1. Clark J, McFarlane C, Cleo G, Ishikawa Ramos C, Marshall S. The Impact of Systematic Review Automation Tools on Methodological Quality and Time Taken to Complete Systematic Review Tasks: Case Study. JMIR Med Educ. 2021;7(2):e24418-e.
2. O'Connor AM, Tsafnat G, Gilbert SB, Thayer KA, Shemilt I, Thomas J, Glasziou P, Wolfe MS. Still moving toward automation of the systematic review process: a summary of discussions at the third meeting of the International Collaboration for Automation of Systematic Reviews (ICASR). Syst Rev. 2019;8(1):57.
3. Thomas J, Stansfield C, editors. Automation technologies for undertaking HTAs and systematic reviews. European Association for Health Information and Libraries (EAHIL) Conference; 2018; Cardiff, Wales.
4. Arno A, Elliott J, Wallace B, Turner T, Thomas J. The views of health guideline developers on the use of automation in health evidence synthesis. Syst Rev. 2021;10(1):16.
5. Blaizot A, Veettil SK, Saidoung P, Moreno-Garcia CF, Wiratunga N, Aceves-Martins M, Lai NM, Chaiyakunapruk N. Using artificial intelligence methods for systematic review in health sciences: A systematic review. Res Synth Methods. 2022.
6. Muller A, Ames H, Himmels J, Jardim P, Nguyen L, Rose C, Van de Velde S. Implementation of machine learning in evidence syntheses in the Cluster for Reviews and Health Technology Assessments: Final report 2020-2021. Oslo: Norwegian Institute of Public Health; 2021.
7. Antman EM, Lau J, Kupelnick B, Mosteller F, Chalmers TC. A comparison of results of meta-analyses of randomized control trials and recommendations of clinical experts: treatments for myocardial infarction. Jama. 1992;268(2):240-8.
8. Oxman AD, Guyatt GH. The science of reviewing research a. Annals of the New York Academy of Sciences. 1993;703(1):125-34.
9. Nussbaumer-Streit B, Ellen M, Klerings I, Sfetcu R, Riva N, Mahmić-Kaknjo M, Poulentzas G, Martinez P, Baladia E, Ziganshina LE, Marqués ME, Aguilar L, Kassianos AP, Frampton G, Silva AG, Affengruber L, Spjker R, Thomas J, Berg RC, Kontogiani M, Sousa M, Kontogiorgis C, Gartlehner G. Resource use during systematic review production varies widely: a scoping review. J Clin Epidemiol. 2021.
10. Borah R, Brown AW, Capers PL, Kaiser KA. Analysis of the time and workers needed to conduct systematic reviews of medical interventions using data from the PROSPERO registry. BMJ Open. 2017;7(2):e012545.
11. Pham B, Jovanovic J, Bagheri E, Antony J, Ashoor H, Nguyen TT, Rios P, Robson R, Thomas SM, Watt J, Straus SE, Tricco AC. Text mining to support abstract screening for knowledge syntheses: a semi-automated workflow. Syst Rev. 2021;10(1):156.
12. Cochrane Community. Proposing and registering new Cochrane Reviews: Cochrane; [updated 2022.
13. Andersen MZ, Gulen S, Fonnes S, Andresen K, Rosenberg J. Half of Cochrane reviews were published more than 2 years after the protocol. J Clin Epidemiol. 2020;124:85-93.
14. Shojania KG, Sampson M, Ansari MT, Ji J, Doucette S, Moher D. How quickly do systematic reviews go out of date? A survival analysis. Ann Intern Med. 2007;147(4):224-33.
15. Elliott JH, Synnot A, Turner T, Simmonds M, Akl EA, McDonald S, Salanti G, Meerpohl J, MacLehose H, Hilton J, Tovey D, Shemilt I, Thomas J. Living systematic review: 1. Introduction-the why, what, when, and how. J Clin Epidemiol. 2017;91:23-30.
16. Aum S, Choe S. srBERT: automatic article classification model for systematic review using BERT. Syst Rev. 2021;10(1):285.
17. Stansfield C, Stokes G, Thomas J. Applying machine classifiers to update searches: Analysis from two case studies. Res Synth Methods. 2022;13(1):121-33.
18. Verdugo-Paiva F, Vergara C, Avila C, Castro J, Cid J, Contreras V, Jara I, Jimenez V, Lee MH, Munoz M, Rojas-Gomez AM, Roson-Rodriguez P, Serrano-Arevalo K, Silva-Ruz I, Vasquez-Laval J, Zambrano-Achig P, Zavadzki G, Rada G. COVID-19 L.OVE repository is highly comprehensive and can be used as a single source for COVID-19 studies. J Clin Epidemiol. 2022.
19. Thomas J. Diffusion of innovation in systematic review methodology: Why is study selection not yet assisted by automation? OA Evidence-Based Medicine. 2013;1(12):6.
20. Harrison H, Griffin SJ, Kuhn I, Usher-Smith JA. Software tools to support title and abstract screening for systematic reviews in healthcare: an evaluation. BMC Med Res Methodol. 2020;20(1):7.
21. van der Mierden S, Tsaioun K, Bleich A, Leenaars CHC. Software tools for literature screening in systematic reviews in biomedical research. ALTEX - Alternatives to animal experimentation. 2019;36(3):508-17.
22. O'Mara-Eves A, Thomas J, McNaught J, Miwa M, Ananiadou S. Using text mining for study identification in systematic reviews: a systematic review of current approaches. Syst Rev. 2015;4(1):5.
23. Thomas J, McDonald S, Noel-Storr A, Shemilt I, Elliott J, Mavergames C, Marshall IJ. Machine learning reduced workload with minimal risk of missing studies: development and evaluation of a randomized controlled trial classifier for Cochrane Reviews. Journal of Clinical Epidemiology. 2021;133:140-51.
24. Muller A, Ames H, Jardim P, Rose C. Machine learning in systematic reviews: Comparing automated text clustering with Lingo3G and human researcher categorization in a rapid review. Res Synth Methods. 2021.
25. Tercero-Hidalgo JR, Khan KS, Bueno-Cavanillas A, Fernández-López R, Huete JF, Amezcua-Prieto C, Zamora J, Fernández-Luna JM. Artificial intelligence in COVID-19 evidence syntheses was underutilized, but impactful: a methodological study. Journal of Clinical Epidemiology. 2022;148:124-34.
26. Clark J, Glasziou P, Del Mar C, Bannach-Brown A, Stehlik P, Scott AM. A full systematic review was completed in 2 weeks using automation tools: a case study. J Clin Epidemiol. 2020;121:81-90.
27. Thomas J, McDonald S, Noel-Storr A, Shemilt I, Elliott J, Mavergames C, Marshall IJ. Machine learning reduced workload with minimal risk of missing studies: development and evaluation of a randomized controlled trial classifier for Cochrane Reviews. J Clin Epidemiol. 2021;133:140-51.
28. Jardim PSJ, Rose CJ, Ames HMR, Meneses-Echavez JF, Van de Velde S, Muller AE. Automating risk of bias assessment in systematic reviews: a real-time mixed methods comparison of human researchers to a machine learning system. BMC Med Res Methodol. in press.
29. Kearns MJ, Valiant LG. Cryptographic limitations on learning Boolean formulae and finite automata. In: Hanson SJ, Remmele W, Rivest RL, editors. Machine Learning: From Theory to Applications: Cooperative Research at Siemens and MIT. Berlin, Heidelberg: Springer Berlin Heidelberg; 1993. p. 29-49.
30. Sterne JA, Hernán MA, Reeves BC, Savović J, Berkman ND, Viswanathan M, Henry D, Altman DG, Ansari MT, Boutron I, Carpenter JR, Chan A-W, Churchill R, Deeks JJ, Hróbjartsson A, Kirkham J, Jüni P, Loke YK, Pigott TD, Ramsay CR, Regidor D, Rothstein HR, Sandhu L, Santaguida PL, Schünemann HJ, Shea B, Shrier I, Tugwell P, Turner L, Valentine JC, Waddington H, Waters E, Wells GA, Whiting PF, Higgins JP. ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. BMJ. 2016;355:i4919.
31. Shea BJ, Reeves BC, Wells G, Thuku M, Hamel C, Moran J, Moher D, Tugwell P, Welch V, Kristjansson E, Henry DA. AMSTAR 2: a critical appraisal tool for systematic reviews that include randomised or non-randomised studies of healthcare interventions, or both. BMJ. 2017;358:j4008.