we get sharper results as the knowledge about the limiting set Ω improves. For example,
error bounds are derived that are applicable to samplings collected over portions of a trajectory for the system
in Example 1, Figure 1 (a), that has little discernible asymptotic structure. Stronger bounds are derived when
the uncertain semiflow exhibits additional long term structure. In Examples 2 and 3 shown in Figures 1 (b)
and 1 (c), the semiflow is either supported on or attracted to a smooth manifold. In this latter case, we show
that the error in approximations of the Koopman operator decays at a rate that depends on the fill rate of
samples in the manifold. The best results are obtained when it so happens that the limiting set Ω is a smooth
manifold, and in this case it is shown that the finite-dimensional error in approximating the Koopman operator
decreases with O(hpΩn,Ω). Here hΩn,Ω is the fill distance of the samples in the limiting set Ω, and p depends on
the smoothness properties of the native space HX .

We introduce the motivation behind Koopman theory in Section 1.1. We review the goals and philosophy
of the Koopman operator in Section 1.2. Related work and open questions are reviewed in Section 1.3. The
strategy of the overall paper is summarized in Section 1.4. We give an overview of the new results derived in
the paper in Section 1.5. The theory developed in the paper begins with a discussion of background material
on RKH spaces, Sobolev spaces, and interpolation or projection operators in Section 2. Essential material on
dynamical systems theory is contained in Section 3. Sections 4 and 5 give detailed accounts of the development
of the newly introduced theory and the main technical results. Numerical studies and conclusions are presented
in Sections 6 and 7, respectively.

1.1 Motivation

Koopman theory is a body of research that uses operator theory to study dynamical systems. Owing to the
amenability to data-driven methodologies that emerged from Koopman theory, it has gathered attention from
the researchers across disciplines in the past decade [1–7]. While the original paper by Bernard O. Koopman [8]
appeared early in the 1930s, a number of recent texts are evidence of the renewed interest in Koopman operator
theoretic approaches. General studies of the Koopman operator can be found in texts on ergodic theory such
as [9], and in the popular text [10] on deterministic or stochastic dynamical systems. Just over the past five years
careful studies such as [11–33] have explored refinements of the theory of approximation of Koopman operators
as well as associated data-driven modeling methods for uncertain dynamical systems. These references contain
many individual contributions to the theory that underlies the approximation of Koopman operators. In view
of the breadth of these studies on Koopman theory, a full and detailed account of the finer points studied in
these papers would far exceed the limit of a single paper. Here we only review some of the broader issues and
emphasize what we consider to be important open questions that remain, as of yet, largely unresolved. For the
sake of researchers across diverse fields, we briefly review Koopman theory and its philosophy next so that this
paper is self-contained. Such a review has been carried out in greater length and detail in a number of places,
and we recommend discussions such as in [34–37] for more extensive treatments.

1.2 The Philosophy of Koopman Theory

One of the principal reasons for the popularity of methods derived from Koopman theory is that they are
amenable to data-driven approaches. In general, these studies build approximations of quantities or mathe-
matical objects associated with an unknown flow from samples or observations. The approximations can take
the form of estimates or predictors of the state, estimates of an observable function, or approximations of the
propagation law of the dynamical system itself, among other examples. Moreover, it is not only the efficacy of
data-driven algorithms that has resulted in such focus on Koopman theory. The theory is generally applicable to,
indeed in a sense expressly designed for, the study of nonlinear systems. Koopman theory provides an elegant
framework in which to carry out analysis of uncertain nonlinear dynamics as well as to develop data-driven
algorithms for modeling and identification of such systems.

Because the general theory is so broadly applicable, a diverse set of definitions of a Koopman operator have
appeared in the literature. These definitions are tailored to a class of uncertain dynamical systems under study.
Variants are defined for deterministic and stochastic systems, and for both discrete time and continuous time
evolutions. A good account of the variety of definitions can be found in [10], and a detailed discussion of the
duality structures that accompany some of these representations can be found in [38]. Intuition about the nature
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of Koopman theory, its goals and strategies, is perhaps best achieved by considering a simple model of a discrete
time, deterministic, nonlinear system. Such a typical system is governed by the equations

ϕn+1 = f(ϕn) (1)

yn+1 = h(ϕn+1)

where ϕn is the state at time tn ∈ R
+ := [0,∞) in the state space X := R

d, f : X → X is an unknown,
generally nonlinear function that determines the dynamics, the function h : X → R

m is an observable or output
function, and y = h(x) is a measurement or observation evaluated at the state x ∈ X. Because it is normally
the case that the function f is unknown in applications of Koopman theory, we say that this is an example of
an uncertain system. In Koopman theory, it is ordinarily assumed that the history of input-output observations
{(ϕi, yi)}i∈N0

has been collected, and it is desired to use this information to estimate properties of, or some
mathematical object associated with, the flow.

For this type of dynamical system, the Koopman operator Uf is defined as a mapping that takes functions
g : X → R defined on (perhaps some subset of) the state space X to another function Ufg via the rule

(Ufg)(x) := (g ◦ f)(x) (2)

for all x ∈ X. In this definition note that the operator Uf is characterized by the unknown function f that
appears in the evolution law: it is fixed in the definition above. It is now possible to define another discrete
evolution law, one that defines the evolution of functions that satisfy

gn+1 = Ufgn, (3)

which can be used to investigate various properties of the original system in Equation 1. This evolution law
determines a discrete, linear, generally infinite dimensional dynamical system, in contrast to the original system
that is discrete, nonlinear, and finite dimensional. In the language of Koopman theory, Equation 3 is said to
induce discrete linear dynamics in the “space of observables,” or observable functions.

We can fill in a bit more details, at least for one iconic problem, to explain how the study of Equation 3
might inform the study of the original system in Equation 1. Suppose we set the number of outputs m = d,
define the output function h := (h1, . . . , hd)

T , and introduce the vector-valued Koopman operator Ufh :=
{Ufh1, · · · , Ufhd}

T . If we select the observable function to correspond to the full-state observation function
h(x) = x = {x1, . . . , xd}

T , then we have

ϕn+1 = (f ◦ f ◦ · · · ◦ f)
︸ ︷︷ ︸

n times

(ϕ0) = (Uf ◦ Uf ◦ · · · ◦ Uf
︸ ︷︷ ︸

n times

h)(ϕ0).

We see from this identity that if we are able to build approximations of the Koopman operator Uf , it in principle
enables the development of state estimators or predictors for the original nonlinear system. A similar strategy
can be followed to study forecasting of the output yn+1. Since we have yn+1 = h(xn+1) = h(f(xn)) = (Ufh)(xn),
we see that approximations of the Koopman operator can be used to forecast the future output yn+1 from the
present state xn.

This simple model problem illustrates clearly a tradeoff that arises in Koopman theory that largely motivates
its use. The dynamics of nonlinear systems can be much more difficult a topic of study than that for linear
systems. Koopman theory replaces the study of the original nonlinear system with that of a linear system. Still,
as attractive as it is to study a linear system instead of a nonlinear system, there is at least one significant
drawback here. The original system above is finite dimensional while the latter one induced by the Koopman
operator Uf is generally infinite dimensional. In fact, the Koopman operator Uf that defines the dynamics in the
space of observables depends on the unknown function f , and it therefore is also unknown when the dynamics
are uncertain. Considerations of how to build approximations of the Koopman operator in finite dimensional
spaces necessarily plays an important role in Koopman theory, and these associated technical questions can be
delicate and nuanced. It is the nature of the approximations of the Koopman operator that is the concern of
the recent papers summarized above.

Any approximation of the Koopman operator necessarily entails a choice of the finite dimensional spaces of
approximants, and the types of approximants that have been studied for this problem is vast. Common choices
of bases include Fourier modes, globally supported polynomials, piecewise polynomials in the form of finite
element functions or splines, wavelets, bases defined in terms of reproducing kernels of native spaces, as well as
eigenfunctions of Koopman operators or approximations of eigenfunctions of Koopman operators. A discussion
of the approximation spaces that can be defined in terms of some of these choices above, and how they influence
convergence rates, is given by the authors in [38].

However, even in view of the diverse choices summarized above, perhaps it is most common to construct
approximations of Koopman operators in terms of eigenfunctions of the Koopman operator, or in terms of
approximations of eigenfunctions. The eigenfunctions, which are simply known as Koopman modes, are solutions
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of the (functional) eigenvalue problem for the Koopman operator. Just as the eigenvectors of the coefficient
matrix of a linear, time-invariant system can be used to decouple, diagonalize, and simplify the study of that
system, for some types of nonlinear systems a similar strategy in terms of the Koopman modes is possible. In
essence, the Koopman modes sometimes can be used to transform the nonlinear system rigorously into a linear
system. With this ideal scenario in mind, a common strategy for a nonlinear problem at hand is to generate a
reduced order, finite dimensional model by the superposition of a finite number of Koopman modes. When the
calculation of the Koopman modes can be problematic either analytically or computationally, alternatives rely
on computing approximations of the eigenfunctions. The study to establish for what systems this transformation
can be accomplished exactly or approximately with sufficient accuracy, and the assessment of the magnitude of
any resultant errors is a very active area of research. The studies [11–13,16,22–24,26,27,31,38,39] all investigate
aspects of how to go about generating approximations of Koopman modes, which has become a topic of interest
in and of itself.

1.3 Broader Issues and Open Questions

As suggested in the above discussion, the fine details of the theory advanced in [11–20, 22–33, 40] can vary a
lot from reference to reference. Here we identify a few of these recent publications that, in the authors’ view,
appear most relevant to this paper.

1.3.1 Most Relevant Recent Work

The early work by [31] studies the relationship of Koopman approximations to matrix representations that
appear in the dynamic mode decomposition (DMD) and Extended DMD (EDMD) algorithms, and uses the
algorithms to estimate the Koopman modes. Reference [39] analyzes approximations of the Koopman and
Perron-Frobenius operators, their relationship to the EDMD algorithm, and interprets them as different types
of Galerkin approximations. A central conclusion of [39] is that as the number of samples m increases, a finite
dimensional approximation of the Koopman operator converges over a fixed finite dimensional subspace of
approximants. That is, if n is the dimension of the space of approximants or of the basis, and m is the number
of samples, this paper gives sufficient conditions to ensure that when n is fixed, convergence is guaranteed as
m→ ∞. Examples are studied in which the bases of the approximant spaces are selected to be globally defined
monomials. Reference [21] builds upon the study in [39] and further explores that approximation of transfer
operators, and in particular the Koopman and Perron-Frobenius operators. The relationships among various
approximations, the DMD method, the EDMD methods, the time-lagged independent component analysis
(TICA) method, and the variational approach to conformation dynamics (VAC) are discussed.

The recent reference [41] further studies the convergence of approximations of Koopman operators in terms of
projections on the L2

µ(X) space withX the state space of the semiflow. Several conclusions regarding convergence
as the dimension n of the space of approximants or the number m of samples approaches infinity are made, but
again, no discussion about rates of approximation in terms of fixed numbers m of samples or fixed dimensions
n of the approximant space is given.

Other references that are particularly relevant to this study include the quite recent efforts in [12, 42–44].
These papers explore methods for framing the approximation of Koopman operators in terms of bases built
from kernels of RKH spaces. The paper [42] studies the approximation of the Koopman and Perron-Frobenius
operators and concentrates on the realization of approximations in terms of kernels of RKH spaces. In contrast
to many of the articles on the approximation of Koopman operators, reference [42] discusses probabilistic
rates of convergence of various approximations introduced for the regularized, stochastic Koopman operators.
Specifically, it is shown in Theorem 3.14 that, for systems in which the samples are independent and identically
distributed (IID), approximations converge in probabilistic order OP (m

−1/2ϵ−1) with m the number of samples
and ϵ the regularization parameter used to define the approximation to the Koopman operator. (It should be
noted that this estimate is derived by choosing m = n, much as we do later in our data-driven approximations
of the Koopman operator.) This bound is derived for IID processes, which limits its applicability to cases when
the samples are generated along the sample path of many nonlinear stochastic recursions. This result should
be contrasted with Section 8 of [38] that is based on concentration of measure inequalities for certain types of
dependent or independent processes; the latter yields error estimates for approximations of stochastic Koopman
operators that are explicit in the number of samples m and the dimension of the space of approximants n.

The approach in [12] uses diffusion eigenfunctions that are intrinsic to the manifoldM over which evolutions
take place. In particular, the eigenfunctions of the Laplace-Beltrami operator over M are employed as the basis
for theoretical considerations. In this sense the method can be understood as an intrinsic method, which we
talk about in further detail later in this paper. Since the construction of the intrinsic basis over the manifold
is impossible when the manifold is unknown, data-driven approximations of the unknown intrinsic kernel are
computed using a variable bandwidth kernel approximation defined over Rd. In some sense, the results described
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in the current paper can be viewed as a method to obtain explicit bounds on the error of approximation in a
similar setup. Specifically, in this paper we make precise when we can restrict a kernel defined over the state
space Rd to a particular limiting subset Ω (which may be a manifold) and derive associated rates of convergence.
By employing trace theorems for Sobolev spaces that are regular enough to be RKH spaces, it is possible to
make explicit predictions of rates of convergence in terms of the fill distance, a topic not pursued in [12].

The authors of [43] study approximations of Koopman operators for some unitary groups, again constructing
approximations in terms of bases for RKH spaces over a smooth manifold M . An important contribution of
this paper is the choice of the RKH framework that induces dynamics described by the unitary group etWτ

for a compact, self-adjoint operator Wτ that is amenable to approximation. Overall, the analysis in the paper
investigates the convergence of spectral approximations of Koopman operators, and it explores the convergence
of their associated kernel integral operators over L2

µ(X). Typical results (see for example, Theorem 21) ensure
the convergence of approximate eigenfrequencies, approximate eigenfunctions, and observables as the dimension
n of the subspace of approximants increases to infinity. Again, to emphasize the contrast to results in this
paper, reference [43] does not study the rate of convergence, nor error in say L2

µ(M), of approximations of
the Koopman operator that is induced by a particular choice of a kernel of the RKH space. Different choices
of kernels will induce different rates of convergence, and it would be a great advantage to understand how to
control or influence the error by virtue of selecting a different basis.

References [45] and Sections 8.3 through 8.5 of [38] are noteworthy to the current paper because they empha-
size the relevance of a large body of research on statistical learning theory, approximation theory, and nonlinear
regression that is pertinent to Koopman theory. As shown in [38], the conventional result whereby the EDMD
algorithm is used to generate a data-driven approximation of the Koopman operator can be identified, in some
situations, with the estimates that result from the method of empirical risk minimization in statistical learning
theory. In fact, this equivalence can be used to derive rates of convergence for EDMD-based approximations
of the Koopman operator that improve some of the convergence guarantees that have been derived in recent
literature. A similar strategy is explored in [45], although the convergence results stated are not as sharp. Ref-
erence [45] casts the problem of approximating the Koopman operator as a classical empirical risk minimization
problem, chooses a basis in terms of a reproducing kernel, and subsequently shows in Theorem 1 that approxi-
mations converge in the Lebesgue space L2

µ(X) with X the state space of the system. As outlined in Section 3
of [45], rates of convergence follow in principle by making assumptions about the rate of decay of the eigenvalues
that describe the reproducing kernel. See also [38] how this strategy is equivalent to the definition of linear,
spectral approximations spaces that characterize the rates of convergence.

The authors in [38], as noted above, discuss rates of convergence for approximations of Koopman operators
in terms of spectral approximation spaces. These spaces are defined via the eigenfunctions of integral operators
that are defined in terms of the kernel of an RKH space. As suggested above, this is a well-known technique
to study the approximation rates of functions. It is widely used when the eigenfunction basis is known, or at
least can be readily approximated. However, it cannot be emphasized enough that computing a basis that is
intrinsic to some complex underlying set Ω, or even a smooth manifold M , can be extraordinarily difficult. The
authors in [38] discuss rates of convergence for some common choices of bases including normalized B-splines,
piecewise polynomials, orthonormal wavelets, and orthonormal multiwavelets. But the analysis there is carried
out assuming that the bases used for approximations are “well-aligned” with the limiting set Ω = X. The
definition of such nice bases may be possible in some highly structured cases, such as flows on a circle, a sphere,
or on the torus. But it may be far from trivial to come up with such well-designed, domain-adapted bases in
typical applications of Koopman theory since the domain over which samples are collected is unknown, has a
complicated structure, or both.

1.3.2 Open Questions

Considered as an entire class, there are some important subproblems in the approximation of Koopman operators
that are not covered in a systematic way in the literature so far. We can summarize some of these open questions
by being a bit more precise about the structure of the problem that arises when trying to approximate a Koopman
operator. The general setup in this paper is described in terms of the following key features that are used to
frame the approximation problem. We are given a continuous semiflow in either discrete or continuous time
over the state space X. In some situations, the state space may be compact but in many cases it is not. A set
of samples Ξ :=

⋃

n∈N
Ωn are collected that are dense in a “limiting subset” Ω ⊆ X. Here Ωn is a finite set

that contains n samples that is used to build a particular finite dimensional approximation of the Koopman
operator. The limiting set Ω may, or may not be, the entire state space X. A finite dimensional space HΩn of
approximants is defined in terms of a basis {ψi}i=1,...,n, and this basis is used to fashion an approximation of
the Koopman operator. The basis may be supported on Ω ⊂ X, or it may be supported on all of X. This means
that we can discuss approximation of Koopman operators on functions supported on the entire state space,
or we can talk about the approximation of Koopman operators over functions supported on a proper subset
Ω ⊂ X.
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We can gain an appreciation of some of the open problems that motivate this paper by considering a few
of the most common scenarios. Perhaps most frequently, it is simply assumed that the samples Ξ are dense
(Ξ ⊂ X and X ⊂ Ξ) in the compact state space X over which the evolution is defined. In this event, we have the
special case in which the limiting set Ω = X is known a priori. By definition, the basis functions could be any
of a large number of possible choices for functions over Ω = X, including splines, polynomials, Fourier modes,
wavelets, or kernel functions. It is frequently the case in the papers above that the basis {ψi}

n
i=1 is a collection

of eigenfunctions of the Koopman operator, which are then necessarily functions over the set X. It is also
commonly the case that the basis functions are in fact other types of eigenfunctions, associated with different
differential operators or semigroups, like the heat kernel over X. For any of these choices of bases, in the highly
idealized scenarios when samples fill the state space X, it is still seldom the case that the rates of convergence
of the approximation of Koopman operators are related to the specific choice of the bases {ψi}i=1,...,n defined
over the set X. It is much more commonly the case that the approximations are shown to converge in terms
of L2

µ(X), for instance, but the rates of convergence are not derived based on the choice of bases {ψi}i=1,...,n

that are contained in L2
µ(X). This situation for the approximation of Koopman operators should be contrasted

to studies of rates of convergence for approximations of solutions of partial differential equations (PDEs). A
few decades of study have developed a rich theory that relates approximation theory, the definition of (finite
element or finite volume or spline or wavelet or kernel or eigenfunction) bases, and the rates of convergence of
approximations of solutions of PDEs. To be sure, some of the standard machinery for building approximations of
PDEs by refinements or enrichments over fixed, bounded domains are either unsuitable or would be difficult to
apply to approximations in Koopman theory. Even if the state space Ω = X is known a priori, the distribution
of samples over X is generally not known, and it is the distribution µ in L2

µ(X) that intuitively would guide
enrichment, refinement, or other forms of basis selection over X. The difficulty of course is that the portions of
the domain over which samples are collected or concentrated is inextricably connected to the dynamical system
under study. Moreover, sometimes approximations are sought to induce a dynamics that is somehow consistent
with the original semiflow, and this topic does not seem to have a precedent in most methods for approximating
solutions of PDEs. All of these factors combine to make it more challenging to derive rates of convergence of
Koopman approximations. Still, there is a notable lack of results on rates of convergence of Koopman operator
approximations, even in this simplest scenario when samples are dense in X. While these results on convergence
may be harder to come by, or to prove, there definitely is a need for further study along these lines.

Perhaps more importantly, when the limiting set Ω ̸= X, but rather it is a proper subset of the state
space X, the problem of proving convergence of approximations is still more subtle. From a practical point
of view, this is an important issue. The driving motivation behind the use of Koopman theory in many real
applications is that it is known, or it is believed, that the high dimensional dynamics on the state space X
actually corresponds to a dynamics on a simpler or smaller subset in a particular motion regime or case under
study. Perhaps the trajectory at hand actually evolves over a “smaller” invariant set, or perhaps the trajectories
over time accumulate near such a set. The goal of Koopman theory in such a case is to provide a principled,
data-driven method to build a model having reduced complexity. It would certainly be valuable to characterize
the rates of convergence in this situation, but part of the problem is choosing bases and associated spaces of
approximants that provide a tractable setting for analysis over the unknown set Ω. This is complicated by the
fact that the limiting set Ω may have no apparent or particularly notable structure, or it can have a high degree
of regularity when measured in a certain sense. As noted on page 341 of [46], the case when the limiting subset
is a proper subset of the state space is a common and difficult case that can pose its own set of difficulties.
The limiting set Ω may have zero measure as a subset of X, and choosing function spaces over Ω that are
well-defined can be a difficult task in its own right. In any event, when the limiting set Ω is an unknown proper
subset of X, the approximation problem is more complex. We can define the basis used for approximations over
the limiting subset Ω, or we can define the basis for approximation over X. In both cases we want to understand
how the choice of bases affects the convergence rate, what are appropriate function spaces in which to estimate
errors, and how the approximation results over Ω or over X might be related.

Before proceeding to a summary of the new results of this paper, we would like to emphasize one final
source of complication when putting together a general approach to the approximation of Koopman operators.
A data-driven approximation of the Koopman operator will always be a function of the number of samples m
of the observations and the dimension n of the space of approximants. For Koopman operators associated with
stochastic flows, approximations of the Koopman operator will typically consist of a bias and variance term: this
is a fundamental decomposition of the error when samples are generated according to a stochastic process. The
bias term can be traced to the error that is induced by the specific choice of the space of approximants, and it is
also known as the approximation space error. The variance term is associated with the stochastic nature of the
system. A simple overview of the breakdown of the error in approximating the Koopman operator in terms of
the bias and variance is given in [38]. The approximation space or bias error decreases as the dimension n of the
space of approximants is increased. The stochastic error is typically a complicated function of the dimension n
and the number of samples m. However, for a fixed number of samples m, the variance error term increases as
n→ ∞. The important issue to be remembered regarding this decomposition is that the bias-variance tradeoff
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implies that the dimension of the approximant space n must be adapted as a function of the number of samples
m to achieve an optimal error reduction.

This paper considers only deterministic systems, which means that some of these finer issues regarding the
balance of probabilistic and deterministic errors do not arise.

1.4 Strategy of this Paper

In short, the purpose of this paper is to provide a general and systematic framework for the construction
of approximations of Koopman operators for deterministic systems, one that can be applied either when the
samples are dense in the entire state space Ω = X, or when samples are dense in a limiting subset Ω ⊂ X that
is properly contained in the state space. The goal of the theory is to generate approximations for which the
rates of convergence can be studied for a wide class of Koopman operators and bases {ψi}i=1,...,n. We want to
explore how the rates depend on the choice of function spaces, the limiting set Ω, and the choice bases that
define the space of approximants.

The analysis in this paper differs in two essential ways from many approaches to the approximation of
Koopman operators that have appeared over the past few years. First, the study makes a careful use of priors to
establish rates of convergence that depend on the smoothness and approximation properties of the observables
on which the Koopman operator acts. Priors in this paper refer to membership in certain native spaces of
reproducing kernels, or in some cases to Sobolev spaces that measure a scale of smoothness s. The parameter
s can likewise be interpreted as describing the approximation properties of the functions in the Sobolev space.
This is a standard framework in which other types of general (nonparametric) estimation problems are cast,
such as in the study of (distribution-free) learning theory as it is applied to nonlinear regression [47–51]. In this
paper we demonstrate the strength of such an approach when it is applied to Koopman theory also. A pragmatic
implication of this framework is that we are able to derive strong error bounds in a number of different, but
common, scenarios that arise in the approximation of Koopman operators. Overall, we can view the current
paper as a continuation of the study and approach in [38]. That reference studies rates of convergence for some
common choices of basis functions like splines, orthonormal wavelets, and orthogonal eigenfunctions of integral
operators that are often associated with the kernels of RKH spaces. The results in [38] apply when the bases
are “well-aligned” with the domain Ω = X. Here, in contrast, the emphasis is on bases built from the translates
of the kernel functions of a RKH space, and much of the theoretical background is explained by methods of
scattered data approximation. We show that the choice of bases in terms of scattered data samples is a powerful
tool for the derivations of rates of approximation of Koopman operators in that the conditions that bases be
adapted to the domain are not required.

The second distinguishing feature of the approach in this paper is the investigation of the way in which
the structure of the underlying set on which the dynamics is supported or accumulates plays a critical role
in the analysis of Koopman operator approximations. The authors feel that in fact it is this dependence on
the set that supports the underlying dynamics that fundamentally differentiates approximation in Koopman
theory from other fields of study in estimation and approximation theory like nonlinear regression. We will see
that ultimately the interplay between the dynamics and rate of convergence of approximations of the Koopman
operator is described by the rate at which the samples fill the limiting set. To the authors’ knowledge, this is a
qualitatively new result in the analysis of approximations of Koopman operators.

Consideration of a few examples can illustrate the breadth of behavior that the authors feel that approx-
imation of the Koopman operator should take into account. The examples below are meant to emphasize an
important feature about data-driven models of dynamical systems: they are often used to capture the “under-
lying physics” of some high-dimensional flow. In rough terms this means that although the state space may
have many degrees of freedom, there actually is a low dimensional mathematical structure lurking in the larger
space. Although, the examples are only two dimensional, they each illustrate how the limiting behavior of the
flow can exhibit quite a bit of structure. They are also suggestive of how error bounds for approximation of
Koopman operators reflect or depend intrinsically on that underlying structure. While discrete semiflows with
the form of Equation 1 are more common in the existing studies about Koopman operators, we will also treat
orbital Koopman operators, defined in Section 3.1, that are associated with semiflows in continuous time such
as the following two examples. Of course, discretization in time of the continuous time dynamical systems in
the following examples could also define discrete time flows of the type in Equations 1.

Example 1 (Example 2.1, [52]) The following system of equations represent the model of a tunnel-diode circuit.
Figure 1, (a) depicts trajectories for several initial conditions of the flow,

ϕ̇(t) =

{
1
C (−h(ϕ1(t)) + ϕ2(t))
1
L (−ϕ1(t)−Rϕ2(t) + u

}

,

ϕ(0) = ϕ0 ∈ R
2,
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with u = 1.2, R = 1.5 × 103, C = 2 × 10−12, L = 5 × 10−6, and h(ϕ1) := 17.76ϕ1 − 103.79ϕ21 − 229.62ϕ31 −
226.31ϕ41 + 83.2ϕ51. This example has been selected since the phase portrait is highly complex and does not
exhibit any recognizable “simple underlying structure” that will feature prominently in the next few examples.
Samples Ξ(ϕ0) and Ξ(ψ0) that are collected along two distinct trajectories are shown in the figure. The positive
limit sets consist of a finite collection of isolated points in this example, and the qualitative asymptotic behavior
of a trajectory can vary drastically depending on the location of the initial condition. We are interested in
obtaining precise descriptions of convergence of Koopman operator approximations built from samples such as
these two sets, which we intuitively expect to be quite different finite dimensional operators. In addition, we are
interested in understanding over what spaces of functions the Koopman approximations converge, how these
spaces compare, what convergence results can be stated if the two sets are merged, and so forth. In the current
example, the emphasis would be on identifying useful function spaces that are well-defined for the problem of
estimating error in this “unstructured” scenario.

Example 2 Figure 1, (b) depicts trajectories for several initial conditions of the flow that is governed by the
Van Der Pol oscillator equations

ϕ̇(t) =

{
ϕ2(t)

−ϕ1(t) + ϵ(1− ϕ21(t))ϕ2(t)

}

,

ϕ(0) = ϕ0 ∈ R
2.

This semiflow exhibits behavior that is qualitatively quite different from that in Example 1 above. There is
a unique limit cycle for this flow, and for any ϕ0 on the limit cycle, the orbit Γ+(ϕ0) is a smooth, compact
manifold M ⊂ R

2. However, for other initial conditions ϕ0, the orbit Γ
+(ϕ0) is not a smooth compact manifold.

It is easy to see from the phase portrait that the limit cycle M attracts the trajectory generated by any initial
condition as t→ ∞. If we have two different initial conditions ϕ0 and ψ0 and generate two different samplings
Ξ(ϕ0) and Ξ(ψ0), then the limiting sets Ξ(ϕ0) and Ξ(ψ0) are different sets. It is not hard to imagine that
finite dimensional approximations, especially those constructed from samples during the “transient regime,”
could be substantially different. However, both sets Ξ(ϕ0) and Ξ(ψ0) contain the same positive limit set M .
This paper makes precise in what sense the approximations of the Koopman operator generated from Ξ(ϕ0)
and Ξ(ψ0) are comparable: they converge in some sense to the same operator restricted to the RKH space HM

that is indexed by the manifold M . Furthermore, if the RKH space HM happens to be a Sobolev space, we
derive sufficient conditions to guarantee rates of convergence of approximations of the Koopman operator. In
this paper we will describe methods in which approximations of the Koopman operator are derived in terms
of intrinsic kernels that depend on knowledge of the manifold M and extrinsic kernels that do not require
knowledge of the underlying manifold M .

Example 3 In Figure 1, (c), the trajectories of the Lotka-Volterra predator-prey model given by the system

ϕ̇(t) =

{
ϕ1(t)(ϕ2(t)− 2)
ϕ2(t)(1− ϕ1(t))

}

,

ϕ(0) = ϕ0 ∈ R
2

are depicted. The phase portrait illustrates the fact that this system exhibits a great deal of structure, in
some sense perhaps more than the other examples considered thus far. For infinite number of choices of initial
conditions ϕ0, the orbit Γ+(ϕ0) := ∪t≥0ϕ(t) is a smooth, compact, 1-dimensional Riemannian submanifold
M ⊆ R

2. Several samples are shown along one trajectory, where the orange points denoted with a ‘.’ are
collected during the first transit around the limit cycle, then the samples denoted by purple squares are added
during the second transit around the limit cycle, and so forth. The collection of samples Ξ := Ξ(ϕ0) :=
{ϕi}i∈N0

:= {ϕ(ti)}i∈N0
can be built progressively as ti → ∞ so that M := Ξ. Basic questions arise that can

be traced to the nature of the set Ω. For instance, if we build an approximation Unϕ of the Koopman operator
Uϕ in terms of the sampling Ξ(ϕ0), for what functions g is Unϕ g a good approximation of Uϕg? We can state
this another way: over what subspace of functions is Unϕ a good approximation to Uϕ? This paper will show
that since M is a smooth manifold, we can get precise answers to this question for some approximations of the
Koopman operator.

Example 4 Here we briefly overview the geometric method of numerical integration [53] that is often used to
generate simulations that preserve certain qualitative behaviors of systems. We assume the discrete evolution
used for numerical integration is an approximation of the underlying continuous one. Given state variables
ϕ ∈ M , where M is a d-dimensional differentiable manifold, the tangent space to M at a point ϕ ∈ M is
denoted by TϕM . For a curve t 7→ ϕ(t) on the manifold M , the velocity ϕ̇(t) ∈ Tϕ(t)M at a time t is tangent
to the manifold M . The tangent bundle TM is the union of all of the tangent spaces to M , which serves as
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(a) A flow having little apparent underlying structure. The
positive limit set is a collection of attractive equilibria cir-
cled in red. Here samples are taken along a few trajectories
during transient regimes.

(b) A flow having “asymptotic structure,” where trajecto-
ries accumulate on the positive limit set, which is an invari-
ant set of the flow.
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(c) A flow exhibiting considerably more structure. Each
orbit generated by an initial condition in the upper right
quadrant is an embedded submanifold of R2.

(d) Samples taken from a geometric numerical integrator
scheme. The integration scheme determines discrete flows
of orbits defined by 1-dimensional manifolds. The under-
lying manifolds are completely determined by the initial
conditions. For certain orbits that do not lie on the same
manifold, the estimates will never convergence to one an-
other as t → ∞.

Fig. 1: A collection of flows exhibiting various kinds of underlying structure. (a) Phase portrait of Example
1, from [52] page 46, Example 2.1, (b) Phase portrait of Example 2, the Van Der Pol oscillator, (c) Phase
portrait of Example 3, the Lotka-Volterra predator-prey equations, [53] page 4, and (d) Phase portrait of simple
pendulum dynamics and samples that are taken from a discrete numerical integrator with an invariant flow
along a manifold defined by the dynamics.

the state space of (ϕ(t), ϕ̇(t)). In analogy to the ODEs in Examples 1, 2 and 3, continuous evolution law on the
manifold M is governed by the equation

ϕ̇(t) = F (ϕ(t)),

where the map F : M → TM . It defines a semigroup {S(t)}t≥0 on the manifold M so that the solutions are
given by ϕ(t) = S(t)ϕ0. In this case, we can discretize the semifow and define the familiar discrete nonlinear
recursion, ϕi+1 = f(ϕi) where f(ϕi) = S(h)ϕi with a fixed timestep h. The theoretical results of this paper, for
instance, can be applied when the system eventually approaches a limit set Ω which is itself a manifold.

In practice, a closed form expression for the semigroup S(t) is not available for many systems of interest.
Geometric integration methods [53] are popular methods for approximating the system on the manifold M by
a discrete evolution law. For example, we consider the evolution corresponding to the dynamics of a pendulum
with a mass m = 1 hanging from a massless rod of length l = 1 that is approximated using the Störmer-Verlet
discrete integration scheme as given in Example 1.4 in [53]. In this example, ϕ1 and ϕ2 correspond to the
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pendulum’s momentum and position, respectively. The equations of motion are given as

ϕ̇1 = −sin(ϕ2) = f1(ϕ2),

ϕ̇2 = ϕ1.

The discrete evolution at the ith step is determined from the pendulum’s position ϕ2,i, as well as approxima-

tions ϕ1,i and ϕ1,i+1/2 of the derivative ϕ1 = ϕ̇(2) at the i
th and i+1/2 step. The approximations are calculated

by introducing the difference equations

ϕ1,i =
ϕ2,i+1 − ϕ2,i−1

2h
, (4)

ϕ1,i+1/2 =
ϕ2,i+1 − ϕ2,i

h
. (5)

Note that in this formulation ϕ̈2 = f1(ϕ2), which can be approximated by a second-order difference quotient

ϕ2,i+1 − 2ϕ2,i + ϕ2,i−1 = h2f1(ϕ1,i). (6)

Using the positions ϕ2,i and the momentum ϕ1,i along with the second derivative f1(ϕ1,i) and Equations 4,
5 and 6, we can determine a one-step evolution f : X → X to get {ϕ1,i+1, ϕ2,i+1} defined by the following
recursion:

ϕ1,i+1/2 = ϕ1i +
h

2
f1(ϕ2,i), (7)

ϕ2,i+1 = ϕ2,i + hϕ1,i+1/2, (8)

ϕ1,i+1 = ϕ1,i+1/2 +
h

2
f1(ϕ2,i+1). (9)

Like the previous example, for any ϕ0 , the orbit Γ+(ϕ0) := ∪t≥0ϕ(t) through ϕ0 is a smooth, compact,
1-dimensional Riemannian submanifold Mϕ0

⊆ R
2. In Figure 1, (d), several samples Ξ(ϕ0) denoted by the

orange circles are collected along the discrete flow determined by the geometric numerical integration scheme of
Equations 7 through 9 starting from initial condition ϕ0. These samples actually come from a limit cycle defined
by a 1-dimensional manifold Mϕ0

which contains ϕ0. Similarly, samples Ξ(ψ0) denoted by purple squares are
collected around a separate limit cycle defined by the manifold Mψ0 where the integration starts at different
initial conditions ψ0. Samples Ξ(ϕ0) and Ξ(ψ0) will never intersect as they are confined to the manifolds Mϕ0

and Mϕ0
respectively as t → ∞. Again, we are interested in understanding in what spaces approximations of

the Koopman operator converge for such systems.

1.5 A Review of the New Results

The systems for which the theory in this paper applies include some types of discrete or continuous semidy-
namical systems that evolve on a complete metric space (X, dX). Most of the examples choose X as Euclidean
space X := R

d or as a compact Riemannian manifold M . Some examples are also described when the system
evolves on or is attracted to certain types of k-dimensional smooth manifolds M that are regularly embedded
in Euclidean space, M ⊂ X := R

d. These latter cases are important in applications, such as illustrated in the
examples, since it is not uncommon that samples Ξ := Ξ(ϕ0) are generated that fill sets that have zero measure
as subsets of the state space X := R

d.
Similar error bounds are derived in this paper for the two types of deterministic dynamical systems, both

of which are very general. An evolution law like Equation 1 is the exemplar for case with discrete dynamics
determined by a mapping f . For such systems it is well-known that the Koopman operator Uf is given as shown
in Equation 2 with (Ufg)(x) = (g ◦ f)(x) for each x ∈ X. We also define a type of Koopman operator for
continuous semidynamical systems in continuous time. If t 7→ ϕ(t) ∈ X is a trajectory of the system through
the initial condition ϕ0 ∈ X, we define the orbital Koopman operator U from the identity (Uϕg)(t) = (g ◦ ϕ)(t)
for all t ∈ [0,∞) := T . 1

The set of all samples collected along the flow is denoted by Ξ :=
⋃

n∈N
Ωn with Ωn := {ξi | 1 ≤ i ≤ n} the

finite set of samples used to construct a particular approximation of the Koopman operator. The analysis of
approximations of the Koopman operators is carried out by identifying a limiting subset Ω ⊆ X in which the
samples Ξ are dense. The study of approximations in the paper progresses from simple, rather unstructured
cases to those that are more structured and can be considered as direct implications of well-known results on

1 As discussed more fully in Section 3.1, the orbital Koopman operator Uϕ associated with a trajectory t 7→ ϕ(t) differs from
the conventional definition of the Koopman operator associated with a semiflow in continuous time. We are interested in the
approximation of the orbital Koopman operator precisely because its approximation arises in the study of approximations of the
RKH embedding method for adaptive estimation, a topic of much interest to the authors. [54–56]. Also see Example 7.
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scattered data interpolation [57]. The study begins with the definition of a reproducing kernel K : X ×X → R

that induces the RKH space HX := span{Kξi | ξi ∈ X} of functions over the state space, which is the largest
set of functions used to formalize the approximation problem. In this definition Kξi := K(ξi, ·) is the kernel
function centered at ξi ∈ X. See Section 2.2 for the properties of such spaces and associated definitions. Finite
dimensional spaces of approximants HΩn are defined as finite spans of collections of such bases centered over
scattered data as in HΩn := span{Kξi | ξi ∈ Ωn}, and the convergence of the approximate Koopman operators

is cast in terms of the closed subspace HΩ := span{Kξi | ξi ∈ Ω} that is generated or indexed in terms of the
limiting set Ω ⊆ X.

1.5.1 Projection Approximation Unf Without Regularity Assumptions on Ω

The first and simplest approximation Unf of the Koopman operator Uf in this paper is defined in terms of the
HX -orthogonal projection PΩn : HX → HΩn , and we set Unf g := (PΩng) ◦ f . Theorems 1 and 2 together imply
that we have the error bound

|(Ufg)(x)− (Unf g)(x)| ≤ ∥(I − PΩn)g∥HX → 0

for each x ∈ X and g ∈ HΩ as n → ∞. Roughly speaking, this convergence result is similar in nature to that
in Theorem 3 of [41], which shows that as the dimension of the space of approximants goes to infinity, the
approximate Koopman operator Unf approaches the true Koopman operator Uf strongly in the strong operator

topology over L2
µ(X). The equation above is entirely analogous and implies that convergence is guaranteed

in the strong operator topology on maps from HΩ → C(X). Neither the result in [41], nor the analysis in
Theorems 1 and 2 of this paper, describe the rates of convergence for different choices of spaces of approximants,
however. They only imply convergence as the dimension of the space of approximants approaches infinity. A
quick inspection of this pair of theorems shows that Theorem 1 implies the leftmost inequality above, while
Theorem 2 implies that ∥(I −PΩn)g∥HX → 0 for g ∈ HΩ . This latter limit is shown to hold if the kernel K that
induces the native space HX has strong separation properties. These properties are known to hold for a large
collection of kernels such as the Matern-Sobolev kernels, the Abel kernel, or the ℓ1-exponential kernel. However,
the Gaussian kernels are known to lack the separation properties assumed in Theorem 2. [58] Thus, while very
popular, the Gaussian kernels are not guaranteed by our analysis to generate such convergent approximations:
in their case, more or other types of analysis are needed.

1.5.2 Projection Approximations Unf , Ω a Regular set or Manifold

In this paper, the rather weak results in Theorems 1 and 2 for “unstructured” limit sets Ω ⊆ X are improved
when either the limiting set Ω ⊂ X is a compact set having a Lipschitz boundary, or when Ω := X :=M is in
fact a smooth Riemannian manifold. Theorem 11 gives sufficient conditions that the projection-based Koopman
operator Unf (·) := (PΩn(·)) ◦ f satisfies a bound such as

∥Ufg − Unf g∥f∗(W s,2(M)) ≲ h
t−s
Ωn,M

∥g∥W t,2(M) (10)

for all g ∈ W t,2(M) when the limiting set Ω is in fact a smooth, connected, compact, Riemannian manifold
Ω := M . In this equation the error is measured in the pullback space f∗(W s,2(M)) that is defined in Section
2.2, the parameter hΩn,M is the fill distance of the finite samples in Ωn in the manifold M , and the ranges for
the indices t, s are dictated by the Sobolev embedding theorem and the many zeros theorem on manifolds (see
Appendix). When the samples Ξ are dense in a limiting set Ω ⊂ X that is sufficiently regular, in the sense that
it is compact and has a Lipschitz boundary, sufficient conditions for the similar bound

∥Ufg − Unf g∥f∗(W s,2(Ω)) ≲ h
t−s
Ωn,Ω

∥g∥W t,2(Ω) (11)

for all g ∈ W t,2(Ω). Pointwise error bounds that are qualitatively similar to the last two Equations 10 and 11,
ones that also bound the pointwise difference |(Ufg)(x)− (Unf g)(x)| in terms of a power of the fill distance, are
given in Theorems 4, 5, and 6.

1.5.3 Data-Driven Approximations U
n
f over M a Smooth Manifold

The approximation Unf (·) := (PΩn(·)) ◦ f studied above in Equations 10 and 11 is for the projection-based
operator PΩn : HM → HΩn , but this expression cannot be evaluated unless the function f is known. Bounds on
the error induced by the projection-based approximation Unf are certainly valuable to understand the “worst-
case” performance of approximations built from a given finite dimensional space of approximants HΩn , and
they are also important in their role in studying data-dependent approximations Unf g := PΩn ((PΩng) ◦ f). We
discuss these data-dependent approximations next. As shown in Section 4, the operators Unf can be constructed
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from the input-output samples {(ϕi, yi)}1≤i≤n = {(ϕi, f(ϕi)}1≤i≤n along the discrete trajectory of the system
in Equation 1. It is also worth noting that the realization of the coordinate representation of Unf is closely related
to the approximation of the Koopman operator that is defined in terms of the EDMD algorithm, provided that
the number of samples is equal to the dimension of the space of approximants. This fact is explored in detail in
Example 6. The definition of Unf makes sense only so long as (PΩng) ◦ f ⊆ HM . Thus, a standing assumption in
this case is that the pullback space f∗(HM ) ⊆ HM . Since (PΩng) ◦ f ∈ f∗(HM ), this structural assumption is
enough to ensure that the data-driven operator Unf is well-defined. Theorem 11 is representative of the type of
bound that can derived in this case. We have a pointwise error bound

|(Ufg)(x)− (Unf g)| ≤ CMh
t−s
Ωn,M

(
∥g∥W t,s(M) + ∥Ufg∥W t,2(M)

)

in terms of the fill distance of the samples Ωn in the manifold M .

1.5.4 Data-Driven Approximations U
n
PΩnf

Over a Regular Subset Ω ⊆ X

In the last section it is noted that the data-driven operator Unf is well-defined if we assume that f∗(HM ) ⊆ HM .
But it is not immediately clear that this assumption is warranted, nor does it appear easy to verify in many
cases. Alternatively, we can make a direct structural assumption on the function f that appears in the discrete
evolution Equation 1. If we assume that f ∈ (W t,2(Ω))d, we show following Theorem 8 that we have the
pointwise bound

|(Ufg)(x)− (Un
PΩnf

g)(x)| ≤
(

C̃Ω + CΩ∥f∥(W t,2(Ω))d)

)

ht−sΩn,Ω

(
∥g∥W t,s(Ω) + ∥Ufg∥W t,2(Ω)

)
,

which again depends on the fill distance of the samples Ωn in the limiting set Ω. In contrast to the analysis of the
data-dependent operator Unf , however, the data-dependent operator U

n
PΩnf

requires a higher order embedding of
the underlying RKH space in space of Lipschitz continuous functions. This is achieved in practice by appealing
to the embedding of the Sobolev spaces in the Lipschitz spaces, a well-studied topic in the classical analysis of
these spaces.

1.5.5 Koopman Approximations over a Smooth Manifold M Embedded in R
n

The motivation behind considering the Koopman approximation over a manifold is that the samples generated
by the dynamical system cover a smooth manifold in certain practical cases. However, it is essential to note that
the manifold’s explicit formulation (equations) is unknown in most cases. This, in turn, implies that determining
the Riemannian metric on the manifold M can be challenging. Theoretically, we can derive such a metric by
defining a kernel K on the manifold M . Then we can apply the results discussed in the previous sections to
the problem at hand. However, this approach can be complex, even in the most straightforward practical cases.
Fortunately, we can evoke the structure of the Euclidean space in which the manifold M is embedded to make
the computation easier. Defining reproducing kernels over Euclidean space is a well-studied topic. We can now
restrict the kernel to the manifold to obtain the convergence rates over the manifold M . The trace theorem,
discussed in Section A.3 and [59], explicitly defines the Sobolev space in which the native RKH space induced
by the restricted kernel is contained. It is now possible to understand the convergence rates in the restricted
Sobolev space. The kernel restriction to the manifold M results in a loss of smoothness of the Sobolev space,
leading to weaker convergence rates. However, this extrinsic approach to approximating the Koopman operator
does not require an explicit definition of the kernel over the manifold M , thus making it easier to implement
than the intrinsic approach detailed above.

In the remainder of this paper, we give the details of the analysis that establishes and supports the new results
summarized above. The presentation of the details includes many auxiliary results that may be of independent
interest to the reader, and the authors emphasize these points whenever they appear.

2 Definitions and Background

2.1 Notation and Symbols

In this section we begin a description of the underlying theory, and make clear common notation and symbols.
In the paper, the symbols R,R+,N,N0 := N∪ {0} denote the real numbers, nonnegative real numbers, positive
integers, and nonnegative integers, respectively. The functions ⌈·⌉ and ⌊·⌋ are the ceiling and floor functions
that return the smallest integer greater than, or the largest integer less than, a given real number. When we
write a ≲ b, it means that there is a positive constant c that does not depend on a, b such that a ≤ c · b. A
similar definition holds for the relation ‘≳’, and we write a ≈ b when a ≳ b and a ≲ b. We use X to denote
the state space of a system, which is always assumed to be a complete metric space (X, dX). In the paper
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the most general system is taken to be a semidynamical system defined in terms of a continuous semigroup
{S(t)}t∈T with the time-indexing set T = R

+ or T = N0. By L
p(Ω) := Lpµ(Ω) we refer to the usual Banach

space of p-integrable functions over Ω ⊆ X with respect to the measure µ on X for 1 ≤ p <∞, with the usual
modification for p = ∞. The space C(Ω) is the collection of bounded continuous functions f : Ω → R on Ω ⊂ X
equipped with the usual supremum norm, and C(Ω,Rd) is the associated space of vector-valued, continuous,
and bounded functions f : Ω → R

d. We denote by C0,1(Ω) the space of Lipschitz function over a closed subset
Ω, where the norm ∥f∥C0,1(Ω) = ∥f∥C(Ω) + |f |C0,1(Ω) is defined in Equation 25 in Section A.3. As discussed
more carefully in Section 2.2 below, HX will always denote an RKH space of real-valued functions defined over
the state space X that is induced by an admissible kernel K : X × X → R. When (U, ∥ · ∥U ) and (V, ∥ · ∥V )
are normed vector spaces, we say that U is continuously embedded in V whenever U ⊆ V , and the canonical
injection i : u ∈ U 7→ i(u) = u ∈ V is a bounded operator. That is, ∥u∥V := ∥i(u)∥V ≲ ∥u∥U for all u ∈ U . We

abbreviate the property by writing U →֒ V , or U
i
→֒ V if we want to be precise about which canonical injection

i is involved in the embedding.

2.2 Structures in RKH Spaces

As noted in the introduction, in this paper it is frequently the case that HX is an RKH space of real-valued
functions over the state space X := R

d. However, we also study some examples where the entire state space
X is in fact a smooth manifold X := M , and we also consider the RKH spaces HM when M is a submanifold
that is regularly embedded in the state space X := R

d. The theory of RKH spaces in this section is stated
with X an arbitrary set, keeping in mind these intended applications. This section reviews the basic definitions
and properties of the RKH space, as well as several auxiliary spaces that are commonly associated with such
an RKH space HX . These spaces include the pullback space ϕ∗(HX) of time-dependent functions defined in
terms of a mapping ϕ : T → X with respect to an arbitrary time set T , the pullback space f∗(HX) of spatial
functions defined in terms of a mapping f : X → X, the space of restrictions RΩ(HX) of functions in HX to a
domain Ω ⊂ X, and the subspace HΩ ⊆ HX defined in terms of a generating set Ω ⊆ X. We also discuss and
relate interpolation and projection operators defined on these spaces. The following discussion of the supporting
theory of RKH spaces is necessarily concise, and the reader is referred to comprehensive treatments in [60–62]
for a detailed account.

2.2.1 RKH Space HX and HΩ ⊆ HX of Functions over X

The set X is the state space of the uncertain evolution law in this paper, and all the function spaces introduced
in the paper are derived from a real RKH space HX of functions over X. A real-valued function K : X×X → R

is an admissible kernel function if it is symmetric, continuous, and of positive type. The kernel is of positive
type if for any finite collection of points {ξi}1≤i≤n ⊆ X, the Grammian or collocation matrix Kn := [K(ξi, ξj)]
is positive semi-definite. The kernel is of strictly positive type if the Grammian matrix is positive definite for
any finite collection of distinct points. The real Hilbert space HX is defined in terms an admissible kernel [60]
function K : X ×X → R as

HX := span{Kx | x ∈ X} (12)

with Kx(·) := K(x, ·) referred to as the kernel basis function located at x ∈ X. The closure is taken with respect
to the candidate inner product (·, ·)HX that is defined for any two functions Kx,Ky by (Kx,Ky)HX := K(x, y)
for all x, y ∈ X. The RKH space HX is said to be the native space induced by the kernel K. An RKH space gets
its name from the fact that (f,Kx)HX = f(x) for all f ∈ HX and x ∈ X, which is known as the reproducing
property of the RKH space. Not every Hilbert space H is an RKH space: it is known for instance that the
Hilbert space of Lebesgue square integrable functions L2(X) is not an RKH space. However, it is also known
that a Hilbert space H is an RKH space if and only if all the evaluation functionals Ex : f 7→ f(x) are bounded
operators from H to R. A sufficient condition for this is that there is a constant k̄ such that supx∈X K(x, x) ≤ k̄2.
Then we have the uniform norm bound ∥Kx∥ ≤ k̄ and the uniform operator norm bound |Ex| ≤ k̄. Since K that
induces HX is assumed to be continuous, the existence of such an upper bound k is sufficient to ensure that
HX →֒ Cb(X).

It is evident from the above definitions that it is always possible to define a closed subspace HΩ ⊆ HX that
is generated by an arbitrary set Ω ⊆ X as

HΩ := span{Kx | x ∈ Ω ⊆ X}. (13)

We refer to the set Ω in the definition of the above space HΩ as the generating set of the space HΩ . Note
carefully that HΩ are functions defined over all of X, not functions only defined just on Ω. We consider the
restriction of functions below in discussions of the RKH spaces RΩ(HX). In the definition of HΩ , the closure
in taken with respect to the norm ∥ · ∥HX , and HΩ is endowed with the usual topology it inherits as a closed
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subspace of HX . It is a standard result in the theory of RKH spaces that the space HΩ is an RKH space itself,
and its kernel KΩ can be written in terms of the HX -orthogonal projection PΩ of HX onto HΩ and the kernel
K as

KΩ(x, y) := (PΩKx, PΩKy)HX (14)

for all x, y ∈ X. If we set

ZΩ := {f ∈ HX | f |Ω = 0},

then it can be shown directly from the definition of HΩ that we have the HX -orthogonal decomposition

HX = HΩ ⊕ ZΩ .

The orthogonal complement of HΩ is thereby the set of functions in HX that vanish identically on Ω ⊆ X. In
the above discussion, the definition of PΩ is given for scalar-valued functions in HX . We overload this notation
for vector-valued functions and define PΩf := {PΩf1, . . . , PΩfd}

T for all f ∈ Hd
X .

2.2.2 The RKH Space RΩ(HX) of Restrictions to Ω ⊆ X

When we have defined a kernel K on X that induces a native space HX , there is a standard way to define an
RKH space RΩ(HX) of restrictions of functions in HX to a subset Ω ⊆ X. This set is given by

RΩ(HX) := {f ∈ HX | g = RΩf, f ∈ HX}

with RΩ the restriction operator RΩf = f |Ω .
2 As discussed in detail in [60, 61], the kernel r : Ω × Ω → R of

the RKH space RΩ(HX) is

r(x, y) := K

∣
∣
∣
∣
Ω×Ω

(x, y)

for all x, y ∈ Ω. For any h ∈ RΩ(HX), this definition of the kernel induces a norm that is equivalent to

∥h∥RΩ(HX) ≈ min {∥f∥HX | h = RΩf, f ∈ HX} .

Note that, by virtue of the above definition, it is immediate that ∥RΩg∥RΩ(HX) ≤ ∥g∥HX for all g ∈ HX , and
the operator RΩ : HX → RΩ(HX) is norm bounded with ∥RΩ∥ ≤ 1.

The spaces HΩ and RΩ(HX) are closely related. We can identify the space ZΩ that appears in in the
orthogonal decomposition HX := HΩ ⊕ ZΩ as the kernel of the restriction operator RΩ : HX → RΩ(HX),
that is, ZΩ = ker(RΩ). The restriction map RΩ is linear and bounded on HX . Moreover, RΩ |Z⊥

Ω
= RΩ |HΩ

is injective. This means that (RΩ |HΩ )
−1 exists and is a bounded map from RΩ(HX) → HΩ . We define the

extension operator EX : RΩ(HX) → HX by the equation

EX := (RΩ |HΩ )
−1
.

The extension operator enables an explicit equivalent expression for the inner product on RΩ(HX) as

(g, h)RΩ(HX) = (EXg,EXh)HX ,

and in fact it follows from this definition that the operator norm ∥EX∥ ≤ 1 too. With this definition of the
inner product on RΩ(HX), it is possible to show that the orthogonal projection PΩ satisfies

PΩ = EXRΩ .

It is also pointed out in some of the proofs that follow that the identity above implies some useful norm
equivalences. For any g ∈ HΩ ⊆ HX we have

∥g∥HΩ = ∥PΩg∥HX = ∥EXRΩg∥HX = ∥RΩg∥RΩ(HX).

A function g ∈ HΩ , which is defined on all of X, is the zero function in HΩ if and only if the restriction RΩg is
zero over Ω. As for the projection operator PΩ , we define the action of EX and RΩ on vector-valued functions
as EXg := {EXg1, . . . ,EXgd}

T and RΩf := {RΩf1, . . . , RΩfd}
T for g ∈ (RΩ(HX))d and f ∈ Hd

X , respectively.

2 It is well-known [60–62] that the construction of the space of restrictions RΩ(HX) can be understood a special case of a pullback
space generated by the canonical injection I : Ω → X that associates I : x ∈ Ω 7→ x = Ix ∈ X. However, we will only use the
notion of a pullback space for ϕ∗(HX) and f∗(HX) in this paper. One reason for this choice is that when we introduce Sobolev
spaces over the spatial domain, and relate them to RKH spaces, trace operator has a natural interpretation and relationship to the
restriction operator RΩ .
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2.2.3 The Pullback RKH Spaces γ∗(HX) for γ : S → X

When HX is an RKH space, there is a standard construction of pullback spaces that are defined in terms of
HX and a mapping into X, which we describe next. For the RKH space HX , any set S, and any mapping
γ : S → X, the pullback RKH space γ∗(HX) is defined to be the set of functions

γ∗(HX) := {g : S → R |g = f ◦ γ, f ∈ HX},

which is the space of compositions of functions in HX with the fixed map γ. The norm on the pullback space
γ∗(HX) is defined to be

∥g∥γ∗(HX) := min

{

∥f∥HX

∣
∣
∣
∣
g = f ◦ γ, f ∈ HX

}

.

As discussed in [62], the pullback space γ∗(HX) is itself an RKH space with kernel Kγ defined as

Kγ(τ, s) := K(γ(τ), γ(s))

for all τ, s ∈ S. This implies that γ∗(HX) := span{Kγ,s | s ∈ S} with Kγ,s := K(γ(s), γ(·)) for each s ∈ S.
In this paper we interpret the trajectory t 7→ ϕ(t) of the uncertain dynamical system as defining the mapping

ϕ : T → X with T := [0,∞), and the specific pullback space ϕ∗(HX) in this paper is subsequently a space
of functions of time. The pullback space ϕ∗(HX) is therefore used to study semiflows in continuous time. We
also have occasion to use the pullback space f∗(HX) that is the pullback space generated by the mapping
f : X → X that appears in the discrete evolution law in Equation 1. The definition of either of the spaces
f∗(HX) or ϕ∗(HX), their kernels, their norms, etc, are defined exactly as in the case of γ∗(HX), but replacing
the mapping γ with either f or ϕ, respectively. Finally, we note that since RΩ(HX) and HΩ are RKH spaces in
their own right, it also makes sense to define the pullback spaces such as ϕ∗(RΩ(HX)) or f∗(HΩ). These spaces
are particularly useful when the samples Ξ of the underlying flow are not dense in the state space X, but are
dense in a limiting set that is a proper subset Ω ⊂ X.

Example 5 The last few sections have reviewed some of the general properties of RKH spaces, and in this section
we summarize a few of the common kernels that define RKH spaces in some of the examples. There are a large
variety of admissible kernels K : X ×X → R that induce native spaces HX . See [57] for a good overview that
focuses for the most part on kernels defined over subsets Ω × Ω ⊆ R

d × R
d. A very brief discussion of certain

kernels defined on smooth manifolds M can be found in Chapter 17 of the same reference [57], but most of
the guarantees of convergence in the paper for are cast in terms of kernels described in the family of recent
papers [63–65]. We should also point out that the kernels described below and used in this paper are all examples
of positive definite kernels. As carefully discussed in [57], there is a larger family of conditionally positive definite
kernels, but we will not consider this level of generality when building the native spaces in this paper.

Exponential Kernels: Of all of the kernels that appear in applications to dynamical systems, it seems as if the
most popular are the exponential kernels. Many kernels can be defined in terms of the exponential function,
and we refer in this paper to a few that have the form

Kα,p,q(x, y) := e
−α∥x−y∥p

ℓq(Rd)

with α > 0 a real constant and 1 ≤ p, q ≤ ∞. The most well-known of these kernels are the Gaussian kernels
Kα,2,2, but we use the Abel kernel Kα,1,2 and the ℓ1-exponential kernel Kα,1,1 too because of there excellent
separation properties. See [58], Section 3 for an excellent commentary on the separation properties of some of
these exponential kernels. The exponential kernel is popular since it has a simple closed form representation,
it is smooth, and it is a positive definite kernel for any α > 0. This kernel also appears in many papers that
study statistical or machine learning theory, or Gaussian process methods, in terms of RKH spaces. See [66]
for a clear and concise discussion of the interrelationships among these fields. Those familiar with Bayesian
estimation will recognize that native spaces defined in terms of exponential functions are used to characterize
covariance operators.

Inverse Multiquadrics The kernels Kβ(x, y) := 1/(c2 + ∥x − y∥2
Rd
)β are known as the family of inverse multi-

quadrics, and they have much in common with the exponential kernels. For any β > 0 these functions are also
smooth, have a simple closed form representation, and are positive definite on R

d×R
d for any β > 0. In princi-

ple, the use of the exponential or inverse multiquadric kernels can be used to define interpolation operators that
have convergence rates of arbitrarily high polynomial order, even exponential rates of convergence, as discussed
in Section 11.4 of [57]. Unfortunately, the condition number of the Grammian matrices for exponential kernels
can be prohibitively high, which induces numerical stability issues that can make implementations problematic.

Compactly Supported Polynomial RBF of Minimal Degree: We will see that interpolation operators generated
in terms of kernel functions of a RKH space are expressed in terms of the inverse of the Grammian matrix
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K(Ωn) := [K(ξi, ξj)]ξi,ξj∈Ωn associated with a finite dimensional number of samples Ωn := {ξ1, . . . , ξn}. For
kernels that are globally supported like the exponential or inverse multiquadric functions, the Grammian matrix
is fully populated. It can be much more efficient to use kernels that are only locally supported, which can imply
that many entries of the Grammian (and its inverse) are zero. This leads to much more efficient representations
of approximations of functions. In a fashion that is analogous or reminiscent of techniques from finite element
methods [67], there are standard constructions of kernel functions Kd,k on R

d×R
d that are piecewise polynomials,

have compact support, and are positive definite for any d ≥ 1 and even integers k > 0. The definition of these
kernels varies as a function of the dimension d and even integer index k > 0, so they are not as simple in form
as either exponential or inverse multiquadric functions. See [57], Table 9.1 for a summary of some of the more
common, low order versions of these functions.

Intrinsic Matern-Sobolev Kernels: So far, the positive definite kernels have been defined over R
d × R

d, which
means that their restrictions to any subset Ω×Ω defines a positive definite kernel on Ω×Ω. In this paper we also
make use of Matern-Sobolev kernels that are defined on certain types of smooth Riemannian manifolds M . The
definitions of these kernels require a bit more information about smooth manifolds. WhenM is a d−dimensional,
closed, compact, connected, smooth Riemannian manifold, we denote byW s,2(M) the Sobolev space having real
smoothness index s > 0. The careful definition and basic properties of these spaces are described in Seection A
that follows. If s > d/2, these are examples of RKH spaces. In the case that the smoothness index is an integer
s := m, the reproducing kernel Km of the space Wm,2(M) is the fundamental solution of the operator equation
Lu :=

∑m
j=0(∇

j)∗∇ju = δ of order 2m with δ the Dirac distribution, L the Laplace-Beltrami operator on M ,
and ∇ the covariant derivative operator on M . In some classical choices of the compact manifold M , say, if
M is the circle S1, the sphere S2, or the torus T d, closed form expressions for the Matern-Sobolev kernel are
known, see [63–65]. Spherical harmonics on the sphere are eigenfunctions of the Laplace-Beltrami operator L
on Sd−1, [57], for instance. The Sobolev-Matern kernels are strictly positive definite on M .

Extrinsic Matern-Sobolev Kernels: In applications to the approximation of Koopman operator, there is an
underlying assumption that the dynamics is unknown, or at least uncertain. While the Sobolev-Matern kernels
are attractive in that they are an example of a positive definite kernel over a compact manifold, if the exact
form of the manifold M is not known, the closed form expression for these kernels will not be readily available.
However, the Sobolev-Matern kernels can also be defined for the Sobolev spaces Wm,2(Rd) when m > d/2,
and closed form expressions for these these RKH spaces are known. In the case that M is a k−dimensional,
closed, compact, connected, smooth, regularly embedded submanifold M ⊂ X := R

d, we can define kernels for
W r,2(M) by the restriction of the kernels defined on X := R

d to the set M ⊂ X, with certain restrictions on
the index r. Even though intrinsic kernels on M are unavailable or intractable to compute, this strategy can be
used to define a kernel on M that is easy to implement in calculations even if a closed form expression for M
is unavailable.

2.2.4 Interpolation and Projection

Approximations of the Koopman operators are constructed in terms of finite dimensional subspaces of the spaces
HX , HΩ , or RΩ(HX), depending on the particular application. Associated with the finite set of points

Ωn := {ξ1, . . . , ξn} ⊆ X,

we let HΩn be the n-dimensional space of approximants HΩn := span{Kξi | ξi ∈ Ωn}. We define the HX -
orthogonal projection PΩn : HX → HΩn in the usual way, in terms of the identity

((I − PΩn)f, g)HX = 0

for all g ∈ HΩn . We define the interpolation operator IΩn : HX → HΩn to be the unique operator that satisfies
the interpolation conditions over Ωn for each f ∈ HX ,

(IΩnf)(ξi) = f(ξi)

for all ξi ∈ Ωn. While it is not true for functions in a general Hilbert space, for the RKH space HX the
interpolation and projection operators coincide, IΩn = PΩn .

In the same fashion, we define the RΩ(HX)-orthogonal projections PΩn and IΩn with respect to the n-
dimensional approximant spaces RΩ(HΩn) that are given by

RΩ(HΩn) := span{rξi | ξi ∈ Ωn}

where as discussed above rξ := RΩKξ for ξ ∈ Ω. The projections PΩn and PΩn are related by the identities

RΩPΩn = PΩnRΩ ,

EXPΩn = PΩnEX .
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These identities can be inferred by manipulation of coordinate expressions, as is carried out in [68]. Alternatively,
we know that for each g ∈ RΩ(HX) the interpolation operator IΩn satisfies (IΩng)(ξ) = g(ξi) for all ξi ∈ Ωn.
Because Ωn ⊆ Ω, we have

(EXIΩng)(ξi) = (EXg)(ξi) = (InEXg)(ξi) = (PΩnEXg)(ξi)

for each ξi ∈ Ωn. Since the range of EXIΩn and PΩnEX are n-dimensional, these relations and the positive
definiteness of the kernel suffice to prove that EXIΩn = EXPΩn = PΩnEX = IΩnEX . We note that identities
such as the above have been used elsewhere in the study of approximations in RKH spaces, see [69].

The operators PΩn ,PΩn above are defined for scalar-valued functions. With an abuse of notation we will
overload these definitions so that they apply component-wise on vector-valued functions. We set

PΩnf :=







PΩnf1
...

PΩnfd







and PΩng :=







PΩng1
...

PΩngd







for functions f ∈ Hd
X and g ∈ (RΩ(HX))d.

2.3 Sobolev Spaces

The theory of RKH spaces outlined in the last section is general and allows for functions defined on an arbitrary
set X. The strongest convergence results derived in this paper are derived when the RKH space HX , or one of
its associated spaces such as HΩ or RΩ(HX), can be interpreted as a Sobolev space. The Sobolev spaces are
some of the most common spaces used to describe smoothness and approximation properties of functions. [70]
In this paper we will use Sobolev spaces W r,2(Ω) for real r > 0 that contain functions defined over a subset
of Ω ⊆ X := R

d, as well as the spaces W r,2(M) that contain functions defined over certain types of manifolds
M ⊆ X. The definitions and theorems for these spaces are very similar in form, but differ in the fine details of
certain hypotheses. A more detailed discussion on Sobolev spaces is given in Appendix A.

3 Dynamical Systems and Koopman Theory

As noted in the introduction, Koopman theory has been developed for deterministic or stochastic systems, and
for both of these classes in discrete or continuous time. Variants of the theory have most often been studied
when the unknown underlying system takes values in the Euclidean space R

d, but some work has also been
carried out for evolutions that take values in certain types of manifolds M . While we certainly cannot treat all
the diverse and nuanced differences in these cases, it is a primary goal of this paper to derive error bounds in
a framework which, hopefully, can be extended to many other scenarios. We limit the study here to two types
of deterministic dynamic systems, one class in continuous time, and a second in discrete time. We find in the
study that the derivation of the rate of convergence of the approximations of the Koopman operators for the
two classes have much in common.

Also, as discussed more fully in [38], the error analysis of stochastic Koopman operators can be carried
out by decomposing the total error into an approximation space error that is known as the bias term, and an
stochastic error that is referred to as the variance term. This is a classical decomposition of the error for function
estimates that are built from stochastically generated samples. This paper, then, can be viewed as a study of
the approximation space or bias error term: it can inform the analysis of part of the total error for stochastic
Koopman operators. The full study of the stochastic case would far exceed the scope of this paper, and we leave
the topic for future study.

3.1 Deterministic Evolutions in Continuous Time

We first discuss deterministic evolutions in continuous time, and we denote the time indexing set T := R
+.

We assume that the underlying unknown dynamics constitute a continuous semidynamical system that we take
to be defined in terms of continuous semigroup of operators {S(t)}t∈T that act on the complete metric space
(X, dX). In most of the examples we choose X := R

d, although we do consider cases in which the evolution
takes place in an embedded submanifold M ⊆ X. As per the usual definitions [71, 72], the positive or forward
orbit Γ+(ϕ0) through the initial condition ϕ0 ∈ X is

Γ+(ϕ0) :=
⋃

t∈[0,∞)

S(t)ϕ0 =
⋃

t∈[0,∞)

ϕ(t)
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with t 7→ ϕ(t) := S(t)ϕ0 the motion or trajectory through ϕ0 at t = 0. It will be useful to distinguish the positive
limit set ω+(ϕ0) associated with an orbit Γ+(ϕ0):

ω+(ϕ0) =

{

y ∈ X

∣
∣
∣
∣
∃ti → ∞ such that S(ti)y → y

}

.

The positive limit set will be important to our considerations in that it will make precise the largest set for
which some of the error bounds for the data-dependent approximations make sense. Note that if the forward
orbit Γ+(ϕ0) is precompact, then the positive limit set Γ+(ϕ0) is nonempty, connected, compact, and attracts
the flow. The positive limit set in this case provides a well-defined starting point from which to extract sequences
to generate convergent approximations of Koopman operators in this paper.

Associated with the state space X, a real-valued RKH space HX of functions over X is defined in terms of an
admissible kernel K : X×X → R. We define the orbital Koopman operator Uϕ for a trajectory t 7→ ϕ(t) := S(t)ϕ0
of the system via the familiar relation

(Uϕg)(t) = (g ◦ ϕ)(t), (15)

and in this way the orbital Koopman operator is a map Uϕ : HX → ϕ∗(HX), with ϕ∗(HX) the pullback space
generated by the map ϕ : T → X and T := [0,∞). In fact Uϕ is a bounded and linear mapping between HX

and ϕ∗(HX). Boundedness follows since

∥Uϕg∥ϕ∗(HX) = min{∥h∥HX | g ◦ f = h ◦ f, h ∈ HX} ≤ ∥g∥HX , (16)

which shows that ∥Uϕ∥ ≤ 1.
The definition of the orbital Koopman operator Uϕ in Equation 15 is given for g ∈ HX , but we also study

these operators for g ∈ RΩ(HX). Since in this case g : Ω → R, here the Koopman operator Uϕg := g ◦ ϕ
makes sense when the orbit Γ+(ϕ0) ⊂ Ω. This case will be studied used when the samples Ξ do not fill the
state space X, but are dense in the limiting set Ω ⊂ X. Carefully note that the identity Uϕg := g ◦ ϕ actually
defines two different operators for the cases when g ∈ HX or g ∈ RΩ(HX) since they have different domains.
We will abuse notation and refer to both as Uϕ. Since, following the same logic as in Equation 16 above, we
have ∥Uϕg∥ϕ∗(RΩ(HX)) ≤ ∥g∥RΩ(HX), it follows that the operator norm ∥Uϕ∥ ≤ 1 in either definition of Uϕ.

Those familiar with constructions in RKH spaces will recognize the above definition of the Koopman operator
Uϕ as that of the composition operator encountered in RKH theory. [62] On the other hand, those familiar with
Koopman theory will note that this definition differs somewhat from that given for continuous time systems. For
continuous evolutions, it is more common to define a different Koopman operator, one that is time-dependent.
The time-dependent Koopman operator is defined via the identity (Utf)(x) := f(S(t)x), and then we have
Ut : HX → HX . Carefully observe that the domain and range of the operator Ut is the same space, while they
are different spaces entirely for the orbital Koopman operator. It is this difference that motivates referring to
Uϕ as the orbital Koopman operator since it depends on the entire orbit, and is not an operator defined for
fixed t. We do not study the approximation of operator Ut in this paper. Historically, the authors’ interest in
bounds for approximations of the orbital Koopman operator Uϕ has arisen in the study the RKH embedding
method for uncertain systems in [56,68].

3.2 Deterministic Evolutions in Discrete Time

Evolutions in discrete time in this paper are governed by the nonlinear, deterministic recursion

ϕn+1 = f(ϕn)

where ϕn ∈ X, (X, d) is a complete metric space, and f : X → X is a generally nonlinear, but unknown,
function. To keep the exposition and notation simple, we use an overloaded notation to describe this system
in a way that is similar to the continuous case. For the discrete system we set the time index set to be the
nonnegative integers T = N

+
0 and let the discrete semigroup be defined as {S(t)}t∈T := {S(t)}t∈N0 := {f t}t∈N0 .

The positive orbit and positive limit set are correspondingly defined as

Γ+(ϕ0) :=
⋃

t∈N0

S(t)ϕ0 =
⋃

t∈N0

ϕt,

ω+(ϕ0) := {y ∈ X | ∃tk → ∞ such that S(tk)ϕ0 → y as k → ∞}.

This overloaded notation will enable the discussion of the error bounds in the discrete and continuous time
cases have a common structure.

The Koopman operator for the discrete semiflow is defined by the operator Uf given by

Ufg := g ◦ f
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for each g ∈ HX . Again, the Koopman operator Uf is a mapping from HX to the pullback space f∗(HX). It is
linear and bounded, and boundedness follows from exactly the same argument by which the orbital Koopman
operator Uϕ is shown to be bounded.

As in our discussion of the orbital Koopman operator Uϕ, we use the same notation Uf to denote the operator
defined by the identity Ufg := g ◦ f for g ∈ RΩ(HX). Again, this definition makes sense as long as the orbit
Γ+(x0) takes values in the subset Ω ⊂ X. This definition is used in cases in which the samples Ξ do not fill the
state space X, but are dense in a proper subset Ω ⊂ X. By the same reasoning as outlined above, the operator
norm ∥Uf∥ ≤ 1 as a mapping Uf : RΩ(HX) → f∗(RΩ(HX)).

3.3 Samplings and Fill Distances

To begin our discussion of sampling, we treat the case that samples come from a single orbit Γ+(ϕ0). For either
of the systems above characterized by the continuous semigroups {S(t)}t∈T with either T = [0,∞) or T = N0,
we build approximations from a single orbit Γ+(ϕ0) based on some set of distinct samples Ξ ⊂ X with

Ξ = Ξ(ϕ0) := {ξi := ϕ(ti), ti ∈ T} or {ξi := ϕk(i) | i ∈ N0}.

Note that this definition does not require that ti → ∞ for the continuous time case, nor that the sampling
is uniform in either case, although these will be the most common cases in applications. Approximations of
functions and operators in the paper is achieved using the finite dimensional spaces HΩn defined as

HΩn := span{Kξi | ξi ∈ Ωn} ⊂ HX ,

with
Ωn := {ξi ∈ Ξ | 0 ≤ 1 ≤ n}.

The sets Ωn are nested with Ωn ⊂ Ωn+1, and the approximant spaces are likewise nested, HΩn ⊂ HΩn+1
.

Correspondingly, for the continuous time case we also define the finite sets of discrete sample times Tn := {ti ∈
T | ϕ(ti) ∈ Ωn}.

We denote by Ω the limiting set that is approximated by the samples in the sense that Ξ is dense in Ω,
that is, Ξ ⊆ Ω and Ω ⊆ Ξ. Clearly, one candidate for the limiting set is given by

Ω :=
⋃

n∈N

Ωn := Ξ,

but we also allow for open sets Ω. The rate of convergence will ultimately be expressed in terms of the fill
distance that is defined for any finite set Ωn ⊂ Ω as

hΩn,Ω := sup
x∈Ω

min
ξ∈Ωn

dX(x, ξ).

It should be noted that in order that the fill distance is finite, it must be the case that Ω is bounded. In this
paper when we say that the samples Ξ :

⋃

n∈N
fill up the limiting set Ω, we mean the fill distance approaches

zero, dΩn,Ω → 0 as n→ ∞.
In general an orbit Γ+(x0) of a semidynamical system need not have any easily or particularly notable

structure that is readily characterized, and this fact will be reflected in the samples Ξ := Ξ(ϕ0) extracted from
Γ+(ϕ0). Different error bounds for the Koopman operators in this paper will be derived depending on how
much structure the set Ω exhibits. The following list of examples illustrate some of the situations that may be
encountered in practice.

Samples Ξ are dense in the entire state space, Ω := X: In some sense this is one of the most basic situations
that must be studied. Note that if we want hΩn,Ω → 0 as n→ ∞, we must have Ω bounded in this case, which
puts limits on the choice of the state space X. The state space X cannot be a vector space, for instance, if we
want the fill distance of finite sets to converge to zero. It makes sense then to focus on cases where the samples
Ξ are dense in a compact state space and Ω := X. One canonical system of this type is Hamiltonian flow on
the torus T2, since it is well-known that the trajectory t 7→ ϕ(t) starting from any initial condition is dense in
the torus. Since the torus T2 is a compact submanifold of R2, it follows that, at least in principle, a collection of
samples Ξ can be generated to fill the entire state space X = Ω = T

2 in the sense that hΩn,Ω → 0 as n → ∞.
Here we might be interested in the approximation of an observable function h : T2 → R defined over the torus.
More generally, this case includes flows that are dense in a compact manifold M = X, and a typical task would
be the approximation of an observable function h :M → R defined over the manifold.

Samples are dense in an arbitrary subset Ω ⊂ X: Here, when we say arbitrary, we mean that Ω does not exhibit
any readily characterized structure. An example of this case can be when Ω is an arc of the motion, that is, the
range of the trajectory over some fixed time interval such as [a, b) ⊂ R

+ so that Ω =
⋃

t∈[a,b) ϕ(t) ⊂ Γ+(ϕ0). In
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Example 2 this could correspond to the approximation of the Koopman operator over some “transient regime”
of the motion. The function spaces for characterizing rates of convergence of approximations in this case must
make sense for such subsets. For this class of problems, approximation error is measured in the norm of a
native space HΩ ⊆ HX since the native space HΩ can be defined for any subset Ω ⊂ X, even those that
have zero measure as subsets of X := R

d. Error bounds in this case are expressed in terms of the norm of the
complementary projection operators ∥(I − PΩn)g∥HΩ . If the rate at which ∥I − PΩn∥ → 0 is known, then we
obtain rates of convergence of Koopman operator approximations.

Samples dense in regular subsets Ω ⊆ X or manifolds M ⊆ X: The last category did not require assumptions
regarding the properties of the limiting subset Ω. However, when Ω exhibits more structure, stronger conclu-
sions regarding convergence can be derived. When Ω is either a sufficiently regular subset Ω ⊂ X, or even a
submanifold M ⊆ X, we choose to express errors in terms of Sobolev norms that are equivalent to RΩ(HX) in
some cases. Here regularity refers to the regularity of the domain, and the precise notion of what is needed is
described later in the paper. The error bounds derived in this case are in terms of the fill distance hΩn,Ω of the
sets Ωn in the limiting set Ω.

4 Approximations of the Koopman Operator Uf

In this section we carry out the details of the analysis of the errors in approximating the Koopman operators
Uf : HX → HX associated with the discrete dynamical system, and the orbital Koopman operator Uϕ for the
continuous time dynamical system. We first study Uf in this section since this case seems most relevant to
a host of recent papers that study approximation of such Koopman operators. We subsequently derive error
bounds for the orbital Koopman operator in Section 5, but only give brief outlines of how the proofs in Section
4 must be modified for the continuous time case. In both cases, we build up and refine error estimates based on
how much we know about the structure of the limiting set Ω ⊂ Ξ.

Two general types of approximation are defined for the Koopman operator Uf in this section. First, we
define Unf := UfPΩn with

Unf g = (PΩng) ◦ f, (17)

where it is assumed that f : X → X. An explicit representation of this operator is given by

(Unf g)(x) =
∑

1≤i,j≤n

K
−1
j,i (Ωn)g(ξi)Kξj (f(x))

for each x ∈ X and g ∈ HX , with K
−1(Ωn) the inverse of the Grammian matrix K(Ωn) := [K(ξm, ξn]) associated

with the samples in Ωn. The above expression makes sense when the limiting set Ω = X. The above definition
also makes sense if g ∈ RΩ(HX), f : Ω → Ω, and t 7→ ϕ(t) ∈ Ω ⊆ X, since in this case it is the coordinate
expression for the data-driven approximation Unf := (PΩng)◦f . This fact follows since the kernel that generates
RΩ(HX) is r := K|Ω×Ω , and the Grammian matrix R(Ωn) := [r(ξm, ξn)] = K(Ωn). This latter definition
of Unf := PΩng ◦ f is used to study cases when the sample Ξ fill Ω, but do not fill all of X. As discussed in
Section 2.2, in this expression, the projections PΩn are the orthogonal projections of RΩ(HX) onto RΩ(HΩn) :=
span{rξi | ξi ∈ Ωn}.

Note that Unf can be applied to a function g only if f is known in closed form in either of the above definitions
of Unf , so these approximations are not realizable in applications that seek data-driven approximations. Still,
bounds on the error in approximating Uf by Unf are of theoretical interest in their own right. They tell us upper
bounds on the approximation rates that can be achieved from a given finite dimensional subspace HΩn , if the
function f is known. In this sense they describe limits on what is feasible or achievable in principle when using
the subspaces HΩn . Pragmatically speaking, these bounds are also directly applicable in two specific, relevant
problems. These bounds can be used to derive rates of convergence of estimates for the reproducing kernel
Hilbert (RKH) space embedding method, see Section III of [68]. They are also important in that they are used
to construct some error bounds for the data-driven approximations that follow.

For constructing data-dependent approximations of the Koopman operator, we discuss two different types of
approximations, each of which makes a different type of structural assumption about the nature of the Koopman
operator. In the first data-driven method, we assume (1) that the samples Ξ are dense in a limiting set M := X
that is a type of smooth manifold, and we also require that (2) the Koopman operator Uf is such that the
pullback space f∗(HX) ⊂ HX . In this case we can define the approximation U

n
f := PΩn((PΩng) ◦ f). Since by

definition PΩn : HX → HX , this definition makes sense as long as f∗(HX) ⊂ HX because (PΩng) ◦ f ∈ f∗(HX)
is then an element of HX . As we explain in Example 6, if g :=

∑

1≤j≤n cjKξj , the operator U
n
f has the coordinate

representation

U
n
f g :=

∑

i,j,m

cjKξj (yi)K
−1
m,i(Ωn)kξm . (18)
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In fact, Example 6 shows that the operator above, which acts on functions, is a special case of that induced in
the usual derivation of the EDMD algorithm in references such as [21, 31,41,42]

The definition of the approximation U
n
f makes sense provided that the pullback space f∗(HX) ⊆ HX . As

useful as this assumption is, it may not be a simple condition to establish or verify. This fact motivates our
second method, which is intended to be applicable in some cases when it is not clear that f∗(HX) ⊆ HX . In the
second method, we assume that (1) the samples Ξ are dense in a limiting set Ω that is a sufficiently regular,
proper subset of X := R

d, and (2) the unknown function f ∈ Hd
X . In contrast to the approximations Unf defined

above that make structural assumptions on the composite function Ufg := g◦f , in this case we make hypotheses
directly about the function f . Data-driven approximations Un

PΩnf
of the Koopman operator are generated from

expressions like

U
n
PΩnf

g := UPΩnf
PΩng := (PΩng) ◦ (PΩnf).

For completeness, we record the explicit representations

PΩnf := {PΩnf1, . . . ,PΩnfd}
T :=







∑

1≤i,j≤nK
−1
j,i (Ωn)f1(ξi)Kξj (·)

...
∑

1≤i,j≤nK
−1
j,i (Ωn)fd(ξi)Kξj (·)







where the samples Ωn := {ξi}1≤i≤n = {ϕi}1≤i≤n. Note also that since by assumption the discrete evolution is
given by yi := ϕi+1 = f(ϕi), the data-dependent approximation U

n
PΩnf

g := UPΩnf
PΩng can be formed from the

pairs of samples {(ξi, yi)}1≤i≤n = {ξi, f(ξi)}1≤i≤n via

(Un
PΩnf

g)(x) =
∑

1≤ℓ,m≤n

K
−1
m,ℓ(Ωn)g(ξℓ)Kξm












∑

1≤i,j≤nK
−1
j,i (Ωn)f1(ξi)Kξj (·)

...
∑

1≤i,j≤nK
−1
j,i (Ωn)fd(ξi)Kξj (·)










 .

At the end of this section we combine the error bounds for Unf and UnPΩnf to generate overall error estimates
for the data-driven approximations of the Koopman operators. We build bounds on rates of convergence using
the triangle inequalities that have the form

∥Ufg − U
n
f g∥B ≤ ∥Ufg − Unf g∥B + ∥Unf g − U

n
f g∥B

or

∥Ufg − U
n
PΩnf

g∥B ≤ ∥Ufg − Unf g∥B + ∥Unf g − U
n
PΩnf

g∥B

with B a Banach space of functions.

4.1 The Approximations Unf

We start with some very straightforward results, ones that are not too surprising and hold without any particular
assumptions about the structure of the limiting set Ω.

4.1.1 Approximations Unf , Arbitrary Ω ⊆ X

The following theorem bounds the error in approximations Unf of Uf in terms of the norms of the complementary
projections I−PΩn . In Theorem 2 that follows we give sufficient conditions to conclude the pointwise convergence
(Unf g)(x) → (Ufg)(x) for x ∈ X for g ∈ HΩ ⊆ HX .

Theorem 1 Suppose that the samples Ξ are dense in a bounded set Ω ⊆ X, there is a constant k̄ > 0 such
that the kernel K that defines the native space HX satisfies supx∈X K(x, x) ≤ k̄2, and let f : X → X. Then we
have the error bound

∥Ufg − Unf g∥f∗(HX) ≤ ∥(I − PΩn)g∥HX (19)

for all g ∈ HX . If furthermore the mapping f ∈ C(X,X) and g ∈ HΩ, we have the pointwise estimate

|Ufg(x)− Unf g(x)| ≤ ∥(I − PΩn)g∥C(X) ≤ ∥(I − PΩn)g∥HΩ (20)

for each x ∈ X.
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Proof We want to derive a bound for the norm of the difference

∥Ufg − Unf g∥f∗(HX) = ∥Uf (I − PΩn)g∥f∗(HX).

But by definition we have

∥Ufh∥f∗(HX) = ∥h ◦ f∥f∗(HX) = inf{∥q∥HX | h ◦ f = q ◦ f} ≤ ∥h∥HX ,

and we see that the operator norm ∥Uf∥ ≤ 1. From this line Equation 19 follows. By definition, the kernel on
f∗(HX) is given by Kf (x, y) := K(f(x), f(y)). Since supx Kf (x, x) ≤ k̄2 and and Kf is continuous, we know that
f∗(HX) →֒ C(X). We can then write

|Ufg(x)− Uf,ng(x)| = |(g − PΩng)(f(x))|

≤ ∥(I − PΩn)g∥C(X) ≤ ∥(I − PΩn)g∥HX

for each x ∈ X. Additionally, if g ∈ HΩ we have

∥(I − PΩn)g∥C(X) ≤ ∥(I − PΩn)g∥HX = ∥PΩ(I − PΩn)g∥HX
= ∥EXRΩ(I − PΩn)g∥HX = ∥(I − PΩn)RΩg∥RΩ(HX)

The norm ∥(I−PΩn)RΩg∥RΩ(HX) = ∥(I−PΩn)g∥HΩ → 0 as n→ ∞ provided that we can show {PΩn}n∈N con-
verge to the identity operator on HΩ , or equivalently, {PΩn}n∈N converge to the identity operator on RΩ(HX).
This is the topic of the next proposition and theorem.

So far, we have established that the error in the approximation of the Koopman operator can be bounded
by ∥(I − PΩn)g∥HΩ = ∥(I − PΩn)RΩg∥RΩ(HX) for g ∈ HΩ ⊆ HX . In many of the theorems of the next few
sections, precise bounds for ∥(I − PΩn)g∥HΩ are derived depending on the smoothness properties of the kernel
K that defines HX and the regularity of the limiting set Ω.

In the situation at hand, it is assumed that the samples Ξ =
⋃

n∈N
Ωn are dense in Ω. But with so little

known about the set Ω, the kernel K, and the RKH space HX , as of yet we do not even know that the set of
functions {Kx | x ∈ Ξ} is dense in HΩ := span{Kx | x ∈ Ω}. Proving this fact is equivalent to proving that the
operator norm ∥I − PΩn∥ → 0 when here we interpret PΩn := PΩn |HΩ as an operator on HΩ . Establishing this
fact is carried out using the following proposition, which is implied by Propositions 1 and 2 of [58].

Proposition 1 Suppose that the admissible kernel K : X × X → R induces the RKH space HX and that the
map x 7→ Kx ∈ HX is injective. Then dK : X ×X → R given by dK(x, y) := ∥Kx − Ky∥HX is a metric on X,
and the map x 7→ Kx is an isometry from (X, dX) into HX .

We say the that native space HX separates a subset S ⊂ X if for each x ̸∈ S there is a function g ∈ HX

such that g(x) ̸= 0 and g(y) = 0 for all y ∈ S. If HX separates all the dX-closed subsets of X, then (X, dK) and
(X, dX) are equivalent metric spaces.

This theorem suffices to establish that {PΩn}n∈N converges to the identity operator on HΩ , as summarized in
the following theorem.

Theorem 2 Suppose that the kernel K : X ×X → R satisfies the hypotheses of Proposition 1. Then {PΩn}n∈N

converges to the identity operator on HΩ.

Proof The theorem follows if we can establish that HΩ := span{Kξi | ξi ∈ Ξ}. Since the metric spaces (X, dX)
and (X, dK) are assumed to be equivalent, there are two positive constants c1, c2 such that

c1dX(x, y) ≤ dK(x, y) ≤ c2dX(x, y)

for all x, y ∈ X. Suppose that f ∈ HΩ and fix an arbitrary ϵ > 0. By the definition of HΩ , there is an integer
n = n(ϵ), real numbers αn,i ∈ R, and locations xn,i ∈ Ω such that

∥
∥
∥
∥
∥
∥

f −
∑

1≤i≤n

αn,iKxn,i

∥
∥
∥
∥
∥
∥
HX

< ϵ/2.

But since Ξ is dense in Ω, for each xn,i we can find an ξn,ℓi ∈ Ξ such that

dX(ξn,ℓi , xn,i) ≤
1

2c2n∥{αn,i}∥∞
ϵ.
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We then have
∥
∥
∥
∥
∥
∥

f −
∑

1≤i≤n

αn,iKn,ℓi

∥
∥
∥
∥
∥
∥
HX

≤

∥
∥
∥
∥
∥
∥

f −
∑

1≤i≤n

αn,iKxn,i

∥
∥
∥
∥
∥
∥
HX

+

∥
∥
∥
∥
∥
∥

∑

1≤i≤n

αn,i

(

Kxn,i − Kξn,ℓi

)

∥
∥
∥
∥
∥
∥
HX

≤ ϵ/2 + ∥{αn,i}∥∞
∑

1≤i≤n

∥Kxn,i − Kξn,ℓi
∥HX

= ϵ/2 + ∥{αn,i}∥∞
∑

1≤n

dK(xn,i, ξn,ℓi)

≤ ϵ/2 + c2∥{αn,i}∥∞
∑

1≤i≤n

dX(xn,i, ξn,ℓi) ≤ ϵ.

This means that {Kξi | ξi ∈ Ξ} is dense in HΩ , and the proof is complete.

4.1.2 Approximations Unf , Ω :=M a Manifold

As noted above, the RKH space f∗(HX) is defined for any function f : X → X, and Theorem 2 holds even when
and the limiting set Ω does not exhibit any particular structure. We next discuss a cases when the limiting set
Ω exhibits some additional, but specific, kinds of structure. We begin with a discussion of the case in which
the limiting set Ω is a smooth, connected, compact Riemannian manifold M := Ω, and the samples are dense
in M . Three types of theorems are derived in this section below: the first uses the many zeros Theorem 11 on
manifolds, while the latter two theorems are examples of error bounds that generate pointwise estimates from
Theorems 12 and 13. While there are differences in the fine details of the hypotheses for these two theorems,
it should be noted that all three theorems are quite similar qualitatively speaking. In all cases the errors in
approximations of the Koopman operator are bounded by powers of the fill distance hrΩn,M , and the exponent r
depends on the smoothness of the functions in certain Sobolev spaces. Note also that all three of these theorems
can be applied when the samples fill the entire state space X, that is, when M := Ω := X. We begin with a
result that depends on the many zeros Theorem 11 in a manifold M .

Theorem 3 Suppose that M is a d-dimensional, connected, compact, Riemannian manifold without boundary,
let K : M × M → R be a positive definite kernel that induces a native space HM , and suppose that HM is
equivalent to the Sobolev space W t,2(M) for some t ∈ R that satisfies d/2 < s ≤ ⌈t⌉− 1 for a given s ∈ N. Then
there are constants CM , hM > 0 such that for all Ωn ⊂ Ω that satisfy hΩn,Ω ≤ hM we have

∥Ufg − Unf g∥f∗(W s,2(M)) ≤ CMh
t−s
Ωn,M

∥g∥W t,2(M)

for g ∈W t,2(M).

Proof Since s > d/2, the Sobolev embedding theorem implies that W s,2(M) is a RKH space, and therefore the
pullback space f∗(W s,2(M)) is well-defined. By the definition of the pullback space we have

∥Ufg − Unf g∥f∗(W s,2(M)) ≤ ∥Uf∥∥(I − PΩn)g∥W s,2(M).

As discussed in Section 2.2, the operator norm of Uf , as a mapping from the RKH space W s,2(M) into
f∗(W s,2(M)), is less than or equal to one. But on Ωn, we know that ((I − PΩn)g)|Ωn = 0 since the projection
is identical to the interpolant over Ωn. By the many zeros Theorem 11, we conclude that

∥Ufg − Unf g∥f∗(W s,2(M)) ≤ CMh
t−s
Ωn,M

∥g∥W t,2(M).

Now we turn to a pair of theorems that ensure pointwise convergence rates over manifolds.

Theorem 4 Suppose that the collection of samples Ξ is dense in a compact, connected, Cℓ Riemannian manifold
M := Ω without boundary, the kernel K that induces HM is positive definite, the kernel K ∈ C2k(M ×M), and
ℓ ≥ 2k. Then there exist constants hM , CM > 0 such that for all g ∈ HM and Ωn ⊂ M with hΩn,M < hM we
have

∣
∣(Ufg)(x)−

(
Unf g

)
(x)

∣
∣ ≤ CMh

k
Ωn,M∥g∥HM

for all x ∈M .

Proof By definition we have
∣
∣(Ufg)(x)−

(
Unf g

)
(x)

∣
∣ := |g(f(x))− (PΩng)(f(x))|

≤ sup
η∈M

|g(η)− (PΩng)(η)|

≤ CMh
k
Ωn,M∥g∥HM

for each x ∈M . The last line in the above sequence of inequalities follows from the approximation Theorem 13.
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Theorem 5 Suppose that the collection of samples Ξ is dense in a d−dimensional, compact, connected, smooth
Riemannian manifold M := Ω without boundary, the kernel K that induces HM is positive definite, and HM is
equivalent to a Sobolev space W t,2(M) for some t > d/2. Then there exist constants hM , CM > 0 such that for
all g ∈ HM and Ωn ⊂M with hΩn,M < hM we have

∣
∣(Ufg)(x)−

(
Unf g

)
(x)

∣
∣ ≤ CMh

t−d/2
Ωn,M

∥g∥HM

for all x ∈M .

Proof The proof of this theorem proceeds exactly as in the last Theorem 4, but by replacing the last line of the
proof to use Theorem 12 instead of Theorem 13.

4.1.3 Approximations Unf , Ω ⊂ X := R
d

The last two theorems are designed to apply to cases when the samples Ξ fill up the entire manifold M := Ω
in the sense that dΩn,M → 0 as n→ ∞. We now consider cases when the samples Ξ are dense in a limiting set
Ω that is a proper subset of the state space X := R

d.

Theorem 6 Suppose that the collection of samples Ξ is dense in the compact subset Ω ⊂ X := R
d that has a

Lipschitz boundary, the kernel K induces the RKH space HX of functions over X, there is a constant k such

that supx∈X K(x, x) ≤ k
2
, the integer s ∈ N0 with d/2 ≤ s ≤ ⌈t⌉−1, and RΩ(HX) ≈W t,2(Ω). Then there exists

constants hM , CM > 0 such that for all g ∈W t,2(Ω) and subsets Ωn with hΩn,Ω) ≤ hM we have

∥Ufg − Unf g∥f∗(W s,2(Ω)) ≤ CΩh
t−s
Ωn,Ω

∥g∥W t,2(Ω). (21)

If, furthermore, f ∈ C(Ω,Ω), we have the pointwise estimate

|(Ufg)(x)− (Unf g)(x)| ≤ ∥Ufg − Unf g∥f∗(W s,2(Ω))

for each x ∈ Ω.

Proof From the definition of the pullback space f∗(W s,2(Ω)) and the many zeros Theorem 10, we see that

∥Ufg − Unf g∥f∗(W s,2(Ω)) ≤ ∥Uf∥∥(I − PΩn)g∥W s,2(Ω)

≤ ∥Uf∥CΩh
t−s
Ωn,Ω

∥(I − PΩn)g∥W t,2(Ω).

The many zeros Theorem 10 can be applied since the projection PΩng is identical to the interpolant of g on
Ωn, so that (I − PΩn)g|Ωn = 0. Since ∥Uf∥ ≤ 1 and ∥I − PΩn∥ ≤ 1, the inequality in Equation 21 follows. The
estimate above holds for any function f : Ω → Ω. If, in addition, f is continuous, then we have

Kf (x, y) := K(f(x), f(y)) ≤ k
2
.

Since Kf is the kernel of the RKH space RΩ(HX), this is sufficient to ensure that f∗(W s,2(Ω)) →֒ C(Ω). We
then have

|(Ufg)(x)− (Unf g)(x)| ≤ ∥Ufg − Unf g∥C(Ω) ≲ ∥Ufg − Unf g∥f∗(W s,2(Ω)),

and the proof is complete.

Before proceeding to our discussion of data-dependent approximations, a few observations are in order to
emphasize some of the nuances that distinguish Theorem 6 from its predecessors Theorems 4 and 5. The most
obvious difference is, of course, that in Theorems 4 and 5 the samples are dense in a compact Riemannian
manifold M , which allows for the possibility that the entire state space X of the underlying flow is a compact
manifold M := X := Ω. Note that the bounds on the pointwise error in this case are specified relative to the
norm ∥g∥HM , and the operator Uf defined as Ufg := g ◦ f acts on functions g that are defined over all of
the state space X := M = Ω. On the other hand, in Theorem 6 the samples are dense in the proper subset
Ω ⊂ X := R

d. The norm ∥ · ∥f∗(W s,2(Ω)) is defined for functions h := g ◦ f with g ∈ W s,2(Ω) and f : Ω → Ω.
In other words the operator Uf in this theorem is understood as an operator Ufg := g ◦ f for g ∈ W s,2(Ω).
Note that in this interpretation the operator Uf is an operator on functions supported on the proper subset
Ω ⊂ X := R

d, in contrast to the operator Uf in Theorems 4 or 5 that acts on functions supported on the full
state space X :=M .

In writing the original discrete evolution law in Equation 1, we have stipulated only that f : X → X.
Connecting the error estimates in Theorem 6 to the original evolution law would require some additional
assumptions about the underlying flow and the limiting set Ω ⊂ X := R

d. For instance, suppose that we
know that Ω is a positive invariant set for the flow, meaning that ϕn ∈ Ω implies that ϕn+1 ∈ Ω. Under
this assumption it must be the case that f(Ω) ⊆ Ω, and the restricted function f |Ω := RΩf is a mapping
f |Ω : Ω → Ω. In this situation Theorem 6 can be understood as a statement about the approximation of the
Koopman operator associated with the restriction f |Ω from the samples in Ξ that are dense in Ω.
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4.2 Data-Dependent Approximations Unf and U
n
PΩnf

In this section we explore how the projection approximations Unf g := (PΩng) ◦ f introduced above are used to
construct error estimates for the data-dependent approximations Unf and U

n
PΩnf

.

4.2.1 Data-Dependent Approximations U
n
f on a manifold M

Example 6 In this example we review the EDMD method since it is one of the most popular and well-known
algorithms that is studied in the context of Koopman theory. We will see that the data-driven approximation
U
n
f g := PΩn((PΩng) ◦ f), which is defined in terms of projections PΩn over the finite dimensional spaces HΩn

in an RKH space, has a coordinate representation that is a special case of that defined in terms of the classical
EDMD algorithm. In the last few years, the notation used to present the EDMD algorithm has evolved into a
kind of common convention (see for example [21,31,41,42]) and we review in this section this notation. Suppose
we have collected the m samples {ϕi, yi}1≤i≤m of the discrete dynamics described in the canonical Equation 1.
The output is defined as yi := f(ϕi). We define the matrices Φ and Y of inputs and outputs, respectively, as

Φ :=
[
ϕ1 ϕ2 · · · ϕm

]
∈ R

d×m,

Y :=
[
y1 y2 · · · ym

]
∈ R

d×m.

In the notation that has become standard in descriptions of the EDMD algorithm, we define the ith basis function
ψi := Kξ ∈ Fn := span{ψi |1 ≤ i ≤ n}, introduce the vector of basis functions as ψ(x) := {ψ1(x), . . . , ψn(x)}

T ∈
R
n×1, and set the data matrices

Ψ(Φ) :=
[
ψ(ϕ1) ψ(ϕ2) · · · ψ(ϕm)

]
= [ψi(ϕj)] ∈ R

n×m,

Ψ(Y ) :=
[
ψ(y1) ψ(y2) · · · ψ(ym)

]
= [ψi(yj)] ∈ R

n×m.

The EDMD algorithm, viewed in terms of linear algebra, solves the for the matrix An,m ∈ R
n×n that satisfies

the minimization problem

An,m := argmin
A∈Rn×n

∥AΨ(Φ)− Ψ(Y )∥2F

= argmin
A∈Rn×n

∑

1,≤i≤m

∥Aψ(ϕi)− ψ(yi)∥
2
Rn

with ∥ · ∥F the Frobenius norm on matrices. The solution of this minimization problem is given by the ma-
trix An,m := Ψ(Y )Ψ+(Φ) with Ψ+(Φ) the Moore-Penrose pseudoinverse of the matrix Φ. Finally, the EDMD
algorithm defines a data-driven approximation Un,m of the Koopman operator Uf that is given by

(Un,mg)(x) := cTAn,mψ(x) :=
∑

i,j,ℓ

ciΨi,ℓ(Y )Ψ+
ℓ,m(Φ)ψm(x)

for each g :=
∑

1≤i≤n ciψi ∈ HΩn . It is not difficult to relate the data-driven approximation U
n
f g := PΩn((PΩng)◦

f) to Un,m. By definition U
n
f : HX → HΩn , and Un,m : HΩn → HΩn , and since these two operators have different

domains, they cannot be the same operator. However, in some circumstances, we do have

Un,m := U
n
f

∣
∣
∣
∣
HΩn

.

To establish this relation, we choose the finite dimensional space Fn := HΩn , the basis ψi := Kξi , for ξi ∈ Ωn
with 1 ≤ i ≤ n, and set the number of samples m equal to the dimension of the approximant space HΩn , m = n.
The equivalence is immediate when we note that

Ψ(Φ) := [ψi(ϕj)] = [K(ξi, ξj)] = K(Ωn)

Ψ(Y ) := [ψi(yj)] = [Kξi(f(ξj))] = [K(ξi, yj ]),

and compare the coordinate expression above for Un,m to that of Unf in equation 18. In view of these relationships,
we can view one contribution of this paper as defining a specific choice of the bases in the EDMD algorithm that
enables precise rates of convergence over some important cases of regular subsets and smooth manifolds. These
error estimates are given in terms of the fill distance of samples in the manifold. This result has no precedent
in either the study of approximations of Koopman operators or the EDMD algorithm.
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Theorem 7 Suppose that the hypotheses of Theorem 11 hold. Furthermore, suppose that the mapping f :M →
M is such that the pullback space f∗(HM ) ⊆ HM . Then there are constants CM , hM > 0 such that for all
Ωn ⊂ Ω that satisfy hΩn,Ω ≤ hM we have the pointwise bound

|(Ufg)(x)− (Unf g)(x)| ≤ CMh
t−s
Ωn,M

(
∥g∥W t,2(M) + ∥Ufg∥W t,2(M)

)

for g ∈W t,2(M) and x ∈M .

Proof Since f∗(HM ) ⊂ HM we know that PΩng ∈ HM and PΩng ◦ f ∈ f∗(HM ) ⊂ HM . By definition, we have
∣
∣(Ufg)(x)− (Unf g)(x)

∣
∣ := |(g ◦ f)(x)− (PΩn ((PΩng) ◦ f)) (x)|

≤ |(g ◦ f)(x)− (PΩng) ◦ f)(x)|+ |((I − PΩn)(PΩng ◦ f))(x)|.

Under the hypotheses of this theorem, we have

HM ≈W t,2(M) →֒W s,2(M) →֒ C(M).

This means that
∣
∣(Ufg)(x)− (Unf g)(x)

∣
∣ ≤ sup

η∈M
|(((g − PΩng) ◦ f)(x)|+ sup

η∈M
|((I − PΩn)(PΩng ◦ f))(η)|

≤ ∥(I − PΩn)g∥C(M) + ∥(I − PΩn)(PΩng ◦ f)∥C(M)

≤ ∥(I − PΩn)g∥C(M) + ∥(I − PΩn)(PΩng ◦ f)∥W s,2(M)

Now we apply the many zeros Theorem 3 to each of the right hand side terms above. We know that

(I − PΩn)g) |Ωn = 0

(I − PΩn)(PΩng ◦ f)) |Ωn = 0

since the projection operator PΩn is identical to the interpolation operator on Ωn ⊂ M . By the many zeros
theorem on the manifold M , we can write

∣
∣(Ufg)(x)− (Unf g)(x)

∣
∣ ≤ C1h

t−s
Ωn,M

∥g∥W t,2(M) + C2hΩn,M∥PΩng ◦ f∥W t,2(M)

≤ max{C1, C2}h
t−s
Ωn,M

(
∥g∥W t,2(M) + ∥Ufg∥W t,2(M)

)
.

4.2.2 Data-Dependent Approximations U
n
PΩnf

on Ω ⊂ X := R
d

We next turn to the study of data-dependent approximations

(Un
PΩnf

g)(x) := (PΩng) ◦ (PΩnf)(x)

for each x ∈ Ω ⊂ X := R
d. We focus in this section on the case when the samples Ξ are dense in a sufficiently

regular set Ω ⊂ X := R
d. We will show that effective error bounds on the convergence rate are derived if,

in addition to the hypotheses outlined in Theorem 6, we assume additionally that the RKH space RΩ(HX) is
contained in the space of Lipschitz continuous functions.

Theorem 8 Suppose that hypotheses of Theorem 6 hold, additionally that we have the continuous embedding
RΩ(HX) ≈ W t,2(Ω) ⊆ W s,2(Ω) →֒ C0,1(Ω), and f ∈ (W t,2(Ω))d. Then there are constants hΩ , CΩ > 0 such
that for all g ∈W t,2(Ω) and Ωn ⊂ Ξ such that hΩn,Ω < hΩ we have

∣
∣
∣(Unf g)(x)− (Un

PΩnf
g)(x)

∣
∣
∣ ≤ CΩh

t−s
Ωn,Ω

∥g∥W t,2(Ω)∥f∥(W t,2(Ω))d

for each x ∈ Ω.

Proof Since g ∈W t,2(Ω) ⊆W s,2(Ω) →֒ C0,1(Ω), we begin by writing the inequality
∣
∣
∣(Unf g)(x)− (Un

PΩnf
g)(x)

∣
∣
∣ := |(PΩng)(f(x))− (PΩng)(PΩn(f(x)))|

≤ |PΩng|C0,1(Ω)∥f(x)− (PΩnf)(x)∥Rd

≤ ∥g∥W s,2(Ω)∥(I − PΩn)f∥C(Ω,Rd).

Since W s,2(Ω) →֒ C(Ω), we know that (W s,2(Ω))d →֒ C(Ω,Rd). It follows that
∣
∣
∣(Unf g)(x)− (Un

PΩnf
g)(x)

∣
∣
∣ ≲ ∥g∥W s,2(Ω)∥(I − PΩn)f∥(W s,2(Ω))d .

Now the desired result follows from an application of the many zeros Theorem 10, applied to each component
of the vector-valued function f .

Before concluding this section, we note that the results to Theorems 6 and 8 can be combined to obtain the
total error bound

∣
∣
∣(Ufg) (x)−

(

U
n
PΩnf

g
)

(x)
∣
∣
∣ ≤

(

C̃Ω + CΩ∥f∥(W t,2(Ω))d)

)

ht−sΩn,Ω
∥g∥W t,2(Ω)

with C̃Ω the constant from Theorem 6 and CΩ the constant from Theorem 8.



Approximation of Discrete and Orbital Koopman Operators over Subsets and Manifolds 27

5 Approximation of the Orbital Koopman Operator Uφ : HX → φ∗(HX)

With the analysis in Section 4 of the Koopman operator Uf : HX → f∗(HX), the study of approximations of
the orbital Koopman operator Uϕ : HX → ϕ∗(HX) proceeds similarly, but with a few caveats. Differences arise
owing to the fact that ϕ : T → R

d is a function of time, and correspondingly the pullback spaces ϕ∗(HX) or
ϕ∗(RΩ(HX)) contain functions of time. Approximations of the Koopman operator Uf are expressed in terms of
the pullback spaces f∗(HX), or f∗(RΩ(HX)) that consists of a collection of spatial functions defined over X.

As before, we construct two types of general approximations to Uϕ. We set

Unϕ g := UϕPΩng := PΩng ◦ ϕ, (22)

which is entirely analogous to the definition of the Unf in Equation 17. The explicit realization of Unϕ is written
as

(
Unϕ g

)
(t) :=

∑

1≤i,j≤n

K
−1
j,i (Ωn)g(ξi)Kξj (ϕ(t))

for each t ∈ T and g ∈ HX . Just about all of the comments and qualifications made about the approximation
Unf of the Koopman operator Uf can be made regarding the approximation Unϕ of the orbital koopman operator
Uϕ. The coordinate expression above for Unϕ := PΩng ◦ ϕ coincides with that for the approximation that is
defined Unϕ := PΩng ◦ ϕ in the case that g ∈ RΩ(HX) and t 7→ ϕ(t) ∈ Ω ⊂ X. This latter definition is used
when samples Ξ are dense in Ω, but not dense in the entire state space X. Again, in either interpretation the
approximation Unϕ cannot be realized in practice unless a closed form expression for the trajectory t 7→ ϕ(t) is
known. Still, error estimates for Unϕ are useful for understanding the ideal performance of Unϕ in the event that
t 7→ ϕ(t) is known. Also, we briefly outline below the fact that error bounds for approximations Unϕ of the orbital
Koopman operator Uϕ are entirely analogous to those for approximations Unf of the Koopman operator Uf .

On the other hand, data-driven approximations of the orbital Koopman operators Uϕ can be more compli-
cated than those for Uf . The data-driven approximation of Uϕg = g ◦ϕ requires an approximation of the spatial
function g, and an approximation of the time-dependent function t 7→ ϕ(t).

To construct approximations of the time-dependent function, we introduce an additional RKH space HT

induced by an admissible kernel p : T × T → R,

HT = span{pt | t ∈ T}.

Up until this point, we have assumed that T = [0,∞), but now we (again) overload this notation and assume
that T ⊂ [0,∞) is a bounded subset contained in [0,∞). We define

Tn := {ti | ϕ(ti) ∈ Ωn}

to be the finite set of times corresponding to samples in Ωn ⊂ Ω, and we denote by

HTn := span{pti | ti ∈ TN}

the finite dimensional approximant spaces contained in HT . The construction of approximations of time-varying
functions over the bounded set T is carried out using the HT -orthogonal projections QTn : HT → HTn , which
again coincide with the unique interpolation operator over HTn ⊂ HT . We overload the notation and extend
the definition of the projection operator QTn so that it applies entrywise to vector-valued functions,

QTnϕ := {QTnϕ1, . . . , QTnϕd}
T .

We limit our discussion of the data-driven approximation of the Koopman operator Uϕ to the case that
the samples Ξ are dense in a proper subset Ω ⊂ X := R

d, but are not dense in the entire state space. The
data-driven approximation UnQTn of the orbital Koopman operator Uϕg := g◦ϕ with g ∈ RΩ(HX) is now defined
to be

UnQTnϕ := UQTnϕPΩng := (PΩng) ◦ (QTnϕ)

for each t ∈ T ⊂ [0,∞). This operator has the realization

(

UnQTnϕg
)

(t) =
∑

1≤i,j≤n

K
−1
j,i (Ωn)g(ξi)Kξj







∑

1≤ℓ,m≤n P
−1
m,ℓ(Tn)ϕ1(tm)ptℓ(t)

...
∑

1≤ℓ,m≤n P
−1
m,ℓ(Tn)ϕd(tm)ptℓ(t)







with the Grammian matrix P(Tn) := [p(ti, tj)]ti,tj∈Tn . By inspection, this coordinate expression can be formed
in terms of the samples Ωn := {ξi := ϕ(ti) | ti ∈ Tn} and Tn := {tℓ | ϕ(tℓ) ∈ Ωn}.
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5.1 Approximations Unϕ

From the similarity of the definitions of the approximation Unϕ of the orbital Koopman operator Uϕ to that of
the approximation Unf of Uf , it is not surprising that the associated error bounds are derived in nearly identical
fashion. Each of the Theorems 1, 4, 5, and 6 are readily transcribed to generate error bounds for Unϕ by replacing

Uf ⇝ Uϕ, U
n
f ⇝ Unϕ , f

∗(HX)⇝ ϕ∗(HX), and f∗(W s,2(Ω))⇝ ϕ∗(W s,2(Ω)). With these changes the pointwise
estimates for x ∈ Ω are also replaced by pointwise estimates for t ∈ T . We do not write modifed versions of
Theorems 1 through 6 since their form and proofs would be largely redundant. Below we just summarize these
results and leave the details to the reader.

For instance, if the hypotheses of Theorem 1 hold, we conclude that

∥Uϕg − Unϕ g∥ϕ∗(HX) ≤ ∥(I − PΩn)g∥HX

for all g ∈ HX , and further if ϕ : T → R
d is continuous that we have the pointwise bound

|(Uϕg)(t)− (Unϕ g)(t)| ≤ ∥(I − PΩn)g∥HΩ → 0

as n→ ∞ for t ∈ T and g ∈ HΩ . If the hypotheses of Theorem 4 apply, we conclude that

|(Uϕg)(t)− (Unϕ g)(t)| ≤ CMh
k
Ωn,M∥g∥HM

for each t ∈ T , while the left hand side is bounded by

|(Uϕg)(t)− (Unϕ g)(t)| ≤ CMh
t−d/2
Ωn,M

∥g∥HM

if the hypotheses of Theorem 5 are true. Finally, the analysis in Theorem 6 can be extended to the case at hand
to show that

∥Uϕg − Unϕ g∥ϕ∗(W s,2(Ω)) ≤ CMh
t−s
Ωn,Ω

∥g∥W t,2(Ω),

for all g ∈W s,2(Ω), under the suitably modified hypotheses of that theorem. Using the fact that the pointwise
error in time is less than

5.2 Data-Dependent Approximations UnQTnϕ

The derivation of error bounds for the data-dependent approximations UnQTnϕ is modeled on the approximations
in Theorems 7 and 8 above, but with changes to account for the approximation of g and ϕ in different finite
dimensional spaces of functions.

Theorem 9 Suppose that the set of samples Ξ is dense in the set Ω ⊂ X := R
d, the set of times

⋃

n Tn is dense
in the compact set T ⊂ R

+, the kernel K : X ×X → R induces the native space HX over X, g ∈ RΩ(HX) →֒
C0,1(Ω), and the admissible kernel p : T × T → R induces the RKH space HT ≈ W r,2(T ) →֒ Wu,2(T ) with
1/2 ≤ u ≤ ⌈r⌉ − 1. Then there are numbers CT , hT > 0 such that for all Tn ⊂ T such that hTn,T < hT and
ϕ ∈ (W r,2(T ))d we have

∣
∣
∣(Unϕ g)(t)− (UnQTnϕg)(t)

∣
∣
∣ ≤ CTh

r−u
Tn,T

∥g∥RΩ(HX)∥ϕ∥(W r,2(Ω))d

for each t ∈ T . If, furthermore, RΩ(HX) ≈W t,2(Ω) ⊆W s,2(Ω) with d/2 ≤ s ≤ ⌈t⌉−1 and Ω ⊂ X is a compact
set with a Lipschitz boundary, we have the total error estimate

∣
∣
∣(Uϕg)(t)− (UnQTnϕg)(t)

∣
∣
∣ ≤

(

CΩh
t−s
Ωn,Ω

+ CTh
r−u
Tn,T

∥ϕ∥(W r,2(T ))d

)

∥g∥W t,2(Ω)

for each t ∈ T .

Proof We start as in the proof of Theorem 8 by writing
∣
∣
∣(Unϕ g)(t)− (UnQTnϕg)(t)

∣
∣
∣ := |(PΩng)(ϕ(t))− (PΩng)(QTn(ϕ(t)))| ,

≤ |PΩng|C0,1(Ω)∥ϕ(x)− (QTnϕ)(x)∥Rd ,

≤ ∥g∥RΩ(HX)∥(I −QTn)ϕ∥C(Ω,Rd),

≤ ∥g∥RΩ(HX)∥(I −QTn)ϕ∥Wu,2(Ω).

Now the results follows the same argument as in the proof of Theorem 6. We known that the HT -orthogonal
projection onto HTn coincides with the interpolant on the subspace HTn , so that (I − QTn)ϕ is equal to zero
when restricted to Tn. We apply the many zeros Theorem 10 to each entry to obtain the desired inequality.

Using the fact that the error
∣
∣
∣(Uϕg)(t)− (UnQTnϕg)(t)

∣
∣
∣ is bounded from above by ∥Uϕg−Unϕ g∥ϕ∗(W s,2(Ω)), we

conclude that
∣
∣
∣(Uϕg)(t)− (UnQTnϕg)(t)

∣
∣
∣ ≤ CMh

t−s
Ωn,Ω

∥g∥W t,2(Ω), for all g ∈ W s,2(Ω). Using triangle inequality,

we arrive at the second result of the theorem.
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6 Analytical And Numerical Examples

Example 7 In this paper we have studied the orbital Koopman Uϕ operator for some semidynamical systems
in continuous time, and we have noted that it is not the usual Koopman operator defined for time dependent
systems. In this example we give one particular example that motivates the study of the orbital Koopman
operator. In a series of papers by the authors [56, 73] the authors have investigated the RKH space embedding
method for adaptive estimation of systems that are governed by uncertain nonlinear ODEs that have the form

ϕ̇(t) = Ax(t) +Bf(ϕ(t))

where A ∈ R
d×d is known, B ∈ R

d×1 is known, and the function f : Rd → R unknown. It is shown in [56] that
one form for the estimator equations of the RKH embedding method can be written as

˙̂
ϕ(t) = Aϕ̂(t) +BEtUϕf̂(t)

˙̂
f(t) = γ (BEtUϕ)

∗
(ϕ(t)− ϕ̂(t)) (23)

with ϕ̂(t) ∈ R
d the state estimate of ϕ(t), the function f̂(t) ∈ HX an estimate of f , Uϕ : HX → ϕ∗(HX) the

orbital Koopman operator, and Et : ϕ
∗(HX) → R the evaluation operator at t ∈ R

+. These equations define
an evolution in the infinite dimensional space R

d ×HX , so they define an example of a distributed parameter
system. As discussed in [56], approximate trajectories are generated by replacing Uϕ with the approximations
Unf or Unϕ. The results of this paper can therefore be interepreted as a source of ways for generating estimates
of convergence rates for the RKH embedding method.

Example 8 In this example we return to Example 1 and study approximations Unϕ of the orbital Koopman

operator associated with the orbit Γ+(ϕ0) of the trajectory t 7→ ϕ(t) ∈ R
2 through the initial condition

ϕ0 = {−0.2, 1.6}T ∈ R
2. We define the limiting set Ω to be an arc of the motion over the open interval

(a, b) ⊂ R
+, that is,

Ω =
⋃

t∈(a,b)

ϕ(t).

We define a set of samples Ξ :=
⋃

n∈N
Ωn where for each n ∈ N we choose

Ωn :=

{

ξn,i := ϕ(tn,i)

∣
∣
∣
∣
a < tn,1 < tn,2 < · · · < tn,n < b.

}

Note that we have assumed that all of the finite samples have been selected from the one trajectory t 7→ ϕ(t)
that passes through the initial condition ϕ0 ∈ R

d. We allow (but do not require) that the discrete sample sets
Ωn are nested, so that Ωn ⊂ Ωn+1. We require, however, that the fill distance hΩn,Ω → 0 as n → ∞. Suppose
that we choose the kernel K : R2×R

2 → R that is defined over the entire real plane. For instance, we can choose
K to be Sobolev-Matern kernel Km with m > 1, the Abel kernel Kα,1,2, the ℓ

1-exponential kernel Kα,1,1, or the
Gaussian kernel Kα,2,2, with all of these kernels defined on X × X := R

2 × R
2. Whatever the specific choice

of the kernel K, it defines the RKH space HX of functions over the state space X := R
2: functions in HX are

defined on all of X := R
2. We also define finite dimensional spaces of approximants

HΩn := span

{

Kξn,i

∣
∣
∣
∣
ξn,i ∈ Ωn

}

.

With these definitions, we know that

HΩn ⊂ HΩ ⊆ HX

all contain functions that are defined over all of the state space X := R
2. From Theorem 1, we know that

∥Uϕg − Unϕ g∥ϕ∗(HX) ≤ ∥(I − PΩn)g∥HX

for all g ∈ HX . It is trivial that for any of the above choices of the kernel K, the map x 7→ Kx ∈ HX is one-to-one.
If we can additionally ensure that the kernel K separates all the dX := dR2 -closed subsets of X := R

2, then we
can conclude from Theorem 2 that ∥(I −PΩn)g∥HΩ → 0 as n→ ∞ for each g ∈ HΩ . As noted in [58], the Abel
kernel Kα,1,2 and the ℓ1-exponential kernel separates every closed subset of R2, so both of these kernels generate
convergent approximations in HΩ . Also, the Matern-Sobolev kernel for m > d/2 = 1 induces a native space
HX that is equivalent to the Sobolev space Wm,2(R2). But as discussed more fully in [74], the Sobolev space
Wm,2(R2) contains C∞

0 (R2), and therefore it has a rich family of smooth bump functions. The Sobolev space
W s,2(R2) therefore separates all the dR2 -closed subsets of X = R

2. This implies the convergence of the Koopman
approximations in HΩ in this case also. However, it is known that the Gaussian kernel does not separate all the
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Fig. 2: From initial condition ϕ0 = {−0.2, 1.6}T , the input trajectory ϕ(t) is generated over 7 ns. Two estimates
are generated using two different collection of centers Ωn1

and Ωn2
, which are placed quasi-uniformly along the

orbit from times t1 = 1 ns to t2 = 6 ns.

dR2 -closed subsets of X := R
2. [58] We would require additional analysis to conclude convergence in this case

since Theorem 2 does not apply.

Here we examine the numerical results of approximating a function g(t) = sin(ϕ1(t) + ϕ2(t))
3. Using the

Matern-Sobolev kernel with m = 3/2. As mentioned in [52], measuring time in nanoseconds and the currents
ϕ1 and h(x1) in mA with parameters, C,L, and u as given in Example 1, the equations of motion for the state
dynamics are given by

ϕ̇(t) =

{
0.5(−h(ϕ1(t)) + ϕ2(t))

0.2(−ϕ1(t)− 1.5ϕ2(t) + 1.2)

}

,

ϕ(0) = {−0.2, 1.6}T ,

As mentioned in [52], this system has two stable and one unstable equilibrium. From initial condition ϕ0,
the trajectory converges to the stable equilibrium at {0.884, 0.21}T . The simulation is run over 7 ns. Two
estimates of Uϕg are calculated. The first and second estimates uses 3 and 13 kernel centers, respectively, spaced
quasi-uniformly along the orbit. Both estimates begin placing centers from times t1 = 1 ns to t2 = 7 ns as
demonstrated in Figure 2. Figure 3 illustrates the behavior of the estimates Un1

ϕ and Un2

ϕ of the orbital Koopman
operator Uϕ acting on g. From the figure, it is clear that the error between the estimate and the true operator
acting on g is low near the centers placed between t1 and t2. Additionally, we can see that the estimate Un2

ϕ g
using the larger number of centers has a much smaller error than Un1

ϕ g since hΩn2 ,Ω
< hΩn1 ,Ω

.

To better understand the effects of the fill distance on the reduction in error, we examine the bounds on the
error as given by orbital Koopman operator’s version of Theorem 6 (see Section 5). In this case, the dimension
of the ambient space is d = 2, and the dimension of the restricted set along the orbit is k = 1. For each estimate,
kernels are placed quasi-uniformly throughout the orbit from the initial time of t1 = 0 to the final run time of
t = 9 ns. When using Sobolev-Matern kernel of order m = 3/2 > 1 and choosing s = m − (d − k)/2 > 0 and
s ≤ ⌈t⌉ − 1, we can bound the error with a reduction in the fill distance hΩn,Ω as seen in Figure 4.

Example 9 We next turn to the study of the Lotka-Volterra Equations in Example 3, which we interpret as
an example that determines a flow on a manifold M . We prepare this example with a careful discussion of a
continuous semiflow that can be associated with the governing equations.

In writing the original equations, we are given a set of nonlinear ODEs over the state space X := R
2.

It is relatively straightforward to show that every initial condition ϕ0 in the open first quadrant generates a
continuous solution of these equations, one that is defined for all t ∈ R

+. The solutions depend continuously
on the initial conditions. These properties suffice to determine a continuous semigroup {S(t)}t∈R+ in the usual
way [75] from the ODEs, provided we can define a suitable domain of initial conditions. We turn to this question
next and seek to characterize a positive invariant set contained in the open first quadrant. There is a single
equilibrium in the open first quadrant located at ϕe := {1, 2}. Moreover, it is also known and easy to verify [53]
that the trajectory t 7→ ϕ(t) passing through an initial condition ϕ0 in the open first quadrant leaves the function
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Fig. 3: An illustration of the behavior of the estimates Un1

ϕ and Un2

ϕ of the orbital Koopman operator Uϕ acting
on g. The error between the estimate and the true operator acting on g is smaller near the centers placed
between t1 and t2. From the figure, it is also evident that the error in the estimate Un2

ϕ g is smaller than that of
the Un1

ϕ g since hΩn2
,Ω < hΩn1

,Ω .
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Fig. 4: An illustration of the convergence of the estimate Unϕ to the orbital Koopman operator Uϕ acting on g.
Here the error is given by supt∈T |Uϕg(t)− Unϕ g(t)|. The dashed line represents the convergence rate.

V defined by

V (ϕ) := lnϕ1 − ϕ1 + 2 lnϕ2 − ϕ2

constant. That is, we have V (ϕ(t)) := V (ϕ0) for all t ∈ R
+ for any initial condition in the open first quadrant.

We can define a compact set N ⊂ R
2 as the closed sublevel set

N := Nα :=
{
x ∈ R

2 | − V (x) ≤ α
}

for any constant α, and this set is invariant under the solutions of the ODEs. The fact that N is closed follows
from the fact that it is the inverse image of a closed set under a continuous mapping. If we set

S(t)ϕ0 := ϕ(t)

for each initial condition ϕ0 ∈ N , we obtain a continuous semigroup {S(t)}t∈R+ over the compact, closed
(complete) metric space (N, dN ) := (N, dR2). Here dR2 is the usual Euclidean distance function restricted to the
set N .

Next we define how a dynamical system on a a manifold M is defined from the semiflow {S(t)}t∈R+ on N .
The Jacobian of V is given by

DV :=
[ 1
ϕ1

− 1 2
ϕ2

− 1
]
,
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and the determinant |DV | is nonzero for every point in the open first quadrant except the equilibrium ϕe,
where it is zero. By the implicit function theorem this means that the set M ⊂ N , where M := M(ϕ0) :=
{x ∈ R

2 | V (x) = V (ϕ0)} with ϕ0 ∈ N and ϕ0 ̸= ϕe is a smooth, connected, regularly embedded submanifold
of R2. Any smooth manifold can be equipped with a Riemannian metric, and here we just assume that such a
metric has been chosen. We define the mapping T (t) : M → M by restriction, T (t) := S(t)|M . The operators
{T (t)}t∈R+ satisfy the algebraic semigroup properties since the semigroup {S(t)}t∈R+ does and M is invariant
under {S(t)}t∈R+ . Finally, since M is a regularly embedded submanifold of R2, we know that there are two
constants C1, C2 > 0 such that

C1∥x− y∥R2 ≤ dM (x, y) ≤ C1∥x− y∥R2

for all x, y ∈M . [59] The fact that the metric dM on M is equivalent to the usual Euclidean metric restricted to
M suffices to show that {T (t)}t∈R+ is a continuous semiflow on the complete metric space (M,dM ). Of course,
it is clear from this analysis that the manifold M is just the orbit Γ+(ϕ0) equipped with a Riemannian metric.

We could use the definition of the semiflow {T (t)}t∈R+ above to define the orbital Koopman operator Uϕ for
any initial condition ϕ0 ∈M , and apply our approximation results to the associated orbital Koopman operator
Uϕ. However, we have already carried this out for an orbital Koopman operator in the last example, and now
we consider the case of a discrete flow defined in terms of a mapping f : M → M and approximate the usual
Koopman operator Uf . We can associate a discrete flow with the semigroup {T (t)}t∈R+ on M by sampling.
Suppose that ti := (i− 1) ∗ h for some fixed time step h > 0. We set

ϕi+1 = T (h)ϕi,

= f(ϕi),

with f(ϕ) := T (h)ϕ, and we obtain a discrete evolution of the type studied in Equation 1, but now the system
evolves on a manifold M . By construction the function f :M →M .

Note that even though the governing ODEs constitute a classical case study, the function f :M →M is not
known in closed form. In this sense, the approximation of the Koopman operator Uf is a nontrivial question
even for this rather straighforward system. In the remainder of this example we employ a intrinsic method
of approximation. We choose a kernel K : M ×M → R, one that is defined explicitly over the manifold, to
construct approximations of the Koopman operator.

We will estimate the Koopman operator in terms of the Sobolev spacesWm,2(M). Recall that if the dimension
ofM is k, thenWm,2(M) is continuously embedded in C0(M) ifm > k/2. SinceM is a one dimensional manifold,
choosingm > 1/2 will suffice to guarantee thatWm,2(M) is a RKH space. We choose the Sobolev-Matern kernel
Km : M ×M → R for some m > 1/2. For some standard manifolds, the Sobolev-Matern kernels are known in
closed form. For the problem at hand, since the manifold M is not one of the standard examples, determining
the Sobolev-Matern kernel is difficult. We must solve for the fundamental solution of the order 2m elliptic
differential operator L :=

∑m
j=0(∇

j)∗∇j , which is the mth order Laplace-Beltrami operator on the manifold M .
In this equation ∇ is the covariant derivative of the Riemannian manifold. On solving for the Sobolev-Matern
kernel Km :M ×M → R, we can apply Theorem 7 to find that the pointwise error is bounded like

|(Ufg)(x)− (Unf g)(x)| ≤ CMh
m−s
Ωn,M

(∥g∥Wm,2(M) + ∥Ufg∥Wm,2(M)).

Before proceeding to the next example, we emphasize some key points about this intrinsic approximation
method. To realize this rate of convergence in applications, we would first have to solve for the Matern-Sobolev
kernel over the manifold M . Even though we know a great deal about the manifold M in this case, like the
fact that it is a level set of a smooth function, the solution for the Matern-Sobolev kernel is nontrivial since the
volume measure over the manifold is difficult to derive. In other problems the situation can be much worse. The
closed form representation of the manifold M is usually not known. In such cases it is impossible to construct
the Sobolev-Matern kernels over a manifold M , even in principle. Even if the manifold is known, the calculation
of the solution of the Matern-Sobolev kernels can be prohibitively complicated. This would amount to 1) finding
an explicit (finite) atlas for the manifold, 2) using the coordinate charts to express the representations of the
Laplace-Beltrami operator in each chart domain, 3) and solving the coordinate expressions for the kernel in
each chart domain. This is a highly nontrivial exercise in all but the simplest domains.

This would appear to be a significant barrier to using the bounds derived in the paper in some important
(data-driven) applications: completing these calculations might require heroic efforts. Fortunately, we discuss
an extrinsic example next which does not suffer from these issues.

Example 10 From the last example, it is clear that the theorems derived in the paper in principle define strong
bounds on the error in approximations of different types of Koopman operators. However, it is also clear that
coming up with realizations of the kernels that achieve these rates of convergence can be problematic. Using
the same equations as the previous example, we now describe an extrinsic method for constructing Koopman
approximations that realize the error bounds described in the paper.



Approximation of Discrete and Orbital Koopman Operators over Subsets and Manifolds 33

Fig. 5: A comparison between the approximation U
n
f g and the infinite-dimensional Koopman operator Ufg over

the manifoldM of the underlying Lotka-Volterra dynamics. Here we can see the approximation U
n
f g represented

by the blue mesh intersects the Koopman operator Ufg represented by the orange surface at the points in red
collected above the manifold.

The discrete dynamics defined in terms of the function f := T (h) : M → M gives rise to the Koopman
operator Uf . The manifold M is a smooth, one dimensional, closed, connected, Riemannian manifold that is
regularly embedded in the Euclidean space X := R

2. It turns out that, since X := R
2 is such a common and

widely used manifold, the Sobolev-Matern kernel Km of order m over X := R
2 is well known. The Sobolev-

Matern kernel of order m over X := R
d is given in [59] as

Km(x, y) :=
21−(m−d/2)

Γ (m− d/2)
∥x− y∥

m−d/2

Rd
Bm−d/2(∥x− y∥Rd)

with Bm−d/2 the Bessel function of order m − d/2. This kernel is easily calculated for any x, y ∈ R
d, and in

particular it can be computed over a nontrivial or unknown submanifold M of X := R
d since it is known in

closed form on the larger set X.
As discussed in Section 2.2, the restricted kernel rM (x, y) := Km|M×M (x, y) defines the kernel for the RKH

space RM (HX). We want to choose the kernel Km with sufficiently high order to ensure that RM (HX) is
equivalent to a Sobolev space W s,2(M) for an appropriate degree of smoothness s > 0. Recall that if the kernel
Km over X := R

d has a Fourier transform that satisfies the algebraic decay condition of order m in Equation 26
with m > d/2, then HX ≈Wm,2(Rd). But the Sobolev-Matern kernel Km defines the Sobolev space Wm,2(Rd):
it automatically satisfies the decay condition in Equation 26 by definition. Moreover, whenm > d/2, the Sobolev
embedding Theorem ensures thatWm,2(Rd) →֒ C0(Rd) and the trace map T is just the restriction map on these
continuous functions. Recall from Proposition 2 that the trace (or restriction) map is a continuous mapping of
Wm,2(Rd) onto W s,2(M) when s := m − (d − k)/2 > 0. With all of these observations, we conclude that if
m > d/2 and s = m− (d− k)/2 > 0, then RM (HX) ≈ W s,2(M). For the problem at hand this means that we
must choose m > 1/2 and s = m− 1/2 > 0.

For this example, the trajectory was generated from an orbit starting at initial conditions ϕ0 = {2, 2}T

over 12.8 seconds. The approximation was constructed using the Sobolev-Matern kernel of order m = 5/2. The
dimension of the approximation space is determined by the number of kernels n = 11, which are selected along
the manifold quasi-uniformly. Figure 5 shows the approximation U

n
f and Koopman operator Uf acting on a

function g over the input defined by the Lotka-Volterra dynamics. From the figure, it is clear that the error is
minimal along the manifold M where samples are collected. We also examine the rates of convergence given by
Theorem 7 in Figure 6. The number of centers range from n = 5 to n = 26 based on the desired fill distance.
The error is bounded by a function of the fill distance, which decreases as the kernel centers are increased.

Example 11 In this example we study the Van Der Pol oscillator described in Equations 2. First, the governing
system of ODEs in Example 2 generate a continuous, bounded solution through any initial condition ϕ0 ∈ X :=
R

2, and the solutions depend continuously on the initial conditions. Standard methods in dynamical system
theory [72, 75] ensures that the governing equations define a continuous semigroup {S(t)}t∈R+ on the entire
state space X := R

2. The positive limit set ω+(ϕ0) is same for any choice of initial condition ϕ0 ∈ X. That
is, for any pair ϕ0, ψ0 ∈ X, we have ω+(ϕ0) = ω+(ψ0). Since the forward orbit is precompact in X := R

2,
the positive limit set ω+(ϕ0) is compact, connected, and positively invariant. Moreover, following essentially
the same set of steps that are taken in Example 9, we can likewise show that M := ω+(ϕ0) is a smooth, one
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Fig. 6: Examining the rates of convergence given by Theorem 7. The number of centers range from n = 5 to
n = 26 based on the desired fill distance. The error supx∈M |(Ufg)(x) − (Unf g)(x)| is bounded by a function of
the fill distance.

dimensional, regularly embedded submanifold of X := R
2, and that the restricted semigroup T (t) := S(t)|M is

a dM -continuous semigroup over (M,dM ). Similar bounds as derived in Example 9 could be established in the
current case, for any initial condition ϕ0 ∈M .

However, in this example, we want to explore the case when initial conditions are outside of the positive limit
set and generate substantially different trajectories. We are interested in precise descriptions of relationships
between Koopman approximations that arise from samples Ξ(ϕ0) and Ξ(ψ) that are collected from different
orbits Γ+(ϕ0) and Γ

+(ψ0), when ϕ0 ̸= ψ0 and the initial conditions is outside of M := ω+(ϕ0) = ω+(ψ0).

As in Example 9, we induce a discrete dynamical system by discretization of the semiflow {S(t)}t∈R+ , with
ϕn+1 = S(h)ϕn = f(ϕn) and f : X → X an unknown mapping. We subsequently define Ufg := g◦f in the usual
way for g ∈ HX . We denote by ω+

f (ϕ0) and ω+
f (ψ0) the positive limit sets for the discrete flow to distinguish

them from the positive limit set M of the semigroup {S(t)}t∈R+ . We know that the positive limit sets of the
discrete flows are contained in that of the semigroup in continuous time,

ω+
f (ϕ0) ⊆ ω+(ϕ0) =M,

ω+
f (ψ0) ⊆ ω+(ψ0) =M.

Note that the limiting set of the two collections of samples are given by

Ωϕ0
:= Ξ(ϕ0) = Ξ(ϕ0)

⋃

ω+
f (ϕ0) ⊆ Ξ(ϕ0)

⋃

ω+(ϕ0) = Ξ(ϕ0)
⋃

M,

Ωψ0
:= Ξ(ψ0) = Ξ(ψ0)

⋃

ω+
f (ψ0) ⊆ Ξ(ψ0)

⋃

ω+(ψ0) = Ξ(ψ0)
⋃

M,

We denote by

Unf,ϕ0
g :=

(
PΩϕ0,ng

)
◦ f,

Unf,ψ0
g :=

(
PΩψ0,n

g
)
◦ f

the projection-based approximations generated by the samples Ξ(ϕ0) and Ξ(ψ0), respectively. It is then imme-
diately apparent that

∥Unf,ϕ0
g − Unf,ψ0

g∥f∗(HX) ≤ ∥Uf∥
{
∥(I − PΩϕ0,n)g∥HX + ∥(I − PΩψ0,n

)g∥HX
}
,

since both Unf,ϕ0
and Unf,ψ0

are maps from HX into f∗(HX). Now we can apply Theorem 2 to conclude that
∥Unf,ϕ0

g − Unf,ψ0
g∥f∗(HX) → 0 as n→ ∞ for each g ∈ HΩϕ0

⋂
Ωψ0

. In other words, the projection-based approx-
imations of the Koopman operator asymptotically agree for all functions g ∈ HΩϕ0

⋂
Ωψ0

. Not only does this
agree with our intuition, but it describes explicitly the space in which approximations converge.



Approximation of Discrete and Orbital Koopman Operators over Subsets and Manifolds 35

7 Conclusions

In this paper, we study the approximation of the Koopman operator in RKH space associated with semiflows in
a complete metric space. The paper explores the relationship between the rate of convergence of the approxima-
tion error for a specified subspace of observables and how the data samples fill the set that supports a motion of
the semiflow. In particular, we first derive a general error bound for the projection-based approximations of the
Koopman operator in an RKH space. A separating property is proven to be sufficient for the convergence of the
projection-based Koopman operator approximation. When the RKH space is induced by a Sobolev-type kernel,
an upper bound of approximation error is derived in terms of the fill distance. The data-dependent approxi-
mation of Koopman operators is discussed next, as well as its relationship to the existing EDMD algorithm.
The convergence of the data-dependent approximation is proven based on the convergence of projection-based
approximation. The rates of convergence are derived for the cases when the data samples fill a bounded compact
manifold, or a bounded subset, respectively. The results above are derived for Koopman operators associated
with discrete-time semiflows. For continuous-time semiflows, the convergence rate of the orbital Koopman op-
erators is derived in terms of how the time indices at which data samples are taken fill the entire time interval.
Extensive analytical and numerical examples are presented to illustrate the theoretical results.
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A Sobolev Spaces

A.1 Sobolev Spaces over Subsets Ω ⊆ X := R
d

The Sobolev spaces over a subset Ω ⊆ X := R
d are defined in terms of the space L2(Ω) := L2

µ(Ω) that consists of functions over
Ω that are square integrable with respect to a measure µ. The norm ∥ · ∥L2(Ω) is induced by the familiar inner product

(f, g)L2(Ω) :=

∫

Ω
f(ξ)g(ξ)µ(dξ),

with which L2(Ω) is a Hilbert space. It is most commonly the case that for subsets Ω ⊂ X := R
d, we choose µ(·) to be Lebesgue

measure. The most intuitive definition of a Sobolev space can be stated when the order is a nonnegative integer. For integer
k ≥ 0, the Sobolev space Wk,2(Ω) for a subset Ω ⊆ X := R

d consists of those functions in L2(Ω) for which all weak derivatives
Dαf ∈ L2(Ω) with Dα(·) = ∂|α|(·)/∂xα1

1 · · · ∂x
αd
d for all integer multiindices α = {α1, . . . , αd} ∈ N

d
0 and |α| =

∑

1≤i≤d αi. With
the inner product

(f, g)Wk,2(Ω) :=
∑

0≤|α|≤k

(Dαf,Dαg)L2(Ω)

the Sobolev space Wk,2(Ω) is a Hilbert space.
The Sobolev spaces for integer order k are readily understood: they measure the smoothness of a function in terms of the

number of weak derivatives. It turns out that these spaces are a special case of the scale of Sobolev spaces W r,2(Ω) that are
indexed by a positive real number r > 0. The spaces W r,2(Ω) are defined as an interpolation space between an integer order space
Wk,2(Ω) and L2(Ω). While we do not need to get into the details of the construction of these spaces, we must use them in certain
proofs. For example, in this paper we will often need to talk about the restriction or trace mapping that evaluates a function in a
Sobolev space Wk,2(Ω) over some subset Ω̃ ⊂ Ω. This topic is described below in the discussion of trace mappings and restrictions
in Section A.3. The trace theorems rely on the definition of fractional Sobolev spaces, which are examples of spaces in the real scale
of Sobolev spaces W r,2(Ω) for real r ≥ 0. See Proposition 2 for instance. Also, many of the approximation theorems in Sobolev
spaces are expressed in terms of Sobolev spaces having a positive real, and sometimes fractional, smoothness index. See the many
zeros Theorems 10 and 11.
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A.2 Sobolev Spaces over Riemannian Manifolds M

In this section we describe how the definitions above are modified to define Sobolev spaces over subsets Ω of manifolds M . A
detailed account that is based on intrinsic characterizations can be found in [63, 76, 77], and equivalent definitions in terms of a
finite, fixed collection of coordinate charts can be found in [59,78]. We always assume in this paper that M is a connected, complete
Riemannian manifold with a positive injectivity radius and bounded geometry. A detailed account of these assumptions can be
found in [77], page 284, as well as [65] or [76]. If the manifold M is a smooth, connected, compact Riemannian manifold, or if
M := R

d these conditions are satisfied.
Suppose that M is a Riemannian manifold with metric g and the inner product ⟨·, ·⟩g,p on the tangent space TpM at the

point p ∈ M . By definition the volume measure dµ on M can be written in terms of a set of coordinates (x1, . . . , xd) as dµ(x) :=
√

det(g)dx1 . . . dxd. The norm ∥f∥Lp(Ω) for a subset Ω ⊆ M is selected to be the same as the definition above, but the measure

is chosen to be volume measure on the manifold M . For integer k > 0 the Hilbert space Wk,2(Ω) consists of the functions in
L2(Ω) := L2

µ(Ω) that have a bounded norm that is defined in terms of the inner product

(f, g)Wk,2(Ω) :=
∑

0≤|j|≤k

∫

Ω
⟨∇jf,∇jg⟩g,pdµ(p), (24)

which is written in terms of the covariant derivative operator ∇ and the volume measure µ on the manifold M . As in Section A.1,
the Sobolev space W r,2(Ω) for a real number r > 0 is defined as an interpolation space between an integer order Sobolev space
Wk,2(Ω) and L2(Ω). [70, 77,79]

A.3 Embedding and Trace Theorems

This section gives a brief account of the embedding and trace theorems for Sobolev spaces that are used in this paper. We need these
results to establish relationships between certain RKH spaces and Sobolev spaces and to make sense of the notion of restricting a
Sobolev function to the boundary, a subset of a domain, or even a manifold. Embedding theorems describe relationships between
spaces while trace theorems make precise the evaluation of functions on boundaries and subdomains. It turns out that there are
a plethora of embedding theorems associated with Sobolev spaces: these theorems describe when a Sobolev space is contained in
an another well-known function space. In this short section we review some of the most common embedding theorems for Sobolev
spaces, restricting attention to the specific embeddings used in this paper. The reader should see [70,79,80] for a detailed treatment
of more general embeddings as well as trace theorems.

Common Embedding Theorems: Perhaps the simplest embedding theorems for Sobolev spaces that we use in the paper follow
directly from the definition of the Sobolev space Wk,2(Ω) for integer k ≥ 0, and these hold when Ω is a subset of either X := R

d

or a manifold M . We have Wm,2(Ω) →֒ Wk,2(Ω) for any nonnegative integers with m ≥ k. It is a standard fact about Sobolev
spaces that for real r > 0, W r,2(Ω) →֒ W s,2(Ω) for any real indices r ≥ s ≥ 0.

Elements in a Sobolev space W r,2(Ω) with Ω ⊆ R
d, or W r,2(M) with M a manifold, are subsets of L2(Ω), or L2(M),

respectively. This means that members of these Sobolev spaces are equivalence classes of functions whose members may not have
well-defined values at particular points x ∈ Ω or x ∈ M . In contrast, when the admissible kernel K is continuous, the RKH space
HX only contains continuous functions for which pointwise evaluation is always well-defined. For deriving approximation errors,
we are interested in conditions under which it makes sense to evaluate a function in a Sobolev space at a point.

The Sobolev embedding theorem is a powerful tool that establishes sufficient conditions for the evaluation of functions in a
Sobolev space at points of the domain. Versions of this theorem hold for Sobolev spaces over a subsetΩ ⊆ R

d as well as over subsets of
a manifold M . When the domain Ω ⊆ R

d has a Lipschitz boundary, the Sobolev embedding theorem states that W r,2(Ω) →֒ Cb(Ω)
when r > d/2, [80] page 85. An analogous results holds when M is a d-dimensional, connected, smooth, Riemannian manifold
having positive radius of injectivity and bounded geometry. In this case W r,2(M) →֒ Cb(M), as discussed in [63], page 1748, or [64],
page 7. Again, if M is a compact Riemannian manifold or M := R

d, these properties are satisfied.
It is also possible to establish a stronger embedding than that guaranteed by the Sobolev embedding theorem described above.

It is sometimes the case that a Sobolev space is embedded in the space Ck,λ(Ω) of λ-Holder continuous functions for 0 < λ ≤ 1.
We define the norm on Ck,λ(Ω) as

∥f∥Ck,λ(Ω) := ∥f∥Ck(Ω) +
∑

|α|=k

sup
x ̸= y,
x, y ∈ Ω

∥Dαf(x)−Dαf(y)∥

∥x− y∥λ
= ∥f∥Ck(Ω) + |f |Ck,λ(Ω). (25)

If the domain Ω has a Lipschitz boundary, we have the continuous embedding

Wk+m,p(Ω) →֒ Ck,λ(Ω)

when 0 < λ ≤ m − d/p. See page 10 and Chapter 4 in [80]. Note that, in particular, the above continuous embedding implies
that Wm,2(Ω) →֒ C0,1(Ω) for m ≥ d/2 + 1, with C0,1(Ω) the Lipschitz continuous functions. This embedding holds for the entire
Euclidean space Ω := R

d also. This embedding plays an important role in the error bound derivation for data-driven approximations
of the Koopman operator.

Relationships between RKH Spaces and Sobolev Spaces: When the Sobolev embedding theorem holds for a space W r,2(Ω) or
W r,2(M) with r > d/2, the Sobolev space is actually a RKH space. Since we have

|Exf | = |f(x)| ≤ ∥f∥C(Ω) ≤ C∥f∥Ws,2(Ω),

each evaluation functional Ex : W r,2(Ω) → R is bounded on the Hilbert space W r,2(Ω). This is necessary and sufficient for a
Hilbert space to be a RKH space. We have shown this fact for a domain Ω ⊆ R

d, but the argument for a subset of a manifold M
is identical.

The above argument is one way to determine that a Sobolev space is an example of an RKH space. There is yet another,
stronger, way to establish a relationship between a Sobolev space and an RKH space. Let HX be the native space of the kernel K
over X := R

d, and denote its Fourier transform as K̂ := F(K). We say that the Fourier transform K̂ has algebraic decay if

K̂(ξ) ≈ (1 + ∥ξ∥22)
−τ (26)
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for some τ > d/2. When this is true, then HX ≈ W τ,2(Rd). [57, 59]
The fact that the Fourier transform has algebraic decay can also be used to infer relationships between native spaces RΩ(HX)

and Sobolev spaces on proper subdomains Ω ⊂ R
d, provided that the subdomain is suitably regular. For instance, if K ∈ L1(Rd),

the Fourier transform of the kernel K has algebraic decay of order τ > d/2, and Ω ⊂ R
d has a Lipschitz boundary, then

RΩ(HX) ≈ W τ,2(Ω),

see Corollary 10.48, [57]. In the event that M is a compact, connected, k-dimensional, regularly embedded, Riemannian submanifold
M of X := R

d, from [59], Theorem 5, we know that

RM (HX) ≈ W τ−(d−k)/2,2(M) (27)

when the kernel K has algebraic decay of exponent τ > d/2.

Trace Theorems: In this paper we will sometimes consider flows that evolve on a submanifold M contained in R
d, and in this case

we are interested in approximating functions over the manifold. Again, as above, a function in the Sobolev space may not have a
well-defined value at a point on the manifold, when it is a measure zero subset of Rd. The problem of defining a value on a set of
measure zero is a classical problem in the study of Sobolev spaces, one that is addressed using the trace operator. If a function in
the Sobolev space happens to be continuous, the trace operator T over a subset of the domain is just the restriction of the function
to that subset. The trace operator is then extended by continuity to all functions in the Sobolev space for certain ranges of the
smoothness parameter. Trace theorems describe the mapping properties of the trace operator and are essential to understanding
the values of Sobolev functions on subsets, boundaries, curves, and manifolds. In this paper we will use the following trace theorem
on submanifolds M contained in R

d.

Proposition 2 (Proposition 2, [59]) Let 1 ≤ k ≤ d and τ > (d− k)/2. Let M be a smooth, k-dimensional, compact, embedded
submanifold of R

d. The trace operator T extends to a continuous operator mapping W τ,2(Rd) onto W τ−(d−k)/2,2(M). Further,
there is a reverse embedding, i.e., there is a bounded linear extension operator EM : W τ−(d−k)/2,2(M) → W τ,2(Rd) such that
TM (EMf) = (EMf)|M = f for all f ∈ W τ−(d−k)/2,2(M).

This theorem tells us that when we take the trace of functions in W τ,2(Rd) on the submanifold, the resulting functions defined
over the manifold have a reduced smoothness: they are elements of W τ−(d−k)/2,2(M).

A.4 The “Many Zeros” Approximation Theorems in Sobolev Spaces

A primary resource used in this paper for deriving rates of convergence of Koopman operators are the “many zeros” theorems of
scattered data approximation. [57, 63, 64] We use versions of these theorems for the case when Ω is a regular subset Ω ⊆ R

d, or
when M is a manifold. We first summarize a form that applies to a subset Ω ⊆ R

d. It is a simplified version of the “many zeros
theorem” that can be found in many places such as [59] Proposition 9, page 1764. Also see a similar result in [57] Corollary 11.33,
page 201 that applies when Ω is open, bounded, satisfies the interior cone condition, and has a Lipschitz boundary.

Theorem 10 Suppose that Ω ⊂ X := R
d is compact and has a Lipschitz boundary. Let t ∈ R with t > d/2, s ∈ N0 and

0 ≤ s ≤ ⌈t⌉ − 1. Then there are constants hΩ , CΩ > 0 such for all Ωn ⊂ Ω such that the fill distance hΩn,Ω ≤ hΩ and
u ∈ W t,2(Ω) that satisfies u|Ωn = 0 we have

∥u∥Ws,2(Ω) ≤ CΩht−s
Ωn,Ω

∥u∥W t,2(Ω).

The above theorem also holds for certain types of smooth manifolds: the version below is a simplified form [63], page 1765.

Theorem 11 Suppose that M is a compact, connected, smooth, d-dimensional manifold. Let t ∈ R with t > d/2, s ∈ N0 with
0 ≤ s ≤ ⌈t⌉ − 1. Then there are constants hM , CM > 0 such that for all Ωn ⊂ Ω such that the fill distance hΩn,M ≤ hM and for
all u ∈ W t,2(M) that satisfies u|Ωn = 0 we have

∥u∥Ws,2(M) ≤ CMht−s
Ωn,M

∥u∥W t,2(M).

A.5 Pointwise Approximation Theorems

The theorems above are powerful tools for deriving approximation rates in Sobolev spaces. In either of the above two theorems,
if we take s = 0, we see that the error rates are established in L2(Ω) or L2(M). However, there are many alternative lines of
attack to establish approximation rates from bases defined by scattered samples. One important class of these estimates establish
pointwise bounds in the norms L∞(Ω) or L∞(M). A discussion of the importance of pointwise bounds can be found in [64]. Below
we summarize one simple pointwise bound that is used later in deriving approximation rates of Koopman operators for semiflows
over manifolds. This theorem is found in [63], Corollary (3.9), page 1749.

Theorem 12 Suppose that M is a d-dimensional, compact, connected, Riemannian manifold without boundary, let K : M×M → R

be a positive definite kernel that induces the native space HM , and suppose further that HM is equivalent to the Sobolev space
W r,2(M) for r > d/2. Then there are a constants hM , CM > 0 such that for all g ∈ W r,2(M) and Ωn ⊂ M such that hΩn,M < hM

we have

|g(x)− PΩng(x)| ≤ CMh
r−d/2
Ωn,M

∥g∥Wr,2(M)

for all x ∈ M .

While the above theorem relies on the equivalence of the native space HM with a Sobolev space, the following general theorem is
also available from [57], page 321, Theorem 17.21:

Theorem 13 Let M be a compact Cℓ Riemannian manifold, the kernel K ∈ C2k(M ×M) that induces HM be positive definite,
and ℓ > 2k. Then there exists hM , CM > 0 such that for all g ∈ HM and Ωn ⊂ M with hΩn,M < hM we have

|g(x)− PΩng(x)| ≤ CMhk
Ωn,M

∥g∥HM .

for all x ∈ M .

We also note that there are versions [63–65] of the many zeros theorems that are stated in terms of spaces W s,p(Ω) for 0 ≤ s < ∞
and 1 ≤ p ≤ ∞, and these can be used to derive pointwise bounds also by choosing s = 0, p = ∞.
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37. Sören Hanke, Sebastian Peitz, Oliver Wallscheid, Stefan Klus, Joachim Böcker, and Michael Dellnitz. Koopman operator-based
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