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Abstract
Emerging spatial technologies including spatial transcriptomics and spatial epigenomics are becoming
powerful tools for profiling cellular states in the tissue context. However, current methods capture only
one layer of omics information at a time precluding the possibility to examine the mechanistic
relationship across the cental dogma of molecular biology. Here, we present two spatial multi-omics
technologies for spatially resolved genome-wide joint mapping of epigenome and transcriptome by co-
profiling chromatin accessibility and gene expression (spatial-ATAC-RNA-seq) or histone modification and
gene expression (spatial-CUT&Tag-RNA-seq) on the same tissue section at a resolution near single cells.
They were applied to embryonic and neonatal mouse brain as well as adult human brain to map how
epigenetic states or modifications regulate cell type and dynamics in tissue. Although distinct tissue
features were identified by either spatial epigenome or spatial transcriptome alone with high
concordance, we observed their differential roles in defining cell states. In general, epigenetic state
proceeds the development of transcriptional phenotype in relation to epigenetic lineage priming. We also
observed high expression canonical markers such as PROX1 in the granular cell layer of the human
hippocampus showed low chromatin accessibility that corresponded to a low level of RNA turnover rate,
highlighting a divergent need for open chromatin or transcription to control cell identity and dynamics.
Spatial epigenome-transcriptome co-profiling is a highly informative tool to study the mechanism of gene
expression regulation in tissue and may enable a wide range of applications in life science and
biomedical research.

Main Text
Single-cell multi-omics technologies offered the direct means to determine the relation between different
layers of gene regulation1-4. However, spatial information in the tissue context, which is critical to
understanding cellular function, is missing in single cell data. Furthermore, tissue dissociation leads to
perturbation in cell state or introduces technical noise. Recently, spatial epigenomics, transcriptomics,
and proteomics emerged to address this challenge5,6. Currently, most spatial technologies can capture
only one layer of genomics information. Although it is possible to computationally integrate the data
from multiple modalities7, the mechanistic link between different layers of omics can not be readily
uncovered. Thus, it is highly desirable to realize joint profiling of multiple omics. Previously, we developed
DBiT-seq for spatially resolved co-measurement of transcriptomics and a panel of proteins to link select
proteins to genome-wide gene expression. To further investigate the epigenetic mechanisms underlying
gene expression regulation, we aim to develop joint profiling of epigenome and transcriptome pixel by
pixel in tissue. Herein, we present two of such technologies for spatially resolved genome-wide co-
mapping of epigenome and transcriptome by simultaneously profiling chromatin accessibility and gene
expression (spatial-ATAC-RNA-seq) or histone modification and gene expression (spatial-CUT&Tag-RNA-
seq) on the same tissue section at cellular level via a microfluidic deterministic co-barcoding strategy to
implement the chemistries for spatial ATAC-seq8 or CUT&Tag6 and spatial transcriptome. We applied
them to the mapping of embryonic and neonatal mouse brain as well as adult human brain hippocampus
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to dissect epigenetic states or modifications in regulating cell type and dynamics in tissue. In general,
distinct tissue features could be identified by either spatial epigenome or spatial transcriptome alone with
high concordance, they do have differential roles in defining cell states. This work presents a versatile
technology for spatial co-profiling of epigenome and transcriptome pixel by pixel in tissue at cellular level
for identifying the mechanistic link between epigenetic state (chromatin accessibility or histone
modification) and transcriptional phenotype directly in the tissue context. It opens new frontiers in spatial
omics and may bring unprecedented opportunities to biological and biomedical research.

Technology design, workflow, and data quality

Spatial-ATAC-RNA-seq was realized by deterministic barcoding of transposase-accessible chromatin
and transcriptome on the same tissue section5 as shown in Fig. 1a and Fig. S1. It started with a fresh
frozen tissue section fixed with formaldehyde and then processed with the DNA adapter loaded
Tn5 transposition complex. This adapter sequence containing a universal ligation linker was then
inserted into the transposase accessible genomic DNA loci. Subsequently, a biotinylated DNA adapter
containing a poly-T sequence and a universal ligation linker was added to the tissue surface to bind to
mRNAs followed by reverse transcription (RT) in tissue. Next, we placed a microfluidic chip on the tissue
section to introduce a set of spatial barcodes Ai (i = 1-50/100), each flowing through a different
microchannel and then covalently linked to the DNA adapters through the universal ligation linker via
templated ligation. Then, this microfluidic chip was replaced by another one that has microchannels
perpendicular to the first flow direction to introduce another set of spatial barcodes Bj (j = 1-50/100) that
were ligated to barcodes Ai (j = 1-50/100) using a similar ligation chemistry, resulting in a 2D grid of
spatially barcoded tissue pixels, each of which had a unique combination of barcodes Ai and Bj (i = 1-
50/100, j = 1-50/100, n of barcoded pixels = 2,500/10,000). Finally, barcoded cDNA and genomic DNA
(gDNA) fragments were collected by reserve crosslinking. cDNAs were enriched with streptavidin beads
and gDNA fragments were retained in the supernatant. Afterwards, gDNA and cDNA libraries were
constructed separately during PCR amplification. We also developed spatial-CUT&Tag-RNA-seq for
spatially resolved co-sequencing of histone modification and transcriptome on the same tissue section at
cellular level. Similarly, this was implemented by conducting co-assay of cleavage under targets and
tagmentation (CUT&Tag) and transcriptome on the same tissue area with the aforementioned
microfluidic deterministic barcoding strategy5, as depicted in Fig. 1b and Fig. S2. First, the antibody
against the target histone modification was incubated with the paraformaldehyde fixed tissue section on
a glass slide. Then, a secondary antibody was added to improve the tethering of transposome (pA-Tn5).
After transposome activation, the DNA adapter with the universal ligation linker was inserted into the
histone mark-specific genomic DNA loci. The subsequent steps were similar to spatial-ATAC-RNA-seq for
constructing gDNA and cDNA libraries for next generation sequencing.

We performed spatial-ATAC-RNA-seq experiments on an embryonic day 13 mouse embryo
(E13) and human hippocampus (Fig. 1c, 50 μm pixel size). For the ATAC portion in spatial-ATAC-RNA-seq,
we obtained a median of 17,960 (E13) and 9,898 (hippocampus) unique fragments per pixel, of which
16% (E13) and 15% (hippocampus) of fragments overlapped with TSS regions, and 11% (E13) and 11%
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(hippocampus) were located in peaks. The proportion of mitochondrial fragments is 1% for E13 and 20%
for human hippocampus. For the RNA portion of spatial-ATAC-RNA-seq, the UMIs per pixel and detected
genes were found to be an average of 1,038 genes (E13) and 1,200 genes (hippocampus) per pixel (Fig.
1d) and the total number of genes detected was 19,887 (E13) or 29,293 (hippocampus). We performed
both spatial-ATAC-RNA-seq and spatial-CUT&Tag-RNA-seq experiments on mouse postnatal day 21 (P21)
brain (Fig. 1c, 20 μm pixel size). For the ATAC (spatial-ATAC-RNA-seq) or CUT&Tag (spatial-CUT&Tag-
RNA-seq) data, we obtained a median of 10,857 (ATAC) and 4,756 (CUT&Tag) unique fragments per pixel,
of which 20% (ATAC) and 19% (CUT&Tag) of fragments overlapped with TSS regions, 24% (ATAC) and
19% (spatial-CUT&Tag-RNA-seq) located in peaks. The proportion of mitochondrial fragments was 0.1%
for spatial-CUT&Tag-RNA-seq and 9% for spatial-ATAC-RNA-seq. For the RNA potion of spatial-ATAC-RNA-
seq and spatial-CUT&Tag-RNA-seq, totally 19,859 genes (spatial-ATAC-RNA-seq) or 19,831 genes (spatial-
CUT&Tag-RNA-seq) were detected with an average of 1,005 genes (spatial-ATAC-RNA-seq) and 1,145
genes (spatial-CUT&Tag-RNA-seq) per pixel (Fig. 1d) in the mouse brain tissues.

To further increase the mapping area, we also developed a new device to perform in tissue barcoding of
100x100 pixels and demonstrated it for spatial-ATAC-RNA-seq on an E13 mouse embryo sample (Fig. 1c,
25 μm pixel size). For the ATAC portion of the data, we obtained a median of 15,633 unique fragments
per pixel, of which 15% of fragments overlapped with TSS regions, and 13% were in peaks. The
proportion of mitochondrial fragments was 0.5%. For the RNA portion of the data, it detected 21,478
genes in total with an average of 550 genes per pixel (Fig. 1d) due to a lower sequencing depth. Moreover,
the insert size distributions of chromatin accessibility (spatial-ATAC-RNA-seq) and histone modification
(spatial-CUT&Tag-RNA-seq) fragments were consistent with the captured nucleosomal fragments in all
tissues (Fig. 1e and Fig. S3a-c).

Mouse embryo: spatial co-mapping of chromatin accessibility and transcriptome to identify tissue
feature, cell state and developmental dynamics

Spatial-ATAC-RNA-seq of a E13 mouse embryo identified eight major clusters using ATAC data and 15
clusters using RNA data. The distinct patterns of these clusters on the spatial map are in agreement with
the tissue histology (see H&E staining of an adjacent tissue section, Fig. 2a and Fig. S5a). In the ATAC
data, cluster 2 represents the eye in the mouse embryo with open chromatin accessibility for Six6 (Fig.
2d). Cluster 3 to 5 are associated with several developing internal organs. Cluster 6 to cluster 7 cover the
peripheral and central nervous system (PNS and CNS). In order to benchmark the ATAC data, we projected
the ENCODE reference ATAC-seq from different embryonic organs onto our ATAC UMAP embedding. In
general, the clusters are in good concordance with the ENCODE ATAC-seq projection (Fig. S4a-d). Cell
type-specific marker genes were identified for individual clusters and their expressions were inferred from
chromatin accessibility (Fig. 2d-e and Fig. S5b-d). Sox2, which is involved in the development of nervous
tissue especially for the optic nerve formation, showed high chromatin accessibility in the embryonic eye
field but also the ventricular layer with enriched neural stem/progenitor cells. Myt1l, which encodes
myelin transcription factor 1 like protein, was activated in the embryonic brain and neural tube.
Nrxn2, which encodes Neurexin 2, a key gene in the vertebrate nervous system, was observed extensively
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in most neural cells. Six6, a key gene involved in eye development, showed highest activity and
expression in the embryonic eye region. Rbfox3, a slicing factor well known as the nuclear biomarker
NeuN, was observed extensively in all neural cells while Sox1 appeared to be enriched in the ventricular
layer (Fig. S5). Cell type-specific enrichment of transcription factor (TF) regulators were also examined
using deviations of TF motifs (Fig. S6). We observed that Sox2 transcription factor was enriched in
cluster 8, consistent with its function in the embryonic brain development. Nfib motif was also enriched in
the embryonic brain, which is necessary for proper brain development (Fig. S6a). The GREAT analysis
further verified the strong concordance between gene regulatory pathways and anatomical annotation
(Fig. S6c). We integrated spatial ATAC data with scRNA-seq data for cell type assignment in each cluster9

(Fig. 2b and Fig. S5e). For instance, radial glia (neural stem/progenitor cells) were observed
predominantly in the ventricular layer and the differentiated cell types such as granule neurons and
inhibitory interneurons were enriched in distinct regions of the embryonic brain (Fig. S5e-f). For the RNA
data, 15 distinct clusters were identified and characterized by specific marker genes (Fig. 2a and Fig.
S6d). Their spatial patterns also agreed with the tissue histology shown in the H&E staining from an
adjacent tissue section (Fig. 2a and Fig. S5a). For example, cluster 11 correlated with the embryonic eye,
and also has the same maker Six6 as identified in ATAC data (Fig. 2d). Clusters 2, 5, 7, 9, and 10 are
related to PNS and CNS. Cluster 8 is associated with limb and bone development (Fig. 2d and Fig. S5b-
d). The pathway analysis10 results are consistent with anatomical annotation (Fig. S7).

What is unique in this work is co-profiling of epigenome and transcriptome, which allows for investigating
the correlation between accessibility peaks and expressed genes pixel by pixel and predicting the
interactions between different regulatory regions. Some enhancers (Sox2, Mytl1, Sox1, Rbfox3, and
Nrxn2) were found to have dynamically regulated promoter interactions (Fig. 2e). For example, enhancers
for Sox2 and Mytl1, had higher chromatin accessibility specially in cluster 6 and 7, suggesting their roles
in these regions to regulate Sox2 and Mytl1 expression. Moreover, we found that the some of the marker
genes identified from ATAC data were enriched in part of the embryonic brain (for example, Nrxn2, and
Myt1l) but not highly expressed in RNA data (Fig. 2d and Fig. S5b), which may indicate the lineage
priming of these genes in embryonic brain7. The discordance between chromatin accessibility and gene
expression proves the importance of spatial multi-omics co-profiling, which can help decipher the
epigenetic mechanisms regulating gene expression. The integration of the RNA data with the scRNA-seq
data9 was also performed to assign the cell identities to each cluster (Fig. 2b and Fig. S5f). We observed
that the radial glia, granule neurons, and inhibitory interneurons were present in the same major clusters
as shown in the ATAC analysis, which verified the power to define cell identities from multiple omics
information. It was also attempted to use joint clustering of the ATAC and RNA data to refine the spatial
patterns. For example, we identified cluster 11 (granule cells) in the joint clustering analysis, which was
not readily resolved by single modalities alone (Fig. 2a, right). This result highlights the unique value to
use joint multi-omics profiles for improving the cell-type-specific spatial mapping11.

To investigate the dynamic relationship between chromatin accessibility and gene expression during
embryonic development, we analyzed the differentiation trajectory from radial glia cells to various types
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of neurons12 such as inhibitory interneurons. The pseudotime analysis13 was conducted on both ATAC
and RNA data in spatial-ATAC-RNA-seq, and the results identified interneuron heterogeneity and the
developmental trajectories, which were directly visualized in the spatial tissue map (Fig. 2f, g). The gene
activity scores for chromatin accessibility and gene expression along this developmental trajectory were
computed and the dynamic changes in select marker genes were presented (Fig. 2h, i). Overall, the gene
expression exhibited a similar temporal tendency as the chromatin accessibility, but showed a slower
pace during the developmental process, such as Sox11 and Nfix, in agreement with epigenetic lineage-
priming of gene expression7. Thus, our spatial-ATAC-RNA-seq can be used to decipher the gene regulation
mechanism and dynamics during tissue development.

Postnatal mouse brain: spatial co-mapping of chromatin accessibility or chromatin modification with
transcriptome at the cellular level

We conducted spatial mapping of P21 mouse brain coronal sections (at Bregma 1) for both chromatin
accessibility and histone modification jointly with transcriptome. Either ATAC or RNA data identified 9
clusters with distinct spatial distribution in agreement with anatomical annotation defined by the Nissl
staining (Fig. 3a and Fig. S10a). Spatial clusters between ATAC and RNA showed strong concordance in
cluster assignment (Fig. S15b). For ATAC data, unique chromatin accessibility resolved clusters within
specific regions. For example, medium spiny neurons (Pde10a, cluster 1), corpus callosum (Sox10,
Mobp, and Tspan, cluster 3), and the ventricular zone (Notch1, cluster 7) (Fig. 3c and Fig. S8a). Cell type-
specific chromatin regulatory elements were analyzed (Fig. S11) that may act as cell type-specific
reporters. The GREAT analysis confirmed that the pathways correlated with the tissue functions in
different anatomical regions (Fig. S11b). For the RNA data, the clusters also showed specific gene
expression within individual regions. For example, medium spiny neurons (Pde10a, cluster 1), and corpus
callosum (Mobp, and Tspan2, cluster 4) (Fig. 3c and Fig. S8b).

Integration of single-cell ATAC-seq of the mouse brain atlas data14 with our spatial ATAC data was carried
out (Fig. 3d) to identify all major cell types15 and then used the label transfer to assign cell types to
spatial locations where epigenetic state may control specific cell type formation (Fig. S10b). For example,
an enrichment of mature oligodendrocytes (MOLs) was observed within corpus callosum. A thin layer of
ependymal cells (EPENs) was identified in the ventricular zone, and medium spiny neurons (MSNs) were
found to be enriched in striatum (Fig. S10b). We then integrated our spatial RNA data with scRNA-seq15

and again used label transfer to identify the dominant cell types in each cluster (Fig. 3e, j and Fig. S10b).
We observed a high degree of concordance in cell type identification between integrated ATAC and
integrated RNA data analyses, suggesting a general congruence between chromatin accessibility and
transcriptome to define cell identities in tissue. For example, the ependymal cells (EPEN), medium spiny
neuron (MSN), and mature oligodendrocytes (MOL) revealed by the RNA data were enriched in the same
regions as identified by the ATAC data in spatial-ATAC-RNA-seq (Fig. S10b). Furthermore, the detection of
a thin layer of EPEN cells in the ventricular zone demonstrated a high spatial resolution for our
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technology to identify low abundance cells at near-single cell resolution. The result was further improved
by joint clustering of ATAC and RNA profiles (Fig. 3a, bottom).

Joint profiling of ATAC and RNA allows for searching the correlated peak accessibility and gene
expression to predict putative enhancers. We detected 21,791 significant peak-to-gene linkages between
regulatory elements and target genes (Fig. S10d and Fig. S15a). Some potential enhancers with
dynamically regulated promoter interactions were found to be cluster-specifically enriched, such as Sox10
(cluster 3, and cluster 8), Notch1 (cluster 3, cluster 6, cluster 7, and cluster 8), Tspan2 (cluster
3), and Mobp (cluster 3) (Fig. 3k and Fig. S8c), indicating the ability for spatial-ATAC-RNA-seq to identify
the key regulatory regions. The annotation of cell type-specific chromatin regulatory elements and TF
regulators (Sox10, Atoh7, Nifx, Nfic, and Neurod6) in relation to the spatial pattern provided further
insights to the regulatory factors in the tissue context (Fig. S11a and Fig. S12). For example, Sox10 was
examined for chromatin accessibility, gene expression, putative enhancers, and TF activities
simultaneously, permitting more comprehensive understanding of gene regulation dynamics. We found
that some highly active marker genes with open chromatin accessibility (i.e., Notch1) were not highly
expressed for transcription (Fig. 3c), suggesting the possibility of linage-priming of these genes in the
brain tissue development7.

In addition to chromatin accessibility, histone modifications are also important aspects in epigenetic
regulation. Spatial-CUT&Tag-RNA-seq was performed to profile transcriptome and H3K27ac (activating
enhancers and/or promoters) in P21 mouse brain with 20 μm pixel size, which identified 7 and 9 specific
clusters for CUT&Tag and RNA, respectively (Fig. 3b). Overall, these clusters agreed with the anatomical
regions defined by the Nissl staining from an adjacent tissue section (Fig. 3b and Fig. S10a) and also
good concordance between CUT&Tag and RNA in terms of spatial patterns (Fig. S16b). For the CUT&Tag
data, the cluster specific active genes were shown in gene activity score (GAS) (Fig. 3c and Fig. S9a). For
example, Sox10, Mal, and Cldn11 showed high gene activity score in cluster 3 (corpus callosum), Notch1
activity enriched in cluster 2 (the ventricular zone), and Pde10a highly active in cluster 4 (medium spiny
neuron). We also identified TF motifs in H3K27ac modification loci, which could help better understand
the most active regulatory factors across all clusters (Fig. S13a and Fig. S14) and the pathway
enrichment by GREAT agreed with the tissue function in different anatomical regions (Fig. S13b). The
RNA data clusters showed unique signature within specific marker gene regions (Fig. 3c and Fig. S9b) as
exemplified by medium spiny neurons (Pde10a, cluster 4) and corpus callosum (Sox10, Cldn1, and Mal,
cluster 2) (Fig. 3c).

Integration of our CUT&Tag data with the scCUT&Tag data16 (Fig. 3f, i) also allowed for label transfer15

to assign epigenetic cell identities/states to spatial location (Fig. S10c). We also observed an enrichment
of MOL1 within the corpus callosum, a thin layer of EPEN in ventricular zone, and MSN1 in the striatum,
in agreement with spatial-ATAC-RNA-seq data (Fig. S10c), suggesting the important role for H3K27ac to
control the development of all major tissue types in this brain region. We also integrated the RNA part of
the spatial-CUT&Tag-RNA-seq data with scRNA-seq15 to identify dominant cell types in each cluster via
label transfer (Fig. 3g, j and Fig. S10c). MOL1, a thin layer of EPEN, and MSN1 were enriched in the same
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spatial regions recognized by CUT&Tag (Fig. S10c). Joint clustering of CUT&Tag and RNA could further
enhance the resolution of spatial clusters (Fig. 3b)11. To directly interrogate the interactions between
specific gene expression and the corresponding enhancers across all clusters, we identified a total of
16,973 significant peak-to-gene linkages (Fig. S16a) such as Sox10 (cluster 3), Notch1 (cluster 2, cluster
3, cluster 5, and cluster 6), Mal (cluster 3), and Cldn11 (cluster 3) (Fig. 3l and Fig. S9c). We also found
that some of the highly activated marker genes identified by CUT&Tag (i.e., Notch1) were not highly
expressed (Fig. 3c), which may also suggest the lineage-priming7, in this case, mediated by H3K27ac.

Human brain hippocampus: co-mapping of accessible chromatin and transcriptome to dissect cell type,
dynamics, and gene regulation

We performed spatially resolved co-sequencing of epigenome and transcriptome (50 μm pixel size) on
adult human brain hippocampal formation, which is a highly complex brain region involved in high level
cognitive function and neurological diseases such as major depression disease (MDD) and Alzheimer’s
disease (AD). Neuronal cell types, fate, and dynamics in this region remains poorly understood. We
identified 7 and 8 major clusters for ATAC and RNA, respectively, and the spatial distribution corresponds
well to the major anatomical regions by the Nissl staining (Fig.4a). For the ATAC data, cluster 4 is the
granular cell layer (GCL) (THY1, BCL11B) and cluster 6 is the choroid plexus (Fig. 4a, d). The TF motifs
(ID4, and MESP1) and their spatial patterns were analyzed to identify the regulatory factors in different
tissue regions (Fig. S17b). For the RNA data, we also detected distinct clusters with unique marker genes
(Fig. 4a, d) such as PROX1 and BCL11B enriched in cluster 4 (GCL).

To directly interrogate the gene regulatory interactions between regulated promoters and specific
enhancers, the correlation of peak accessibility and gene expression was analyzed (Fig. 4e) and identified
some enhancers with dynamically regulated promoter interactions, such as SOX2 (cluster 0, cluster1, and
cluster 3). This also suggests that spatial-ATAC-RNA-seq allows for mapping chromatin accessibility
dynamics at different regulatory regions directly in the spatial tissue context such as the human
hippocampus.

We also conducted data integration with single-cell ATAC or RNA sequencing. Combining the ATAC part of
our data with scATAC-seq17 revealed the dominant cell identities in individual clusters (Fig. 4b). In
addition, the RNA part of our data was integrated with scRNA-seq data18 to assign transcriptional cell
types to each cluster via label transfer (Fig. 4c and Fig. S17a). The granule cells were detected clearly in
the GCL, the cornu ammonis (CA) neurons were enriched in CA3-4 regions, and the vascular and
leptomeningeal cells (VLMC) were strongly distinguished in choroid plexus (ChPx) as opposed to other
regions.

In general, both ATAC and RNA can readily resolve all major tissue features in this region but spatial co-
sequencing of epigenome and transcriptome can provide new insights into the dynamic gene regulation
mechanism which cannot be realized by single modalities. For example, PROX1, a signature gene
defining the granule neuron identity during pyramidal neuron fate selection19, is indeed highly expressed
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in GCL but showed low chromatin accessibility (Fig. 4d). This could be attributed to a minimal demand to
synthesize new PROX1 transcripts in postmitotic mature granule neurons and thus not needed to
maintain an active open chromatin state for PROX1.

To verify this hypothesis, we conducted RNA velocity analysis to examine cell dynamics by quantifying
tissue region specific RNA turnover rate (Fig. 4f). Overall, the RNA velocity map identified the major
branches corresponding to, for example, GCL of the dentate gyrus (DG) and CA region, which is
consistent with the neuronal developmental lineage relationship as well as the anatomical and functional
subdivisions of hippocampus19. Using RNA velocity to examine the dynamics of selected genes (Fig. 4g)
confirmed that PROX1 has a low RNA turnover rate despite highest expression level in GCL. Together with
the discordance between chromatin accessibility and gene expression (Fig. 4d), these results suggested
that PROX1 activity is differentially required in regions during adult human brain hippocampus in
agreement with the findings in murine studies20. PLP1, which plays an important role in oligodendrocyte
development and myelin sheath maintenance, showed high expression in oligodendrocytes enriched
white matter region but relatively low chromatin accessibility, which also correlated with a low level of
RNA turnover (Fig. 4g). BCAS1, a key gene required for myelination, had high chromatin accessibility in
the white matter region but the gene expression was low, which corresponded to a high level of RNA
turnover despite low gene expression (Fig. 4g). Cell dynamics revealed by RNA velocity for PROX1, PLP1,
and BCAS1 validated our findings from the discordance between chromatin accessibility and gene
expression. In general, high RNA velocity is associated with more accessible chromatin while low RNA
turnover was detected in closed chromatin. These results further highlighted the importance of spatial
multi-omics mapping to fully dissect not only cell state but also developmental dynamics in a highly
heterogeneous tissue. 

Discussion
We developed spatial-ATAC-RNA-seq and spatial-CUT&Tag-RNA-seq for co-profiling of genome-wide
chromatin accessibility or histone modification in conjunction with whole transcriptome on the same
tissue section with near single cell resolution (20 μm pixel size). Spatial-ATAC-RNA-seq was applied to
E13 mouse embryo to reveal the tissue-type-specific epigenetic regulations and gene expression, which
provided two layers of spatial information at tissue scale with data quality as good as previously
obtained by single modalities. Spatial-temporal changes between chromatin accessibility and gene
expression during development were explored. Spatial-ATAC-RNA-seq and spatial-CUT&Tag-RNA-seq on
mouse brain demonstrated the ability to directly interrogate the relationship between epigenome and
transcriptome at cellular level in a spatially resolved manner, enabling the definition of cell identities from
two aspects and identification of cells and genes regulated by epigenetic lineage priming. Applying
spatial-ATAC-RNA-seq to human hippocampus resolved distinct subregions and corresponding cell types.
Co-profiling of epigenomic and transcriptomic more precisely delineated cell state and dynamics.
Interestingly, we observed the discordance between epigenetic and transcriptional state, which was
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attributed to their differential role in producing or maintaining gene expression. RNA velocity that can
reveal cell dynamics by quantifying RNA turnover rate further confirmed our findings.

While most data were collected using a design for mapping 50x50 pixels, we also demonstrated a 4x
larger mapping area in an E13 mouse embryo for co-profiling ATAC and RNA using 100 x100 barcodes
(total 10,000 pixels, 25 μm pixel size) (Fig. S18). It is possible to further increase the mapping area by
increasing the number of barcodes and implement the microfluidic barcoding process in an automated
liquid handling system to increase throughput.

We have demonstrated either ATAC or CUT&Tag in conjunction with RNA for spatial multi-omics mapping,
it is possible to further combine all three – chromatin accessibility, histone modifications, and
transcriptome – to delineate a more comprehensive landscape of gene regulation network in tissue. It is
also desirable to measure multiple histone modifications to assess the multivalency effect on gene
expression regulation in different tissue regions. Previously, we have demonstrated spatial profiling of
transcriptome and a panel of proteins. We envision it is possible and highly valuable to further combine
epigenome, transcriptome, and proteome21 to provide a tri-omics landscape of cell type, state, and gene
regulation. Finally, we envision spatial multi-omics as reported herein may find more important
applications in human disease research and the data from multi-modalities can not only cross-validate
one another but better elucidate the mechanisms driving abnormal cell states that could have been
difficult to discern using single modality methods. In addition, the spatial mapping may further reveal
how the local tissue environment affects cell state, dynamics, and function. 

In summary, spatially resolved genome-wide co-sequencing of epigenome and transcriptome at the
cellular level represents one of the most informative tools in spatial biology and well positioned to be
adopted in a wide range of biological and biomedical research. 

Methods
Preparation of tissue slides 

Mouse C57 Embryo Sagittal Frozen Sections (MF-104-11-C57) was purchased from Zyagen (San Diego,
CA). 

The mouse brain tissue sections were got from Karolinska Institutet. The mouse line used is Sox10:Cre-
RCE:LoxP (EGFP), on a C57BL/6xCD1 mixed genetic background. Experimental procedures on juvenile
(P21) mice were conducted in accordance with the European directive 2010/63/EU, local Swedish
directive L150/SJVFS/2019:9, Saknr L150, and Karolinska Institutet complementary guidelines for
procurement and use of laboratory animals, Dnr 1937/03-640. All the procedures were approved by
Stockholms Norra Djurförsöksetiska nämnd, the local committee for ethical experiments on laboratory
animals in Sweden, lic.nr. 1995/2019. 
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The human brain tissue sections were obtained from the Brain Collection of the New York State
Psychiatric Institute (NYSPI) and Columbia University. The brain sample was collected in the Republic of
Macedonia of brain collection and autopsy was conducted with Institutional Review Board approvals and
informed consent from the next of kin. 

All the tissues were sectioned with a thickness of 10 μm and put on glass slides (63478-AS, Electron
Microscopy Sciences). The samples were stored at -80 °C for further use.

Preparation of transposome

Unloaded Tn5 transposase (C01070010) and pA-Tn5 (C01070002) were purchased from Diagenode, and
the transposome was assembled following manufacturer’s guidelines. The oligos used for transposome
assembly were as follows: 

Tn5MErev: 

 5′-/5Phos/CTGTCTCTTATACACATCT-3′ 

 Tn5ME-A: 

 5′-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG-3′ 

 Tn5ME-B: 

5′-/5Phos/CATCGGCGTACGACTAGATGTGTATAAGAGACAG-3′

DNA oligos, DNA barcodes sequences, and other key reagents 

DNA oligos used for PCR and library construction were shown in Table S1, All the DNA barcodes
sequences were given in Table S2 and S3, and all other chemicals and reagents were listed in Table S4.

Spatial-ATAC-RNA-seq:

The frozen tissue slide was thawed for 10 min at room temperature. The tissue was fixed with
formaldehyde (0.2%, with 0.05 U/μL RNase Inhibitor) for 5 min and quenched with 1.25 M glycine for
another 5 min. After fixation, the tissue was washed with 1 mL 0.5X DPBS-RI twice and cleaned with DI
water. 

The tissue permeabilization was done with 200 μL lysis buffer (3 mM MgCl2; 0.01% Tween-20; 10 mM
Tris-HCl, pH 7.4; 0.01% NP-40; 10 mM NaCl; 1% BSA; 0.001% Digitonin; 0.05 U/μL RNase Inhibitor) for 15
min and was washed by 200 μL wash buffer (10 mM Tris-HCl pH 7.4; 10 mM NaCl; 3 mM MgCl2; 1% BSA;
0.1% Tween-20) twice for 5 min. Transposition mix (5 μL home-made transposome; 33 μL 1X DPBS; 50
μL 2X Tagmentation buffer; 1 μL 1% Digitonin; 1 μL 10% Tween-20; 0.05 U/μL RNase Inhibitor; 10 μL
Nuclease-free H2O) was added and incubated at 37 °C for 30 min. After that, 200 μL 40 mM EDTA with
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0.05 U/μL RNase Inhibitor was added and incubated for 5 min at room temperature to stop transposition.
Finally, the tissue section was washed with 200 μL 0.5X PBS-RI twice for 5 min and cleaned with DI water.

For reverse transcription, RT mixture (12.5 μL 5X RT Buffer; 4.5 μL RNase-free water; 0.4 μL RNase
Inhibitor; 0.8 μL SuperaseIn RNase Inhibitor; 3.1 μL 10 mM dNTPs each; 6.2 μL Maxima H Minus Reverse
Transcriptase; 25 μL 0.5X PBS-RI; 10 μL RT primer) was added. The tissue was incubated 30 min at room
temperature, and 42˚C for 90 min in a wet box. After RT reaction, the tissue was washed with 1X NEB
buffer 3.1 with 1% RNase Inhibitor for 5min. 

For 1st barcode (barcode A) in situ ligation, the 1st PDMS chip was covered to the region of interest (ROI)
on the tissue. For alignment purpose, 10X objective (Thermo Fisher EVOS fl microscope) was used to take
a brightfield image. The PDMS device and tissue slide were clamped with a home-made acrylic clamp
tightly. At first, barcode A was annealed with ligation linker 1, 10 μL 100 μM ligation linker, 10 μL 100 μM
each barcode A, and 20 μL 2X annealing buffer (20 mM Tris; pH 7.5-8.0; 100 mM NaCl; 2 mM EDTA) were
mixed well. For each channel, 5 μL ligation master mixture was prepared with 2 μL of ligation mix (27 μL
of T4 DNA ligase buffer; 72.4 μL of RNase free water; 5.4 μL of 5% Triton X-100; 11 μL T4 DNA ligase), 2
μL of 1X NEBuffer 3.1, and 1 μL of each annealed DNA barcode A (A1-A50/A100, 25 μM). Vacuum was
used to load ligation master mixture into 50 channels of the device. The device was incubated at 37 °C
for 30 min in a wet box. The PDMS chip and clamp were removed after washed with 1X NEBuffer 3.1 for
5 min. The slide was washed with water and dried by air. 

For 2nd barcode (barcodes B) in situ ligation, the 2nd PDMS chip was covered to the slide. Another
brightfield image with 10X objective was taken. The acrylic clamp was applied to clamp the PDMS and
tissue slide together. The annealing of barcodes B (B1-B50/B100, 25 μM) and the preparation of ligation
master mix were the same with barcodes A. The device was incubated at 37 °C for 30 min in a wet box.
The PDMS chip and clamp were removed after washed with 1X DPBS with SUPERase In RNase Inhibitor
for 5 min. The slide was washed with water and dried by air. The brightfield image was taken for further
alignment. 

For lysis of the tissue, the ROI of the tissue was digested with 100 μL reverse crosslinking mixture (0.4
mg/mL proteinase K; 1 mM EDTA; 50 mM Tris-HCl, pH 8.0; 200 mM NaCl; 1% SDS) at 58 °C for 2 h in a
wet box. The lysate was collected into a 1.5 mL tube and incubated at 65 °C overnight. 

For DNA and cDNA separation, the lysate was purified with Zymo DNA Clean & Concentrator-5 and eluted
to 100 μL of RNase free water. The 1X B&W buffer with 0.05% Tween- 20 was used to wash 40 μL
Dynabeads MyOne Streptavidin C1 beads for 3 times. Then 200 μL 2X B&W buffer with 2.5 μL of
SUPERase In RNase Inhibitor was used to resuspend the beads. The resuspended beads were mixed with
the lysate and allowed binding at room temperature for 1 h with agitation. A magnet was used to
separate beads and supernatant in the lysate. 

The supernatant was taken out for ATAC library construction. The supernatant was purified with Zymo
DNA Clean & Concentrator-5 and eluted to 20 μL of RNase free water. PCR solution (25 μL 2X NEBNext
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Master Mix; 2.5 μL 25 μM N7XX primer; 2.5 μL 25 μM P5 PCR primer) was added and mix well. The PCR
was first conducted by following the program: 72°C 5 min, 98°C 30 s, and cycled at 98°C 10 s, 63°C 10 s,
and 72°C 1 min for 5 times. To figure out additional cycles, the pre-amplified mixture (5 μL) was mixed
with qPCR solution (5 μL 2X NEBNext Master Mix; 0.24 μL 25X SYBR Green; 0.5 μL 25 μM new P5 PCR
primer; 3.76 μL nuclease-free H2O; 0.5 μL 25 μM N70X primer). Then, qPCR reaction was conducted as
following program: 98 °C 30 s, and cycled at 98 °C 10 s, 63 °C 10 s, and 72°C 1 min for 20 times. The
remaining pre-amplified DNA (45 μL) was amplified by running additional cycles determined by qPCR
(reach 1/3 of saturated signal). The final PCR product was purified by 1X Ampure XP beads (45 μL) and
eluted in 20 μL nuclease-free H2O. 

The beads were used for cDNA library construction. The beads were washed twice with 400 μL 1X B&W
buffer with 0.05% Tween-20 and once more with 10mM Tris (pH 8.0) containing 0.1% Tween-20.
Streptavidin beads with bound cDNA molecules were resuspended in a TSO solution (22 μL 10 mM
dNTPs each; 44 μL 5X Maxima RT buffer; 44 μL 20 % Ficoll PM-400 solution; 88 μL RNase free water; 5.5
μL of 100uM template switch primer; 11 μL of Maxima H Minus Reverse Transcriptase; 5.5 μL of RNase
Inhibitor). The beads were incubated at room temperature for 30 min and then at 42°C for 90 min with
gentle shaking. After washing beads once with 400 μL 10 mM Tris with 0.1% Tween-20 and once with
water, the beads were resuspended into a PCR solution (110 μL 2X Kapa HiFi HotStart Master Mix; 8.8 μL
10 μM primer 1 and primer 2; 92.4 μL RNase free water). The
PCR thermocycling was performed as following program: 95°C 3 min, and
cycled at 98°C 20 s, 65°C 45 s, 72°C 3 min for 5 times.
After five cycles, Dynabeads MyOne Streptavidin C1 beads was removed from PCR solution and 25X
SYBR Green was added at 1X concentration. Samples were again placed in a qPCR machine with the
following thermocycling conditions: 95°C for 3 min, cycled at 98°C 20 s, 65°C 20 s, and 72°C 3 min for 15
times, followed by a single 5 minutes at 72°C after cycling. The reaction was removed once qPCR signal
began to plateau. The PCR product was purified with a 0.8X Ampure XP beads and eluted in 20 μL
nuclease-free H2O. 

A Nextera XT Library Prep Kit was used for library preparation. The purified cDNA (1 ng) was diluted in
RNase free water to a total volume of 5 μL. 10 μL Tagment DNA buffer and 5 μL Amplicon Tagment mix
was added and incubated at  55°C for 5 min. 5 μL of NT buffer was added and incubated at room
temperature for 5 min. PCR master solution (15 μL PCR master mix; 1 μL 10 μM P5 primer; 1 μL 10 μM
indexed P7 primer; 8 μL RNase free water) was added and PCR reaction was performed with the following
program:  95°C 30 s, cycled at 95°C 10 s, 55°C 30 s, 72°C 30 s, and 72°C for 5 min after 12 cycles. The
PCR product was purified with a 0.7X Ampure XP beads to get the library.

The Agilent Bioanalyzer High Sensitivity Chip was used to get the size distribution and concentration of
the library before sequencing. Next Generation Sequencing (NGS) was conducted on Illumina NovaSeq
6000 sequencer (pair-end 150 bp mode).

Spatial-CUT&Tag-RNA-seq:
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The frozen tissue slide was thawed for 10 min at room temperature. The tissue was fixed with
formaldehyde (0.2%, with 0.05 U/μL RNase Inhibitor) for 5 min and quenched with 1.25M glycine for
another 5 min. After fixation, the tissue was washed with 1 mL wash buffer (150 mM NaCl; 20 mM
HEPES pH 7.5; 1 tablet Protease inhibitor cocktail; 0.5 mM Spermidine) twice and dip into DI water. The
tissue section was permeabilized with NP40-Digitonin wash buffer (0.01% Digitonin; 0.01% NP40; in wash
buffer) for 5 minutes. The primary antibody (Table S3) (1:50 dilution with antibody buffer (0.001% BSA; 2
mM EDTA; in NP40-Digitonin wash buffer) was added and incubated at 4 °C overnight. The secondary
antibody (Table S3) (1:50 dilution with NP40-Digitonin wash buffer) was added and incubated 30 min at
room temperature. The tissue was washed with wash buffer for 5 min. A 1:100 dilution of pA-Tn5 adapter
complex in 300-wash buffer (1 tablet Protease inhibitor cocktail; 300 mM NaCl; 0.5 mM Spermidine; 20
mM HEPES pH 7.5) was added and incubated at room temperature for 1 h. Then followed with a 5 min
wash with 300-wash buffer. Tagmentation buffer (10 mM MgCl2 in 300-wash buffer) was added and
incubated at 37 °C 1 h. Then, 40 mM EDTA with 0.05 U/μL RNase Inhibitor was added and incubated at
room temperature for 5 min to stop tagmentation. The tissue was washed twice with 0.5X DPBS-RI for 5
min for further use. 

For reverse transcription, two ligations, and beads separation, the protocols were the same with Spatial-
ATAC-RNA-seq.

For the construction of CUT&Tag library, the supernatant was purified with Zymo DNA Clean &
Concentrator-5 and eluted to 20 μL of RNase free water. PCR solution (2 μL 10 μM P5 PCR primer and
indexed i7 primer; 25 μL NEBnext PCR Master Mix) was added and mixed well. The PCR was performed
with the program: 58 °C 5 min, incubated at 72 °C 5 min and 98 °C 30 s, then cycled at 98 °C 10 s, and
incubated at 60 °C 10 s for 12 times, and final incubated at 72 °C 1 min. The PCR product was purified by
1.3X Ampure XP beads using the standard protocol and eluted in 20 μL nuclease-free H2O. 

The cDNA libraries construction followed the former spatial-ATAC-RNA-seq protocol. 

The Agilent Bioanalyzer High Sensitivity Chip was used to get the size distribution and concentration of
the library before sequencing. Next Generation Sequencing (NGS) was conducted on Illumina NovaSeq
6000 sequencer (pair-end 150 bp mode).

Data preprocessing 

For ATAC and CUT&Tag data, linker 1 and linker 2 were used to filter Read 2, and the sequences were
converted to Cell Ranger ATAC format (10x Genomics). The genome sequences were in the newly formed
Read 1, barcodes A and barcodes B were included in newly formed Read 2. Human reference (GRCh38) or
mouse reference (mm10) were used to align the fastq files. The achieved BED like fragments were used
to conduct downstream analysis. The fragments file includes fragments information on spatial locations
(barcode A x barcode B) and genome. 
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For RNA data, the Read 2 was refined to extract the Barcode A, Barcode B, and UMI. ST pipeline v1.7.222

was used to map the processed read 1 against the mouse genome (GRCm38) and human genome
(GRCh38), which created the gene matrix for downstream analysis. The gene expression matrix contains
information of genes and spatial locations (barcode A x barcode B).

Data clustering and visualization

We first identified location of pixels on the tissue from the bright light image using MATLAB, read
the ATAC, CUT&Tag, and RNA matrix into Signac v1.623. 

For RNA data visualization, the feature was set to 3000 with “FindVariableFeatures” function. Then the
data was normalized using “SCTransform” function. Normalized RNA data was clustered and RNA UMAP
was built with the dimension set to 10, the cluster resolution set to 0.8, and the algorithm set to 3. 

For ATAC/CUT&Tag data visualization, the min.cutoff was set to 10 with “FindTopFeatures” function. The
data was normalized and dimensional reduced using Latent Semantic Indexing (LSI). Then the
ATAC/CUT&Tag data was clustered and ATAC/CUT&Tag UMAP was built with dimension set to 2:20, the
cluster resolution set to 0.6, and the algorithm set to 3. 

For visualization of integrated ATAC/CUT&Tag and RNA data24, the “FindMultiModalNeighbors” function
was used. The reducton.list was set to (“pca”, “lsi”),  the dims.list was set to (1:10, 2:20), the
modality.weight.name was set to RNA.weight. The UMAP was built with the cluster resolution set to 0.8,
and the algorithm set to 3. 

As for RNA spatial data visualization, the gene matrix got from RNA was loaded into Seurat v4.125 as a
Seuratobject, the metadata of RNA got from Signac was read into the Seuratobject. All the spatial maps
were then plotted with the “SpatialPlot” function. 

As for ATAC/CUT&Tag spatial data visualization, the fragment file got from ATAC/CUT&Tag was read
into ArchR26 as an ArchRProject, the metadata of ATAC/CUT&Tag got from Signac was read into the
ArchRProject. The data from ArchRProject was normalized and dimensional reduced using iterative
Latent Semantic Indexing (LSI). The getMarkerFeatures and getMarkers functions in ArchR (testMethod =
“Wilcoxon”, cutOff = “FDR <= 0.05”, groupBy = “seurat_cluster”) was used to find the marker
genes/regions for each cluster. To visualize the spatial data, results got from ArchR were imputed to
Seurat V4.1 to map the data back to the tissue. The size of the pixels were scaled using the
“pt.size.factor” parameter in the Seurat package for better visualization.

For peak-to-gene link, we inputted RNA Seuratobject using “addGeneIntegrationMatrix” function in ArchR,
then the peak-to-gene link was drawn with “addPeak2GeneLinks” function.

Published data for data quality comparison and integrative analysis 
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Reporting summary 

Further information on research design is available in the Nature Research Reporting Summary linked to
this paper.

Code availability 

Code for sequencing data analysis is available on Github: https://github.com/di-
0579/Spatial_epigenome-transcriptome_co-sequencing

Data availability 

Raw and processed data reported in this paper are deposited in the Gene Expression Omnibus (GEO) with
accession code GSE205055 (reviewer token: klyzwcmmlnwjxmt). 
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Figure 1

Spatial-ATAC-RNA-seq and spatial-CUT&Tag-RNA-seq: design, workflow, and data quality. a, b, Schematic
workflow. c, Comparison of number of unique fragments, TSS fragments, fraction of reads in peaks
(FRiP), and fraction of mitochondrial fragments between spatial-ATAC-RNA-seq and spatial-CUT&Tag-
RNA-seq. d, Gene and UMI count distribution between spatial-ATAC-RNA-seq and spatial-CUT&Tag-RNA-
seq. e, Scatterplot showing the TSS enrichment score vs unique nuclear fragments per cell in mouse
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brain, human brain, and E13 mouse embryo. f, Aggregate spatial chromatin accessibility and RNA profiles
in mouse brain.

Figure 2
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Spatial chromatin accessibility and transcriptome co-sequencing of E13 mouse embryo. a, Spatial map
and UMAP of all the clusters for ATAC, RNA, and joint clustering of ATAC and RNA data (50 mm pixel
size). Overlay of clusters with the tissue image reveals that the spatial clusters precisely match the
anatomic regions. Pixel size 50 µm.  b, Integration of scRNA-seq from E13.5 mouse embryos and ATAC
data in spatial ATAC-RNA-seq. c, Integration of scRNA-seq from E13.5 mouse embryos and RNA data in
spatial-ATAC-RNA-seq. d, Spatial mapping of gene scores for selected marker genes in different clusters
for ATAC and RNA in spatial-ATAC-RNA-seq. e, Dynamics of chromatin accessibility of individual
regulatory elements at Sox2, Myt1l, Nrxn2, and Six6. f, g Pseudotime analysis of Radial glia and inhibitory
interneurons from ATAC and RNA data. h, The relative expression levels of genes along the pseudotime
trajectory. i, Examples of dynamic changes of chromatin accessibility and gene expression during the
pseudotime.
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Figure 3

Spatial epigenome and transcriptome co-sequencing and integrative analysis of P21 mouse brain. a,
Spatial map and UMAP of all the clusters for ATAC, RNA, and joint clustering of ATAC and RNA data in the
mouse brain. Pixel size 20 µm. b, Spatial map and UMAP of all the clusters for CUT&Tag, RNA, and
integration of CUT&Tag and RNA data in the mouse brain. Pixel size 20 µm. c, Spatial mapping of gene
scores for selected marker genes in different clusters. d, Integration of scATAC-seq from mouse brains
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and ATAC data in spatial-ATAC-RNA-seq. e, Integration of scRNA-seq from mouse brains and RNA data in
spatial-ATAC-RNA-seq. f, Integration of scCUT&Tag (H3K27ac) from mouse brains and CUT&Tag data in
spatial-CUT&Tag-RNA-seq. g, Integration of scRNA-seq from mouse brains and RNA data in spatial-
CUT&Tag-RNA-seq. h, List of cell types in scATAC-seq. i, List of cell types in scCUT&Tag (H3K27ac). j, List
of cell types in scRNA-seq. k, Dynamics of chromatin accessibility of individual regulatory elements at
Sox10, and Notch1. l, Dynamics of histone modification of individual regulatory elements at Sox10, and
Notch1. Scale bar, 1 mm. 

Figure 4
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Spatial chromatin accessibility and transcriptome co-sequencing of human hippocampus with 50 µm
pixel size. a, Spatial map (pixel size 50 µm.) and UMAP of all the clusters based on ATAC and RNA,
respectively, in the human hippocampus (ML: molecular layer). b, Integration of scATAC-seq from human
hippocampus and ATAC data in spatial-ATAC-RNA-seq. c, Integration of scRNA-seq from human brains
and RNA data in spatial-ATAC-RNA-seq. d, Spatial mapping of gene scores for selected marker genes in
different clusters. e, Dynamics of chromatin accessibility of individual regulatory elements at SOX2, and
BCL11B. f, RNA velocity in the human hippocampus. g, Phase plot for selected genes (left). UMAP
embedding colored by velocity (middle) and gene expression (right).
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