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Abstract
Recently, there is a great of industrial interest on the production of biodegradable metal/ceramic composites. The casted Fe-Mn-Si alloys
prepared by casting tools have low biodegradable rate; so it is important to seek a method as powder metallurgy (PM) to prepare porous
bodies with increased biodegradability. Moreover, the addition of hydroxyapatite (HA) nano rods to that alloy increases its bioactivity and
forms composite with improved properties. In the present study, Fe-14Mn-6Si/HA composites were prepared by PM and sintered at
different temperatures, i.e. 1100, 1150 and 1200oC. Also, the effect of HA nano-rods content on the composite properties (physical
properties, microstructure and micro hardness) and bioactivity were studied. The results revealed that bulk density increased with
increasing sintering temperature up to 1150oC; then decreased at 1200oC. Also, the bulk density increased with increasing the HA content.
Moreover, the hardness of the sintered composites increased with increasing sintering temperature and HA amount. The maximum
hardness values were 1293 & 1792 MPa for the specimens which contain 8 % HA and sintered at 1150 and 1200oC, respectively. The
bioactivity of the prepared composites increased with increasing HA amount. The highest bioactivity was for the composite that contains
8 wt.% HA.

1. Introduction
Composites of iron alloys/hydroxyapatite are interesting biodegradable implants since their individual components have several
advantages. It is well known that the Fe-Mn-Si alloys that have high Mn content ≥ 20wt.% are characterized by shape-memory effect
(SME) owing to the reversible phase-transition between the face-centered cubic austenite and hexagonal close-packed martensite [1–5].
This characteristic makes these alloys are interesting for civil applications like pipe joint, dampers and other technological applications [6–
8]. Early 80s, Sato et al. [9, 10] reported on the shape memory effect (SME) of these alloys. Since then, these materials have been widely
studied and received signi�cant consideration due to their low-cost, good workability, weldability, and worthy machinability properties [11,
12]. Recently, it has been reported that Fe-Mn-Si alloys are promising candidate as degradable biomaterials owing to their high cell viability,
worthy mechanical properties and acceptable degradation rate [13, 14]. Also, provisional biomedical-devices like cardiovascular-stents and
bone �xation plates have been considered as prospective uses of Fe-Mn-Si alloys owing to their sound biodegradability, great
biocompatibility and mechanical properties [15–19]. However they have low biodegradable rate due to their dense structure. So, the
preparation of these alloys by powder metallurgy (PM) can overcome the lower degradation rate since PM has the ability to prepare porous
alloys with controlled porosity. Moreover, the incorporation of hydroxyapatite in this alloys to form new composites, might also increase
the bioactivity and other properties of these composites.

Generally, the addition of bioceramic nanoparticles to the Fe-Mn-Si alloys leads to extra improving of the biodegradability and
biocompatibility as well as can form a composite with developed properties for commercial purposes. Hydroxyapatite (HA) is the most
famous biomaterials which can form good composite when added to Fe-Mn-Si alloys. It is thermo-dynamically the most stable phase in
physiological conditions and has the capability to chemically-bond directly to the bone owing to its similarities with composition and
structure of bone- and tooth-minerals. It doesn't display any cytotoxic effect but it exhibits outstanding biocompatibility with hard-tissues,
skin and muscle-tissues [20]. Furthermore, it shows substantial applications in other �elds as catalyst, sensor, and optical applications, etc.
[21] Rodriguez-Lorenzo et al. [22] reported on the synthesis of hydroxyapatite by precipitation method. The material prepared was stable up
to 1200°C and when sintered between 900–1200°C showed dense HA bodies. The optimum sintering temperature was 1100oC; it gave
higher mechanical properties with balanced ratio between the total pore area and the average grain size. Over 1100oC, the porosity and
density might be increased due to the phase transformation and decomposition of HA into another phases. This indicates that the HA
sintered quickly when it is only exist. The presence of pores facilitates the formation of interfacial bond and adhesion between HA or
metallic implants and living tissues; consequently develops the strength. [23–26]. When the pore size is very large or very small, the cell
cannot spread in the scaffold and cannot form networks [27]. On the other hand, the suitable large porosity increases the surface-area
which produces high cell-seeding effectiveness, movement and neovascularization [28]. Pang and Bao synthesized nano size HA powder
by chemical precipitation using CaCl2 and ammonium hydrogen phosphate [29].

There are several approaches for preparing alloys and composites as ingot metallurgy (IM) and powder metallurgy (PM) [30–35]. PM
technique has some bene�ts like cost-effectiveness, high production-rate, can produce complex shapes, and can produce laminated bodies
by different layers of powders. Mechanical alloying (MA) is the most famous technique in PM for preparing alloys and composites. From
this method, controlled grain size, �ne microstructure and homogenous chemical-composition can be accomplished in solid state [36],
therefore avoiding the disadvantages of IM method.

The present work focuses on the preparation of Fe-14Mn-6Si/HA composites by PM technique. The study of sinterability, microstructure,
hardness and bioactivity are the main objectives of the present study.
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2. Materials And Experimental Methods

2.1. Materials
Pure Fe-14Mn-6Si alloy was supplied by Algoumhoria Company for Chemicals Trade and Medicals, Cairo, Egypt. The hydroxyapatite nano
rods was synthesized in the nano laboratory at National Research Center, Egypt, according the method described elsewhere [37]. Para�n
wax, stearic acid, and ethanol alcohol were also supplied by Algoumhoria Company for Chemicals Trade and Medicals. The purity and
physical properties of utilized powders are illustrated in the Table 1.

Table 1
Purity and physical properties of Fe.14Mn.6Si alloy and HA powders

Element/oxide Purity, % Particle size, µm Particle shape Density, g/cm3 Melting point, oC

Fe 99.5 74 spherical 7.874 1538

Mn 99.3 44 �ake 7.21 1246

Si 99.9 44 spherical 2.33 1410

HA 99.8 0.025-0.10 rod 3.18 1670

2.2. Experimental procedures
The phase composition of Fe-14Mn-6Si alloy and HA was investigated by x-ray diffraction. X-ray diffractometer type Philips-PW1710 with
Cu-Kα radiation of λ = 1.541838Å was utilized. The XRD scanning was between 20°- 90°, with a step interval of 0.02° and a scan rate of
2°/min. On the other hand, the morphology of HA nano rods was examined by transmission electron microscope type JOEL JSM-1230.

In the present work, powder metallurgy process was utilized to fabricate the designed composites through the pressure less sintering
technique. Four different composite batches were designed and prepared from Fe-14Mn-6Si alloy with 0, 2, 4 and 8wt.-% hydroxyapatite.
Table 2 illustrates the batch composition of designed composites.

Table 2
Batch composition of designed

composites
Sample no. Mass, %

Fe-14Mn-6Si HA

A 100 0.0

B 98 2

C 96 4

D 92 8

The appropriate quantities of Fe-14Mn-6Si and HA powders were weighted and mixed in electric V-mixer for 12 hours. After mixing, the
powder was compacted in stainless steel cylindrical die using a hydraulic press machine type (Matest Italy/C055d) under pressure of 500
MPa. Samples with 8 mm diameter and 4 mm height were produced. The pressed specimens were sintered in a tube furnace type
GSL1600X at 1100, 1150 and 1200oC with continuous stream of Argon inert gas from the initial to the �nal stage of sintering. The
samples were �rst heated at a rate of 10oC/min. up to 1100ºC, 1150ºC, 1200ºC, and kept for 120min. Then, the furnace was turned off and
the sintered specimens were cooled over 8 h in the furnace [38–42]. Figure 1 shows the images of sintered specimens.

The physical properties in terms of bulk-density (BD) and apparent porosity (AP) were tested by liquid-displacement method according to
Archimedes rule. The BD and AP were calculated by the following equations:
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where: Ws is the weight of sample saturated by Xylene for 1h under vacuum, Wd is the weight of dry sample, Wn = weight of the immersed
sample in the Xylene and suspended in air, and ρd is the Xylene density [43]. The theoretical density was calculated by rule of mixture then
used in calculation of relative density.
X-ray diffraction technique was employed to identify the phase composition of the composites sintered at different temperatures. Before
examining the microstructure of sintered composites, all surfaces of the samples together with the edges were wet ground using 120,
220,320, 600, 1000, 1200 and 2000, grit silicon carbide papers by standard grinding and polishing technique using a machine model
Buhlertm. Then, these specimens were cleaned in distilled water and polished with diamond past of 6 µm to get a bright mirror �nish for
the last step. Finally, these samples were degreased with acetone. After drying, these samples were kept in Ziplock bags. The
microstructure was examined by scanning electron microscope model "Jeol 5400" linked EDS detector.

Micro hardness is a nondestructive technique that can represent the �nal strength of material surface and it requires no especial specimen
shape. In the present study, Vickers micro hardness measurements of sintered specimen were carried out using nova 240 micro hardness
tester (NOVA TEST made in Japan Co., Ltd.) with a contact load of 10 gm.f up to 2 kg.f. The micro hardness determination was conducted
according to ASTM E384-11 standard test method at a temperature of 25 ± 3ºC using a diamond indenter with a steady load.

The bioactivity was studied by immersing the sintered composites in simulated body �uid (SBF) for one month, and then the surface of
immersed composites was examined by scanning electron microscope attached with EDAX unit for qualitative analysis. SBF was prepared
according to the method described elsewhere [44].

3. Results And Discussion

3.1. Charcterstics of synthsized hydroxyapatite and Fe-14Mn-6Si powdres
Figure 2 shows XRD patrens of synthsized hydroxyapatite powder (nano rods). As indicated from the pattern, well crystalline hexagonal
Ca10(PO4)6(OH)2 phase is detected and no peaks for other materials are appeared in the patern. The main three peaks are equivalent to d-
spacing 2.8068, 2.7788 & 2.7099. The apperence of broad peaks refers to the formation of small particle size. TEM iamges of prepared
hydroxyapatite powder are desplayed in Fig. 3 with two magne�cations. It is apeared that the particles are homogenous in shape but
different in sizes. The particles have rod-like shape with length range 20–80 nm and daimter of bout 5–10 nm. The rod-like shape is
formed due to the interconnction of Ca2+ with PO4

3− and OH− ions. This kinde of morphology is promising for imporving the mehanical
and bioactivity of hydroxyapaptite-including composite. Figure 4 shows XRD patern of Fe-14Mn-6Si alloy powder. As indicated from the
pattern, the alloy composed mainly of component of alloy Fe, Mn and Si. Furthermore, it can be seen that the diffraction peaks are intense
and sharp owing to their higher crystallinity.

3.2. Charcterstics of sintered Fe-14Mn-6Si/HA composites

3.2.1. Bulk desity and apparent porosity of sintered composites
In this section, it is important to achieve the suitable sintering temperature to obtain composites with good properties. The green
compacted specimens obtained after compaction operation are friable and cannot be used. In order to make them usable ones, they must
undergo sintering operation. It is well-known that the sintering can be de�ned as the bonding of adjacent surfaces of particles in a mass of
metal powder by heating. The time of exposure to the temperature as well as the rate of heating and cooling should be controlled. The
heating should be gradual since fast heating will cause sudden vaporization and could result in the disintegration of the compact. The
sintering temperature is normally below the melting points of all powder constitutes. The sintering temperature for powder varies over a
range (0.7 to 0.9 times the melting point), but there is usually an optimum maximum sintering temperature for a given set of conditions
beyond which no gain is obtained. Table 3 illustrates the bulk density, relative density and apparent porosity of composites sintered at
1100, 1150 and 1200oC. All the bulk density values are in a narrow range (4.77–5.36 g/cm3); this is due to the almost similarity of phase
composition for all sintered composites. For all composites except composite D, the bulk density increases with increasing the sintering
temperature and reaches its maximum values at 1150oC then decreases at 1200oC. For composite D, the bulk density increases with
increasing sintering temperature and reaches its maximum value at 1200oC. This might be attributed to the increase of diffusion rate of
grains, decreasing of the number of pores and decreasing relatively the grain growth. The relative density trend goes with the bulk density
one. On the other hand, the apparent porosity goes in opposite trend for all composite batches. Generally, with rising the sintering
temperature, the grins' diffusion and the grains interaction increase with the chance of liquid phase formation. After addition of nano
hydroxyapatite, this leads to decreasing the apparent porosity and increasing the bulk density of sintered composites due to the closing of
the pores by the nano particles with the probability of formation low melting phases which can also close the pores. Although the addition
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of HA nanoparticles decreases the porosity, it still within appropriate range for biomedical implants. The increasing of porosity at high
sintering temperature is due to the decomposition of hydroxyapatite into tricalcium phosphate, CaO and H2O. It has been reported that the

decomposition of HA begins in the range 1050-1100oC [37].

Table 3
Bulk density and apparent porosity of prepared composites sintered at different temperatures

No. Composition

wt.-%

Theo.
density,
g/cm3

Bulk density,

g/cm3

Relative density*,

%

Apparent porosity, %**

1100°C 1150°C 1200°C 1100°C 1150°C 1200°C 1100°C 1150°C 1200°C Alloy HA    

A 100 0 6.346 4.770 5.246 4.819 75.16 82.66 75.93 24.501 22.230 20.983

B 98 2 6.26348 4.870 5.275 5.260 77.75 84.21 83.97 21.056 18.808 19.987

C 96 4 6.18096 5.055 5.303 5.224 81.78 85.79 84.51 18.375 17.939 18.315

D 92 8 6.01592 5.109 5.23 5.310 84.92 85.65 88.26 18.911 15.220 15.570

*± 1%

** ± 0.5%

3.2.2. Phase composition of sintered composites
XRD paterns of Fe-14Mn-6Si/HA composites sintered at 1150oC are shown in Fig. 5. It is indicated from the patterns that the main peaks
of α-Fe are appeared. Mn and Si phases are dissolved in α-Fe structure as solid solutions. New peaks for hydroxyapatite and tricalcium
phosphate are detected in the patterns of composites that contain 4 and 8% hydroxyapatite. Their amounts are higher in case of addition
8% hydroxyapatite. The appearance of tricalcium phosphate is due to the partially dissociation of hydroxyapatite at 1150oC.

3.2.3. Microstructure of sintered composites
Figures 6&7 show SEM images of Fe-14Mn-6Si alloy and Fe-14Mn-6Si/8%HA sintered at 1150oC, respectively. It is worth to mention that
the higher cold-pressing load leads to interconnecting the particles mechanically and forms high grain boundaries. In the present study, the
samples were pressed at higher load, i.e 500MPa, to improve the microstructure. As indicated from the microstructure, the main metal (iron
alloy) phase is predominant (bright color). Its quantity is higher in case of pure Fe-14Mn-6Si (Fig. 6) alloy than Fe-14Mn-6Si/8%HA
composite (Fig. 7). Homogenous microstructures with excellent distribution for the reinforcement phases are appeared. Some metals and
intermetallic phases are appeared as fused compacted areas between the iron alloy matrix grains. Also, the iron matrix includes some
pores, some precipitated phases come from the formed liquid phases (second phase) and some phases formed due to the partially
oxidized alloy. The grain sizes of sintered-alloy and composite are very �ne with the range between ≤ 1µm and few microns. This might be
effectively re�ected on the hardness values. The presence of some parallel lines intersecting the whole grains indicates the existence of
some amounts of ε-martensite phase. The addition of hydroxyapatite leads to decreasing the amount of pores and increases the amount
of second phases as well as partially oxidized alloy phases. Also, the increase of sintering temperature leads to increase the direct contact
between the grains and forms locked pores with grain growth. This makes a good homogenous and dense microstructure. Hydroxyapatite
reinforcement particles affect directly the contacts between the Fe-14Mn-6Si matrix grains, forms closed pores with grain growth.

3.2.4. Micro hardness of sintered composites
It is well-known that the factors which control the enhancement of hardness of composite are attaining improved microstructure with well
distributed reinforcement, re�ning the grain size and development of low-pores microstructure. Table 4 and Fig. 8 represent the values of
microhardness for Fe-14Mn-6Si/HA composites sintered at various temperatures. It is appeared that the hardness increases with
increasing both amount added of HA and sintering temperature except the composite B in the which the hardness increases up to 1150oC
then decreases when sintered at 1200oC. The maximum value of the hardness is obtained for the composite that contains 8 wt.% HA and
sintered at 1200oC. The distribution of harder HA nano rods in the matrix lead to improving the hardness of the composites than the pure
sintered alloy. The development of low-pore microstructure after sintering at higher temperature and after addition of harder HA
nanoparticle lead to the increasing the hardness of the sintered composites. Also, the nano rods can form interlock between the matrix
grains and then improve all mechanical properties
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Table 4
Micro hardness values of Fe-14Mn-6Si/HA composites

sintered at different temperatures
No. Composition, wt.% Micro hardness (MPa)

± 5

alloy HA 1100oC 1150oC 1200oC

A 100 0 808.70 825.4 877.0

B 98 2 946.70 1165 887.6

C 96 4 1004.00 1266 1369

D 92 8 1018.99 1293 1792

3.2.5. Bioactivity of sintered composites
Fe-Mn-Si/HA composites are considered as interesting materials owing to their excellent mechanical properties, good biocompatibility and
degradability in the human body, so they can apply as impermanent implants such as cardiovascular stents and bone-�xation devices (Ex.
plates, screws and nails). The biodegradability properties of these composites can facilitate the prevention of chronic-in�ammation,
thrombosis, in-stent restenosis [7, 8] or even after elimination of the implants [13, 14], in comparison with the implants having corrosion
resistance like stainless-steels 316L and alloys that contain Ti and Co–Cr [9–10, 45, 46].

The typical microstructure and corresponding EDAX spectra of Fe-14Mn-6Si/HA composites after immersion in SBF for one month are
shown in Figs. 9–12. As mentioned before, the main phase in the microstructure is the iron alloy phase (bright color) surrounded by pores,
precipitated second phase and hydroxyapatite grains. The amount of iron alloy phase decrease with increasing the HA amount. After the
immersion of sintered composite in SBF for 30 days, the microstructure feature is relatively changed. Beside the aforementioned phases
and microstructure features, layer of calcium/phosphorous is formed on the surface of immersed composites. Its amount increases with
increasing the amount of added HA indicating the higher bioactivity of the composites than the Fe-Mn-Si alloy. These results are con�rmed
by the results of EDAX analyses presented in Figs. 9-12d. The peak intensity of calcium and phosphorus increases with increasing the
amount of HA in the composites. The appearance of oxygen peaks comes from the corrosion/oxidation of the alloy during the degradation
process and also comes from the added HA. Also, new large pits are observed on the surface of the composites as detected in all
microstructure images. Their areas increase with increasing the amount of AH. These harshly local large pits are weak sites for crack
initiation. The degradation of these composites can be explain as follow; after immersion in SBF, the corrosion process proceeds in four
stages; i.e. initial corrosion reaction, formation of hydroxide layer, formation of pits and formation of calcium/phosphorus layer. Firstly,
Fe2+, Mn2+, Si4+ and OH− are formed after soaking in SBF solution. Secondly, Fe2+ reacted with OH− to form insoluble hydroxides which
can form after series of reactions a mixture Fe2O3, Fe3O4 and FeO layers. Thirdly, during the progress of degradation, chloride ion in SBF

reacts with Fe2+ to form iron chloride, which is further hydrolyzed by water and created hydroxide and free hydrochloric acid which
contributes in the growing of the localized pits. Finally, a new biocompatible layer comprised of calcium/phosphorus is formed on the
surface of the composites [47]. This means that at the starting of degradation, the surface of composite is coated by bone-cells since the
porous composite supports bone-cell adhesion and proliferation. Throughout the degradation, the bone tissues develop well into the pores
and renew the bone, increasing the strength of the composite. Finlay, the pores are totally occupied with renewed bone at the end of the
degradation [48].

Conclusions
In conclusion, Fe-14Mn-6Si/HA composites have been successfully prepared by powder metallurgy technique and sintered at different
temperatures for biomedical applications. According the results of physical properties, the sintering temperature 1150oC was selected as
the optimum sintering temperature. The achieved results can be summarized as follow:

1. The bulk density of sintered composites was increased with increasing HA content and sintering temperature up to 1150oC then
decreased after sintering at 1200o On contrast, apparent porosity went into opposite trend.

2. The micro hardness of sintered composites was enhanced with rising the sintering temperature and HA content due the reinforcement
of the matrix. The maximum hardness (1293 & 1792 MPa) was obtained for the composites that contain 8% HA and sintered at 1150
and 1200oC, respectively.
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3. The incorporation of HA in the sintered composites improved the bioactivity. The bioactivity increased with increasing the HA content.
Both of composite-components were necessary for the composites' properties.

Declarations
Funding statement

There are no funding sources

Con�ict of Interest

The authors declare that there is no con�ict of interest

Author contributions

Professor Zawrah planned and wrote the �nal article. Professor Ibrahim and Motaz Ata contributed in the supervision on the work and
reviewing the �rst draft, while Mr Ayman Ramadan conducted the experiments and wrote the �rst draft

Availability of data and material

All available results were inserted in the article.

Compliance with ethical standards

The authors con�rms that the article is Compliance with ethical standards

Consent to participate

'Not applicable'

Consent for Publication

'Not applicable'

Acknowledgments

'Not applicable'

References
1. Stanford, D.P. Dunne, Effect of Si on the reversibility of stress-induced martensite in Fe-Mn-Si shape memory alloys. Acta Mater. 58

(2010) 6752-6762.

2. Gebhardt, D. Music, D. Kossmann, M. Ekholm, I.A. Abrikosov, L.Vitos, J.M. Schneider, Elastic properties of fcc Fe–Mn–X (X = Al, Si)
alloys studied by theory and experiment. Acta Mater. 59 (2011) 3145-3155.

3. Sato, E. Chishima, Y. Yamaji, T. Mori, Orientation and composition dependencies of shape memory effect IN Fe-Mn-Si alloys. Acta
Metall. 32 (1984) 539-547.

4. Sato, Y. Yamaji, T. Mori, Physical properties controlling shape memory effect in Fe-Mn-Si alloys. Acta Metall. 34 (1986) 287-294.

5. Koyama, T. Sawaguchi, K. Tsuzaki, Si content dependence on shape memory and tensile properties in Fe–Mn–Si–C alloys. Mater. Sci.
Eng. A 528 (2011) 2882-2888.

�. Sato, H. Kubo, T. Maruyama, Mechanical Properties of Fe–Mn–Si Based SMA and the Application. Mater. Trans. 47 (2006) 571.

7. Janke, C. Czaderski, M. Motavalli, J. Ruth, Applications of shape memory alloys in civil engineering structures—Overview, limits and
new ideas. Mater. Struct. 38 (2005) 578-592.

�. Alam, M. Youssef, M. Nehdi, Can. J. Civ. Utilizing shape memory alloys to enhance the performance and safety of civil infrastructure: a
review. Eng. 34 (2007) 1075-1086.

9. Sato, E. Chishima , K. Soma, and T. Mori, Shape Memory Effect in Gamma Reversible Epsilon Transformation in Fe-30Mn-1Si Alloy
Single Crystals ,Acta Metall., 1982,30(6), p 1177–1183



Page 8/15

10. Sato, E. Chishima, Y. Yamaji, and T. Mori, Orientation and Composition Dependencies of Shape Memory Effect in Fe-Mn-Si Alloys ,
Acta Metall., 1984,32(4), p 539–547

11. Sato, T. Masuya, M. Morishita, S. Kumai, and A. Inoue, Strengthening of Fe-Mn-Si Based Shape Memory Alloys by Grain Size
Re�nement, Mater. Sci. Forum, 2000,327–328, p 223–226

12. Guenin, Shape Memory and Pseudo elastic Properties of Fe-Mn-Si and Ti-Ni Based Alloys ,J. Phys. IV Fr.,1997,7, p C5-467–C5-476.

13. Liu, Y. Zheng, L. Ruan, In vitro investigation of Fe30Mn6Si shape memory alloy as potential biodegradable metallic material. Mater.
Lett. 65 (2011) 540-543.

14. Xu, M.A. Hodgson, P. Cao, A comparative study of powder metallurgical (PM) and wrought Fe–Mn–Si alloys. Mater. Sci. Eng. A 630
(2015) 116-124.

15. Xu, Z.; Hodgson, M.A.; Cao, P. A comparative study of powder metallurgical (PM) and wrought Fe-Mn-Sialloys. Mater. Sci. Eng. A 2015,
630, 116–124.

1�. Xu, Z.; Hodgson, M.A.; Cao, P. Microstructure and degradation behavior of forged Fe-Mn-Si alloys. I. J. Modphys. B 2015, 29, 16.

17. Liu, B.; Zheng, Y.; Ruan, L. In vitro investigation of Fe30Mn6Si shape memory alloy as potential biodegradable metallic material. Mater.
Lett. 2011, 65, 540–543.

1�. Xu, Z.; Hodgson, M.A.; Cao, P. Effect of Immersion in Simulated Body Fluid on the Mechanical Properties and Biocompatibility of
Sintered Fe-Mn-Based Alloys. Metals 2016, 6, 309.

19. Xu, Z.; Hodgson, M.A.; Cao, P. Effects of Mechanical Milling and Sintering Temperature on the Densi�cation, Microstructure and
Tensile Properties of the Fe-Mn-Si Powder Compacts. J. Mater. Sci. Technol. 2016, 32, 1161–1170.

20. Suchanek, W., Yoshimura, M., Processing and properties of hydroxyapatite: Based biomaterials for use as hard tissue replacement
implants. J. Mater. Res. 13(1998) [1] 94–117

21. Kanazawa, T.: Hydroxyapatite. In: Inorganic phosphate materials. Materials Sci-ence Monographs, Elsevier, Tokyo, 52 (1989) 30

22. Rodriguez-Lorenzo, L.M., Vallet-Regi, M., Ferreira, J.M.F.: Fabrication of hydroxyapatite bodies by uniaxial pressing from a precipitated
powder. Biomaterials 22(2001) 583–588

23. J. Bartolo, C. K. Chua, H. A. Almeida, S. M. Chou, and A. S. Lim, “Bio-manufacturing for tissue engineering: Present and future trends,”
Virtual and Physical Prototyping, Vol 4. pp. 203, 2009.

24. J. Hollister, R. D. Maddox, and J. M. Taboas, “Optimal design and fabrication of scaffolds to mimic tissue properties and satisfy
biological constraints,” Biomaterials, Vol 23, pp. 4095, 2002.

25. C. Jones, C. H. Arns, D. W. Hutmacher, B. K. Milthorpe, A.P. Sheppard, and M. A. Knackstedt, “The correlation of pore morphology,
interconnectivity and physical properties of 3Dceramic scaffolds with bone in growth,” Biomaterials, Vol. 30,pp. 1440, 2009.

2�. J. O’Brien, B. A. Harley, I. V. Llanas, and L. J. Gibson, “The effect of pore size on cell adhesion in collagen-GAG scaffolds,” Biomaterials,
Vol 26, pp. 433, 2005.

27. S. Van, G. Kerckhofs, M. Moesen, G. Pyka, J. Schrooten, and J. P. Kruth, “Micro-CT-based improvement of geometrical and mechanical
controllability of selective laser melted Ti6Al4V porous structures,” Materials Science and Engineering A, Vol. 528, no. 24, pp. 7423,
2011.

2�. Kuboki, H. Takita, D. Kobayashi, E. Tsuruga, M. Inoue, and M. Murata, “BMP induced osteogenesis on the surface of hydroxyapatite
with geometrically feasible and non-feasiblestructures: Topology of osteogenesis,” Journal of Biomedical Materials Research, Vol. 39,
pp. 190, 1998.

29. Suryanarayana, C., and Nasser Al-Aqeeli. "Mechanically alloyed nano " Progress in Materials Science 58, no. 4 (2013): 383-502.

30. Nakano, P. J. Jacques, Effects of the thermodynamic parameters of the hcp phase on the stacking fault energy calculations in the Fe–
Mn and Fe–Mn–C systems. CALPHAD 34, 167 (2010)

31. C. Maji, M. Krishnan, Role of Si in Improving the Shape Recovery of FeMnSiCrNi Shape Memory Alloys. Phys. Proced. 10, 111(2010).

32. Matsumiya, Experimental study on sulfur removal from ladle furnace re�ning slag in hot state by blowing air. CALPHAD 35, 627
(2011).

33. Kirindi, E. Guler, M. Dikici, Effects of homogenization time on the both martensitic transformations and mechanical properties of Fe–
Mn–Si–Cr–Ni shape memory alloy. J Alloy Compd 433,202 (2007).

34. Berns, W. Theisen, Combines steel and cast iron, which used to be treated in separate books. Ferrous Materials. Steel and Cast Iron
(190 Springer 2008).

35. Suzuki, in Shape Memory Materials, (K. Otsuka,C.M. Wayman, eds.), Cambridge, pp. 145-147(1998).



Page 9/15

3�. He, C. Jia, J. Meng, In�uence of iron powder particle size on the microstructure and properties of Fe3Al intermetallics prepared by
mechanical alloying and spark plasma sintering. Mat Sci Eng A 428, 314(2006)

37. Abdel Aziz A Khalil; Mahmoud F Zawrah, E. A. Saad,, H A Badr, Synthesis and properties of hydroxyapatite nanorods, Interceram, 64
(2015) [8] 358-362

3�. Hamzawy, A. A. El-Kheshen and M. F. Zawrah, Densi�cation and Properties of Glass/Cordierite Composites, Ceramics Intentional,
Volume 31, Issue 3, 2005, Pages 383-389.

39. Mohammed A. Taha, Amira H. Nassar, M.F. Zawrah, Effect of milling parameters on sinterability, mechanical and electrical properties
of Cu-4 wt.% ZrO2 nanocomposite, Materials Chemistry and Physics, Volume 181, 15 September 2016, Pages 26-32

40. M. S. Wahsh, R.M. Khattab and M.F. Zawrah, Sintering and technological properties of alumina/zirconia/nano TiO2 ceramic
composites, Materials Research Bulletin, Volume 48, Issue 4, April 2013, Pages 1411-1414.

41. F. Zawrah, Adel B. Shehata , E. A. Kishar, Randa N. Yamani, Synthesis, Hydration and Sintering of Calcium Aluminate Nanopowder for
Biomedical Applications, Comptes Rendus Chimie, 14, pp611–618, 2011.

42. F. Zawrah, Mohammed A Taha, H. Abo Mostafa, In-situ formation of Al2O3/Al core-shell from waste material: production of porous
composite improved by graphene, Ceramics International, Volume 44, Issue 9, 15 June 2018, Pages 10693-10699

43. M. Khattab, A. El-Rafei, M.  F.  Zawrah,  In-Situ  Formation  of Sintered  Cordierite-Mullite  Nano-Micro  Composites  by  Utilizing  of
Waste Silica Fume, Materials Research bulletin, Volume 47, Issue 9, Pages 2662-2667 (2012).

44. Ayako Oyane, Hyun-Min Kim, Takuo Furuya,Tadashi Kokubo, Toshiki Miyazaki,Takashi Nakamura, Preparation and assessment of
revised simulated body �uids, Journal of Biomedical Materials Research Part A 65(2) 2003, pp 188-195

45. Zhang, R. Sandström, “Fe–Mn–Si master alloy steel by powder metallurgy processing,” Journal of Alloys and Compounds, 363
(2004), 194–202

4�. Zhang, R. Sandstrom, K. Frisk, A. Salwen “Characterization of intermetallic Fe–Mn–Si powders produced by casting and mechanical
ball milling,” Powder Technology137 (2003), 139– 147.

47. Qian Zhang, X. G. Wang, Peng Cao, Wei Gao, Degradation behavior of a biodegradable Fe-Mn alloy produced by powder sintering,
International Journal of Modern Physics: Conference Series Vol. 6 (2012) 774-779

4�. Bin Chen, Kai-Yang Yin, Tian-Feng Lu, Bing-Yi Sun, Qing Dong, Jing-Xu Zheng, Chen Lu, Zhan-Chun Li, AZ91 magnesium alloy/porous
hydroxyapatite composite for potential application in bone repair, Journal of Materials Science & Technology 32 (2016) 858–864

Figures

http://www.interceram-review.info/index.cfm?objekt=INTERC&jahr=2015&ausgabe=8&rubrik_en=High%2DPerformance%20Ceramics&lang=EN&artikel_id=217409&navi=3&id=202286
http://www.interceram-review.info/index.cfm?objekt=INTERC&jahr=2015&ausgabe=8&rubrik_en=High%2DPerformance%20Ceramics&lang=EN&artikel_id=217409&navi=3&id=203793
http://www.interceram-review.info/index.cfm?objekt=INTERC&jahr=2015&ausgabe=8&rubrik_en=High%2DPerformance%20Ceramics&artikel_id=217409&navi=2&lang=EN
http://www.sciencedirect.com/science/article/pii/S0254058416304448
http://www.sciencedirect.com/science/article/pii/S0254058416304448
https://www.sciencedirect.com/science/article/pii/S0272884218306631
https://www.sciencedirect.com/science/article/pii/S0272884218306631
https://www.sciencedirect.com/science/article/pii/S0272884218306631
https://www.sciencedirect.com/science/journal/02728842/44/9
https://www.sciencedirect.com/science/journal/02728842/44/9


Page 10/15

Figure 1

Iamges of sintered composites

Figure 2

XRD patern of synthized hydroxyapatite
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Figure 3

TEM images of synthesized hydroxyapatite

Figure 4

XRD patterns of Fe-14Mn-6Si
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Figure 5

XRD paterns of composites sinterd at 1150oC

Figure 6

SEM images (different magni�cations) of Fe-14Mn-6Si alloy sintered at 1150oC
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Figure 7

SEM images (different magni�cations) of Fe-14Mn-6Si/8%HA composite sintered at 1150oC

Figure 8

Micro hardness of sintered composites sintered at different temperatures for 2h
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Figure 9

SEM images (a, b&c) and EDS analysis (d) of sintered Fe-Mn-Si after immersion in SBF for one month

Figure 10

SEM images (a, b&c) and EDS analysis (d) of sintered 2% HA-containing composite after immersion in SBF for one month
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Figure 11

SEM images (a, b&c) and EDS analysis (d) of sintered 4% HA-containing composite after immersion in SBF for one month

Figure 12

SEM images (a, b&c) and EDS analysis (d) of sintered 8% HA-containing composite after immersion in SBF for one month


