
Prediction of Forest Fire Risk for Artillery Military
Training using Weighted Support Vector Machine
for imbalanced data
Ji Hyun Nam 

Center for Army Analysis and Simulation, ROK Army HQs
Jongmin Mun 

Yonsei University
Seongil Jo 

Inha University
Jaeoh Kim  (  jaeoh.k@inha.ac.kr )

Inha University

Article

Keywords:

Posted Date: June 14th, 2022

DOI: https://doi.org/10.21203/rs.3.rs-1736556/v1

License:   This work is licensed under a Creative Commons Attribution 4.0 International License.  
Read Full License

https://doi.org/10.21203/rs.3.rs-1736556/v1
mailto:jaeoh.k@inha.ac.kr
https://doi.org/10.21203/rs.3.rs-1736556/v1
https://creativecommons.org/licenses/by/4.0/


Prediction of Forest Fire Risk for Artillery Military

Training using Weighted Support Vector Machine for

imbalanced data
Ji Hyun Nam1, Jongmin Mun2, Seongil Jo*3, and Jaeoh Kim†4

1Center for Army Analysis and Simulation, ROKA HQs
2Department of Statistics and Data Science, Yonsei University
3Department of Statistics, Inha University
4Department of Data Science, Inha University

ABSTRACT

South Korea has been in a truce with North Korea since 1953, and conventional artillery firing training are still needed

considering its geopolitical location. Based on the weather condition, the decision is made whether to conduct artillery training,

which might cause forest fires. Wildfires caused by military training not only devastate forests but also worsen public opinion on

national defense. While forest fires triggered by artillery training cause substantial damage, the number of occurrences is very

low, making it difficult to construct a prediction model in a general manner. In this paper, the weighted support vector machine

for imbalanced data is applied to predict the risk of forest fire due to artillery firing training. We employ an over-sampling

technique based on a probability distribution for imbalanced data and applied a weighted support vector machine algorithm that

enforces a misclassification cost of the minority class. This study not only considerably reduces the probability of forest fires

occurring during conventional artillery fire training in the Republic of Korea Army (ROKA) but also encourages the development

of practical approaches for wildfires prediction in countries with climates similar to the Korean Peninsula. Furthermore, our

proposed method can contribute to the study of the classification model for various imbalanced data. Through Monte Carlo

simulations, we demonstrate that our proposed method achieves significantly higher accuracy than traditional methods.

INTRODUCTION

Wildfires are one of the most devastating natural disasters that have a major impact on the ecosystem and economy. Wildfires

are mostly caused by humans, such as campfires left unattended, the burning of debris, equipment use and malfunctions,

inadvertently discarded cigarettes, and intentional acts of arson, among which unexpected causes are found. Over the past few

years, not a few wildfires have been reported in South Korea due to the military artillery training. South and North Korea are

technically still at war and have been in a truce since 1953. Considering the geopolitical location, conventional artillery firing

training is still required. The artillery military training is planned in advance through sufficient deliberation and decision-making

process. The process also takes into consideration the weather conditions on the day of the training. Nevertheless, each year,

training sessions cause several forest fires that cause catastrophic environmental damage. Wildfires caused by military training

not only devastate forests but also worsen public opinion on national defense. This deterioration of public opinion restricts the

military training of the Republic of Korea Army (ROKA) to protect liberal democracy.

Methods for predicting forest fire risk have been studied in various ways. Traditional field-survey methods, such as Canadian

Forest Fire Weather Index (FWI), are among the most widely used index for wildfire prediction. The index considers six

components(Fine Fuel Moisture Code, Duff Moisture Code, Drought Code, Initial Spread Index, Buildup Index, Fire Weather

Index, Daily Severity Rating) that account for the effects of the fuel moisture and weather conditions on fire behavior. Several

organizations [1, 2] around the world adopted the FWI system. Besides FWI, there are many other fire risk index systems

such as National Fire Danger Rating System (NFDRS), Forest Fire Danger Index (FFDI), and Grassland Fire Danger Index

(GFDI). The main drawback of these systems is that they use empirically derived features and equations [3, 4, 5]. In forest fire

prediction, it is extremely complicated to derive a precise mathematical model explaining the complex relationship between

variables, and thus several approximations are used[6]. Over the last several years, data-driven approaches have proven to be

extremely useful in vast applications [7, 8, 9, 10, 11, 12] including forest fire predictions. [10] used artificial neural network and

logistic regression to forecast the fire risk. [11] provided insight into the use of Random Forest (RF), Boosting Regression Trees

(BRT), and Support Vector Machines (SVM) for wildfire risk assessment. Recently several studies exploited deep learning

*Co-corresponding author: Associate Professor, Department of Statistics, Inha University. E-mail: statjs@inha.ac.kr
†Corresponding author: Assistant Professor, Department of Data Science, Inha University. E-mail: jaeoh.k@inha.ac.kr

1



based methods for forest fire prediction [13, 14, 15].

Because of the accumulation of meteorological massive data and advanced computational capabilities to properly handle

them, data-driven approaches, such as machine learning algorithms, particularly classification methods, are very beneficial in

predicting wildfires. However, most machine learning algorithms are developed under the assumption that the underlying data

have a similar number of observations within each class. In practice, however, there are many cases when the distribution of

classes is skewed the aforementioned assumption is often no longer valid. Many binary categorical data in the real world are

collected and stored as disproportionate data with significant differences in the populations of the two groups. For example,

signals and images collected by military alert systems are mostly normal or animal signals, and few anomalies such as enemy

infiltration are collected. In addition, in the case of diagnostic tests for certain diseases, most of the test results are negative,

while positive patients are collected very rarely. In such cases, accurate prediction of minority groups is more important

than misclassification of minority groups. The conventional classification methods have a problem of greatly reducing the

classification accuracy of minority groups because the classifier is biased toward the majority to increase the overall classification

accuracy. The data with skewed distribution of classes is called imbalanced data[16, 17].

Imbalanced data is a problem that occurs in a wide variety of fields[18, 19, 20, 21, 22, 23, 24]. Many practical cases

of imbalanced data in these fields have motivated the development of various methodologies[25, 26, 27, 28, 29, 30, 31, 32]

that address the class bias issues. [33] provided deep analyses of learning rate from skewed data for neural network training.

[16] reviewed metrics and algorithm-level approaches for imbalanced data. [32] contributes an in-depth insight into intrinsic

characteristics of data. Imbalanced data learning algorithms mostly employ one of three strategies: data augmentation-based

methods, algorithm-based methods, and hybrid methods. Data augmentation methods take a data pre-processing approach and

focus on balancing the data by modifying the underlying distribution of the classes. After this pre-processing, the balanced

data is then fed into classical machine learning algorithms. The balancing can be achieved via under-sampling the majority

classes, or over-sampling the minority classes, or using combination of these two methods. In general over-sampling methods

increases the total dataset size and thus increases training time. Moreover, it can cause over-fitting to the current training dataset,

and the trained model might not generalize well on new, unseen data [34]. Therefore over-sampling needs to be done in an

intelligent manner. One of the widely used over-sampling method is the Synthetic Minority Oversampling Technique (SMOTE)

[25]. Instead of merely replicating an existing minority class instances, the SMOTE applies linear interpolation to them and

synthetically generates new minority class samples. Han et al [35] introduced a modified version of SMOTE which limits

generation of additional samples to near the borderline of the class, in which the classification between the classes becomes

more difficult. Bunkhumpornpat et al [27] proposed safe-region-SMOTE which synthesizes minority classes by introducing the

safe region, which considers how many majority samples are nearby. Near-Miss algorithm was proposed by Mani et al [36]. The

algorithm uses K-nearest neighbors and considers distance from the minority sample to determine the removal of the majority

sample. Beckmann et al [37] introduced another k-nearest neighbors based method called KNN-Und that removes majority

class samples based also on the count of neighbors. Barandel et al [38] used K-nearest neighbors to discard misclassified

samples from the majority class. Kubat et al [29] proposed One-sided selection method using Tomek links [22]. Algorithm

level methods do not modify the data distribution but instead the decision algorithm is designed such that more attention is

given to the minority classes. Typically these algorithms introduce penalty or weight term to decrease the bias towards majority

class. Cost-sensitive learning methods take into account the cost of misclassification. Turney et al [39] proposed ICET which

uses misclassification cost to evaluate fitness function of genetic algorithm. Ling et al [40] designed decision tree algorithm

with misclassification cost. Hybrid methods are combinations of data-level and algorithm-level methods applied to imbalanced

data to decrease the bias towards the majority classes. Liu et al [41] designed hybrid algorithms, namely EasyEnsemble and

BalanceCascade, which use combination of under-sampling and ensemble learning to tackle imbalanced data classification

task. Ramentol et al [31], Gao et al [42], Alberto et al [43] proposed several hybrid methods based on SMOTE algorithm.

SMOTEBoost introduced by Chawla et al [44] uses combinations sampling techniques and ensemble methods. Mease et al [45]

developed JOUS-Boost algorithm using AdaBoost with over/under-sampling methods.

The purpose of this study is to develop a prediction model for the forest fires that often occur during the artillery fire training

of in South Korea using machine learning methods. Forest fires triggered by training cause considerable damage, but the number

of occurrences is relatively very small, making it difficult to construct a general prediction model. We consider the forest fire

prediction problem, which often occurs during the artillery fire training, as a classification of imbalanced data and propose the

following two-step method. First, the case of forest fires is set as a minority class, and the majority class and the minority class

are artificially evenly matched by employing an over-sampling technique based on a probability distribution of the minority

data. In the second step, we use a weighted SVM that enforces a misclassification cost of minority class. The contribution of our

research is as follows. This study contributes to significantly reducing the probability of forest fires during the artillery military

training of the ROKA. It can also lessen forest fire catastrophes, while simultaneously considering reducing the numerous

adverse effects that the Korean Army should have endured due to forest fires caused by artillery military training. Second, it

contributes to encouraging the development of practical approaches for forest fire prediction in regions with a climate similar
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Table 1. Performance comparison for linear SVM, Kernel SVM and GC-WSVM.

metric GC-WSVM Linear SVM Kernel SVM

g-mean 0.891 (0.017) 0 (NaN) 0.148 (0.097)

sensitivity 0.886 (0.033) 0 (NaN) 0.079 (0.063)

specificity 0.901 (0.014) 1 (NaN) 0.997 (0.002)

The numbers in parentheses are standard errors.

to that of the Korean Peninsula. The Korean Peninsula has a moderate temperate climate zone that is suitable for research in

various regions. Finally, our proposed method can facilitate the study of classification models for various imbalanced data.

RESULT

This section presents and interprets the result of applying the proposed method to the artillery firing training dataset which is

described in the method section. We compared linear support vector machine (linear SVM), kernel support vector machine

(kernel SVM) and Gaussian mixture Clustering Weighted SVM (GC-WSVM), which will be described in detail in the next

section. We have used R packages for experiments; mclust for clustering using Gaussian mixture model (GMC), mvtnorm for

multivariate normal random sample generation, e1071 for linear and kernel SVM, WeightSVM for weighted SVM, and caret for

5-fold cross validation. All experiments were conducted with 2.8 GHz Intel Core i7 quad-core processor (4558U) and 16GB

RAM.

G-mean, which is the geometric mean of specificity and sensitivity, was used as the metric for the performance of the

classifying algorithm. Since the specificity represents the ability to capture the majority class and the sensitivity represents

the ability to identify the minority class, the g-mean successfully evaluates whether the algorithm has balanced classification

performance for both classes. Instead of separating the original dataset into two parts, namely the training dataset and test

dataset, we adopted 5-fold cross-validation for evaluating the g-mean. This was because the number of samples in the minority

class was too small, so the complete exclusion of the whole test dataset from the training process would have resulted in poor

training of the algorithm. In each fold, 80% of the dataset was used for training and 20% was used for g-mean evaluation.

Within that 80% of the training dataset, we again conducted 5-fold cross validation for hyperparameter tuning. We repeated

one hundred times of the procedure explained above, which resulted in one hundred different splittings. This Monte Carlo

simulation was conducted in purpose of reducing the volatility produced by random splitting of 5-fold cross validation when

calculating the performance metric, thus helping us to check the performance more clearly. This process also allows us to see

the standard error of the algorithms, which represents the generalization ability of the algorithms to the new dataset. We present

the mean and standard deviation of the resulting g-means, specificities and sensitivities.

Table 1 shows the performance comparison results for all methodologies. In the results, we can see that the proposed method

outperforms competitors. Specifically, the proposed method obtains a high g-mean value with uniformly high sensitivity and

specificity. Linear SVM completely fails to predict the minority class, and results in 1 specificity and 0 sensitivity, which leads

to 0 g-mean. Kernel SVM produced slightly better sensitivity and g-mean than the linear SVM, but its overall performance falls

short of GC-WSVM.

We first tried the conventional linear SVM method. Despite its overly simple assumptions of linear separability, linear

SVM is widely used for the quick prediction of a massive dataset. Since in highly imbalanced datasets there are dozens or

hundreds of times more negative instances than positive instances, the size of the dataset is usually large. SVMs need to be

fitted hundreds of times because of hyperparameter tuning. Thus linear SVM, which has O(n2) time complexity in its modern

implementation, has an advantage in this sense, compared to kernel SVMs whose time complexity is O(n3). Linear SVM has

one hyperparameter, C, which represents the overall penalty for misclassification(former definition and formulation of SVM

is explained in detail in the Method seciton). This hyperparameter was chosen from the range of 2−10 −210 by 5-fold cross

validation, using g-mean as the performance metric. However, the performance of the linear SVM classifier is not so poor that

it cannot be used in practice. We observed a sensitivity of 0 and a specificity of 1, meaning that the linear SVM outputted

non-wildfire for every instance. This behavior results in perfectly predicting all non-wildfire while non of the wildfire cases are

identified. In other words, the linear SVM produces meaningless results in imbalanced classification. As stated before, each

class in a classification problem usually consists of subgroups, and in many cases, these subgroups are not clustered among

themselves, but rather spread out in feature space. This leads to a nonlinear distribution of each class, and with the additional

class imbalance issue, the linear SVM completely fails to find the right decision boundary. We next evaluated kernel SVM with

Gaussian kernel. The method gained its popularity due to its nice performance in nonlinear classification in various types of

datasets. Gaussian kernel is considered almost de facto when using the kernel SVM, in both research and practical data analysis.
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Table 2. Meteorological variables provided by South Korea Meteorological Administration

Meteorological variable Detailed Variable Description Unit

Temperature Temperature at 2m Degree Celsius

Precipitation Accumulative precipitation over last 60 minutes mm

Wind speed Average of 10 minute at 10m altitude m/s

Wind direction Average of 10 minute at 10m altitude Degree

Relative humidity - %

Gaussian kernel requires additional hyperparmeter γ , which is the bandwidth of the kernel that represents the extent to which

the influence of each sample can be reached. As with linear SVM, the hyperparemters were tuned by 5-fold cross-validation,

with the range of γ being 2−10 −210, using g-mean as the performance metric. The results were disappointing with g-mean of

0.148. Although the specificity was very high (0.997), the sensitivity was very low (0.079). So the nonlinear classifying ability

granted by Gaussian kernel has only slightly increased the chance of capturing wildfire cases. This implies that the kernel SVM

is not enough for highly imbalanced classification, and some other tricks need to be applied. Finally, we applied our GC-WSVM

method. This method first creates synthetic minority instances considering the estimated distribution of the minority class

by the GMC method. Then it specifies different costs of misclassifying for each class when applying the kernel SVM. This

resulted in the g-mean of 0.891, with the sensitivity of 0.886 and the specificity of 0.901. This result is meaningful in that

sensitivity and specificity are balanced, since this implies that our proposed algorithm successfully predicts both of wildfire and

non-wildfire cases. Weights were specified using the method explained in Method section. C and γ values were tuned in the

same way as the kernel SVM. The original dataset has the imbalance ratio of 24.6. In our method we treat the oversampling

ratio as a hyperparameter; we tried six oversampling ratio, each of which resulting in the imbalance ratio of 20,15,10,5,2
and 1. For each imbalance ratio, we separately conducted the procedure described above. With the hyperparameters properly

chosen, using 5-fold cross-validation on the imbalance ratio with g-mean metric, we selected the optimal imbalance ratio. The

oversampling ratio resulting in the imbalance ratio of 15 was chosen. It should be noted that despite the random nature of

oversampling, the GC-WSVM has a lower standard error of sensitivity and g-mean than kernel SVM. Since there are only a few

minority training samples in the highly imbalanced dataset, random splitting by 5-fold cross-validation greatly changes the

distribution of the training dataset, resulting in high standard error. GMC SMOTE recovers the distribution of the minority

class, filling in the blank. Consequently, it results in a more stable performance when predicting the minority class.

CONCLUSION

Accurate forecasts of wildfires prevent devastating effects on the economy, save lives and prevent ecological damage. In this

work, we proposed machine learning approach to predict forest fire risk for Artillery training in South Korea. We viewed the

task as a classification of imbalanced data and developed a two-phased method. First, we alleviate the class imbalance by

oversampling the minority class based on a probability distribution. Second, we apply weighted SVM to the balanced dataset.

The proposed method outperforms classical classification methods such as linear SVM and kernel SVM by large margins.

Dozens of divisions and artillery brigades of the ROKA are very qualitative and subjective in making decisions concerning

artillery military training, which can occasionally result in a relatively high risk of forest fires or military training that is below

the necessary level. This study can contribute to reasonably and objectively providing guidelines on whether artillery military

training is conducted. In conclusion, this not only significantly reduces the probability of forest fires during conventional

artillery fire training in the ROKA but also encourages the development of practical approaches for wildfires prediction in

countries with climates similar to the Korean Peninsula. Furthermore, our open-sourced dataset and the proposed method can

contribute to the study of the imbalanced data and design of various classification models.

METHOD

Database

Based on weather observation data from the South Korea Meteorological Administration (SKMA), source data were collected

every hour from 612 observation stations nationwide starting from January 1 2011 to Jan 31 2021. There are two types of

stations, namely Automated Synoptic Observing System (ASOS) and Automatic Weather System (AWS). Observation stations

provide meteorological variables such as temperature, precipitation, wind, and humidity. Geographical location of the stations

are given by elevation, latitude, and longitude, and they are used later to normalize the meteorological variables. The temperature
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Table 3. Sample forest fires reported during the artillery firing training

No Date Location Shooting type Damaged Area

1 31.Oct.2019, 20:44 Goseong-gun, Gangwon-do Red parachute flare 2,500

2 8. Nov.2019, 12:15 Goseong-gun, Gangwon-do Star shell 3,000

3 13.Apr.2017, 20:10 Paju-si, Gyeonggi-do 60mm trench mortar 150,000

4 22.Mar.2018, 13:51 Paju-si, Gyeonggi-do Panzerfaust3 3,300

and humidity data are available at various time intervals: 1 minute, 1 hour, and 1 day. The temperature was expressed as 2m

high instantaneous temperature in degrees Celsius. The wind uses a 10-minute average value, and the wind direction starts at 0

degrees in the north and is expressed at 360 degrees. For precipitation, cumulative precipitation for 1 hour was used, and for

humidity, relative humidity at that time was used. Table 2 describes meteorological variables provided by SKMA.

Observation stations are not uniformly distributed across nationwide and, most of the time, there are few to none stations

nearby the artillery training sites. Hence, measurements provided by the stations are not accurate representation of the weather

conditions of the artillery training sites. To get more precise characteristics of the site, first we apply Barnes interpolation [46] to

get uniformly gridified map of weather measurements at 1km resolution. Next, we use high resolution (30m) Digital Elevation

Model (DEM) of the training sites provided by Shuttle Radar Topography Mission (SRTM) to normalize the meteorological

variables based on elevations. The temperature was increased from the observation station altitude to 0m according to the lapse

rate (0.65/100m), and then gridified to decrease again to the altitude of the 30m high-resolution terrain elevation map.

Dataset

Over the past five years, about 996 artillery training sessions have been reported, of which only 40 have resulted in forest fires.

Of the 40 reported wildfires, 39 occurred in the February-April and October-November periods, with only one in June. Table 3

shows 4 samples that reported forest fire cases. Note that, the remaining 36 cases were not included in the Table 3 due to the

space limitation, but it can be provided upon request. Each training event reports date, time, location, the shooting type and total

damaged area. We build a artillery training forest fire dataset by merging time and location information of the training sessions

with meteorological variable database provided by the SKMA. Each training session has four feature variables: precipitation,

temperature, wind speed, and humidity. We recall that our dataset contains 1036 samples (996 no wildfire and 40 wildfire

occurrence), and the data imbalance ratio is around 1:25.

As can be seen in figure 1, meteorological variables have different distribution ranges. Temperature varies from 20 to 40,

precipitation is 0 to 80, wind speed is 0 to 20, and humidity is 0 to 100. Uniform weights cannot be used during training because

the distribution of each value is different. Therefore, variables were normalized to have a zero mean and a standard deviation

of one. Some temperature values were negative and thus have been converted to absolute temperature. The normalization

parameters are later used again during the validation and testing. From Figure 1, it can be intuitively seen that each of the four

variables has a significant difference in the presence or absence of forest fires. Next, in figure 2 each axis of the the scatter plot

represents humidity, temperature, and wind speed, and the size of the point denotes precipitation. Also, the size of point denotes

precipitation. It is worth noting that a small number of forest fire cases form several clusters, suggesting that a probability

distribution can be derived.

In figure 3 the four-dimensional features of the our data is reduced to two-dimensions using a classical multidimensional

scaling (MDS) technique [47], which is also known as Principal Coordinates Analysis (PCoA), Torgerson Scaling or Torg-

erson–Gower scaling. Although it is not rigorous because the dimension has been reduced, from the location of the red dots

representing 40 forest fire events, it would be reasonable to assume that minority class are generated from multiple clusters

rather than from one probability distribution.

The collected dataset is rare and valuable, and we believe it can be used for a variety of other future research and applications,

such as developing practical approaches for forest fire prediction in countries with climate similar to the Korean Peninsula, and

developing classification algorithms for highly imbalanced data. The dataset and the source code have been approved by the

Republic of Korea Military Security and thus will be publicly available.

Machine Learning Approach

We take a two-step approach as the modeling strategy. Specifically, we first alleviate the class imbalance by oversampling the

minority class, and then we apply WeightSVM to the balanced dataset. We assume that the minority class follows a Gaussian

mixture distribution for the oversampling. This assumption means that data points are divided into several small groups, and
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Figure 1. Meteorological feature distributions for positive and negative cases. Note that negative cases represent wildfire

outbreaks. Positive cases denote absence of wildfire outbreaks.

each small group follows a normal distribution. We estimate the parameters of the Gaussian mixture distribution and generate

new instances from that distribution. In many cases, the assumption is consistent with reality. Rare events, despite the small

number of their occurrences, are often divided into several small subgroups. This is because in some cases, especially when

there are not many predictors, different values of predictors may produce the same result. In many cases of data analysis, we do

not have enough predictors to fully explain the data-generating process. In the cases, even if the underlying data-generating

process does not have clusters, the lack of predictors in data analysis leads to the clustering of rare events. Even if the minority

class does not consist of subgroups, we can approximate most continuous distributions with Gaussian mixture distributions, in

the sense that any smooth density can be approximated with any specific nonzero amount of error by the Gaussian mixture

distribution with enough components [48]. SMOTE algorithm [25], which is widely adopted due to its simplicity, only creates

new instances from a straight line between existing instances. Thus it does not effectively broaden the area of the minority class.

Also, if the minority class consists of subgroups, SMOTE could incorrectly generate new instances in the area between two

subgroups.

Now we briefly explain the Gaussian mixture model (GMM). Let f (x) be the probability density function of the minority

class. The GMM assumes that f (x) is represented as a linear combination of K Gaussian density functions as follows:

f (x) =
K

∑
k=1

πkN (x|µk,Σk),

where N (· | µk,Σk) denotes a Gaussian distribution with mean vector µk and covariance matrix Σk, and πk are mixing

coefficients satisfying the constraints that 0 ≤ πk ≤ 1 and ∑
K
k=1 πk = 1. Note that the mixing coefficients indicate how much of

each Gaussian density contributes to the total distribution. The parameters {µk,Σk,πk} of the GMM are estimated by maximizing

the log-likelihood L (πk,µk,Σk|x1,x2, ...,xn) = ∑
n
i=1 log(∑K

k=1 πkN (xi | µk,Σk)) using the expectation-maximization (EM)

algorithm [49], which is an algorithm to find the maximum likelihood estimates iteratively. Here n denotes the number of

training observations.
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Figure 2. Each axis of the three-dimensional graph represents humidity, temperature, and wind speed, and the size of the point

denotes precipitation. Red dots are 40 events in which forest fires have occurred, and gray dots are marked by selecting 996

random events.

In the second step, we apply WeightSVM, which means we put more weight on the cost of misclassifying the minority class

(wildfire) compared to the misclassification cost of majority class (absence of wildfire). This is in line with the reality, since

a single wildfire in an unprepared situation costs much more than several preparations for wildfires that did not eventually

occur. The misclassification costs are set proportional to the inverse of the number of instances. We briefly provide the formal

definition of WeightSVM. It is a quadratic optimization problem of the form:

min
w,b,ξi

1

2
||w||2 +C

n

∑
i=1

ciξi (1)

s.t. yi(w
T φ(xi)+b)≥ 1−ξi, (2)

ξi ≥ 0 for i = 1, ...,n

Here xi’s and yi’s indicate predictors and label of each training observation, respectively, φ(·) is a nonlinear feature mapping

that gives nonlinearity to the decision boundary of the SVM, and the squared euclidean norm ||w||2 indicates the inverse of

"margin", which is the distance between the decision boundary and each class. The SVM seeks to maximize the margin, to

achieve small generalization error for future data. ci’s determine misclassification cost. We set ci = 1/nma j for wildfire instances

and ci = 1/nmin for non-wildfire instances, where nma j and nmin indicate the number of instances in the majority class and

the minority class, respectively. C controls the total penalty level to misclassification. The nonlinear mapping φ(·) may be

infinite-dimensional, which gives great classification ability to the SVM. Infinite-dimensional feature mapping is only feasible

to calculate when the objective function above is solved by transforming it into its Lagrangian dual form given by

max
n

∑
i=1

αi −
1

2

n

∑
i=1

n

∑
j=1

αiα jyiy jK(xi,x j) (3)

s.t.
N

∑
i=1

αiyi = 0,0 ≤ αi ≤C. (4)
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Figure 3. The dimension of data is reduced to two dimensions using a multidimensional scaling technique. Red dots are 40

events in which forest fires have occurred, and gray dots represent the absence of wildfire outbreaks

Table 4. A confusion matrix for imbalanced problem

Predicted Positive Predicted Negative

Actual Positive TP FN

Actual Negative FP TN

where αi’s are the Lagrangian multipliers and K(xi,x j) = φ(xi)
T φ(x j) is the kernel function that gives the inner product of the

feature mapping of xi and x j. The solution α∗
i of the above problem gives the separating hyperplane g(x)=∑

N
i=1 α∗

i yiK(xi,x j)+b.

The SVM classifies classifies the input vector x as positive instance (wildfire) if g(x)> 0.

Performance metric for imbalanced data

When it comes to imbalanced data classification performance metric, simple error rate is not appropriate, because we can obtain

small error rate just by classifying all instances as the majority class. Therefore typically a confusion matrix (Table 4) is used to

measure the performance of the classifier. In the confusion matrix, minority class has positive label and the majority class has

negative label. Using confusion matrix (Table 4) we define Accuracy, Sensitivity, Specificity, and G-mean as follows:

Accuracy =
T P+T N

T P+T N +FN +FP
(5)

Sensitivity =
T P

T P+T N
(6)

Speci f icity =
T N

FN +FP
(7)

G−mean =
√

Sensitivity×Speci f icity (8)

The specificity measures the ability to capture the majority class and the sensitivity represents the ability to identify the

minority class. G-mean is the geometric mean of specificity and sensitivity, which evaluates whether the algorithm has balanced

classification performance for both classes.

8/11



Acknowledgements

Jaeoh Kim was supported by INHA University Research grant. Seongil Jo was supported by Basic Science Research Pro-

gram through the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-

2020R1C1C1A01013338).

Author contributions statement

N.J., S.J., and J.K. conceived and designed the study. J.K. performed the data management and collection. All analyses

were performed by N.J., S.J., and J.K. This article was drafted by N.J., and J.M. All authors reviewed the manuscript before

submission.

Data and code availability

Data and source code underlying the results presented in this paper can be obtained from the authors upon reasonable request.

Disclosures

The authors declare no competing interests.

References

1. FOGARITI, L. & CATCHPOLE, P. I. W. Adoption vs. adaptation: Lessons from applying the canadian forest fire danger

rating system in new ze. .

2. López, A. S., San-Miguel-Ayanz, J. & Burgan, R. E. Integration of satellite sensor data, fuel type maps and meteorological

observations for evaluation of forest fire risk at the pan-european scale. Int. J. Remote. Sens. 23, 2713–2719 (2002).

3. Van Wagner, C., Forest, P. et al. Development and structure of the canadian forest fireweather index system. In Can. For.

Serv., Forestry Tech. Rep (Citeseer, 1987).

4. Stocks, B. J. et al. The canadian forest fire danger rating system: an overview. The For. Chron. 65, 450–457 (1989).

5. FARSITE, F. M. Fire area simulator-model development and evaluation. Res. Pap. RMRS-RP-4 Revised. Ogden, UT:

USDA For. Serv. Rocky Mountain Res. Stn. (2004).

6. Kloprogge, P., Van der Sluijs, J. P. & Petersen, A. C. A method for the analysis of assumptions in model-based environmental

assessments. Environ. Model. & Softw. 26, 289–301 (2011).

7. Yu, Y. et al. Machine learning–based observation-constrained projections reveal elevated global socioeconomic risks from

wildfire. Nat. communications 13, 1–11 (2022).

8. Crowley, G. et al. Assessing the protective metabolome using machine learning in world trade center particulate exposed

firefighters at risk for lung injury. Sci. reports 9, 1–10 (2019).

9. Thach, N. N. et al. Spatial pattern assessment of tropical forest fire danger at thuan chau area (vietnam) using gis-based

advanced machine learning algorithms: A comparative study. Ecol. informatics 46, 74–85 (2018).

10. Jafari Goldarag, Y., Mohammadzadeh, A. & Ardakani, A. Fire risk assessment using neural network and logistic regression.

J. Indian Soc. Remote. Sens. 44, 885–894 (2016).

11. Rodrigues, M. & De la Riva, J. An insight into machine-learning algorithms to model human-caused wildfire occurrence.

Environ. Model. & Softw. 57, 192–201 (2014).

12. Al-Fugara, A. et al. Wildland fire susceptibility mapping using support vector regression and adaptive neuro-fuzzy

inference system-based whale optimization algorithm and simulated annealing. ISPRS Int. J. Geo-Information 10, 382

(2021).

13. Kim, S., Lee, W., Park, Y.-s., Lee, H.-W. & Lee, Y.-T. Forest fire monitoring system based on aerial image. In 2016 3rd

international conference on information and communication technologies for disaster management (ICT-DM), 1–6 (IEEE,

2016).

9/11



14. Jiao, Z. et al. A deep learning based forest fire detection approach using uav and yolov3. In 2019 1st International

conference on industrial artificial intelligence (IAI), 1–5 (IEEE, 2019).

15. Xu, R., Lin, H., Lu, K., Cao, L. & Liu, Y. A forest fire detection system based on ensemble learning. Forests 12, 217

(2021).

16. He, H. & Garcia, E. A. Learning from imbalanced data. IEEE Transactions on knowledge data engineering 21, 1263–1284

(2009).

17. Japkowicz, N. & Stephen, S. The class imbalance problem: A systematic study. Intell. data analysis 6, 429–449 (2002).

18. Debnath, T. & Nakamoto, T. Predicting individual perceptual scent impression from imbalanced dataset using mass

spectrum of odorant molecules. Sci. reports 12, 1–9 (2022).

19. Sun, Y., Wong, A. K. & Kamel, M. S. Classification of imbalanced data: A review. Int. journal pattern recognition artificial

intelligence 23, 687–719 (2009).

20. Krawczyk, B. Learning from imbalanced data: open challenges and future directions. Prog. Artif. Intell. 5, 221–232 (2016).

21. Haixiang, G. et al. Learning from class-imbalanced data: Review of methods and applications. Expert. systems with

applications 73, 220–239 (2017).

22. Tomek, I. Two modifications of cnn. IEEE Trans. Syst. Man Cybern. 6, 769–772 (1976).

23. Zhao, X.-M., Li, X., Chen, L. & Aihara, K. Protein classification with imbalanced data. Proteins: Struct. function,

bioinformatics 70, 1125–1132 (2008).

24. Khalilia, M., Chakraborty, S. & Popescu, M. Predicting disease risks from highly imbalanced data using random forest.

BMC medical informatics decision making 11, 1–13 (2011).

25. Chawla, N. V., Bowyer, K. W., Hall, L. O. & Kegelmeyer, W. P. Smote: synthetic minority over-sampling technique. J.

artificial intelligence research 16, 321–357 (2002).

26. Sun, Y., Kamel, M. S., Wong, A. K. & Wang, Y. Cost-sensitive boosting for classification of imbalanced data. Pattern

recognition 40, 3358–3378 (2007).

27. Bunkhumpornpat, C., Sinapiromsaran, K. & Lursinsap, C. Safe-level-smote: Safe-level-synthetic minority over-sampling

technique for handling the class imbalanced problem. In Pacific-Asia conference on knowledge discovery and data mining,

475–482 (Springer, 2009).

28. Bekkar, M., Djemaa, H. K. & Alitouche, T. A. Evaluation measures for models assessment over imbalanced data sets. J Inf

Eng Appl 3 (2013).

29. Kubat, M., Matwin, S. et al. Addressing the curse of imbalanced training sets: one-sided selection. In Icml, vol. 97, 179

(Citeseer, 1997).

30. Nguyen, H. M., Cooper, E. W. & Kamei, K. Borderline over-sampling for imbalanced data classification. Int. J. Knowl.

Eng. Soft Data Paradigms 3, 4–21 (2011).

31. Ramentol, E. et al. Smote-frst: a new resampling method using fuzzy rough set theory. In Uncertainty modeling in

knowledge engineering and decision making, 800–805 (World Scientific, 2012).

32. López, V., Fernández, A., García, S., Palade, V. & Herrera, F. An insight into classification with imbalanced data: Empirical

results and current trends on using data intrinsic characteristics. Inf. sciences 250, 113–141 (2013).

33. Anand, R., Mehrotra, K. G., Mohan, C. K. & Ranka, S. An improved algorithm for neural network classification of

imbalanced training sets. IEEE Transactions on Neural Networks 4, 962–969 (1993).

34. Chawla, N. V., Japkowicz, N. & Kotcz, A. Special issue on learning from imbalanced data sets. ACM SIGKDD explorations

newsletter 6, 1–6 (2004).

35. Han, H., Wang, W.-Y. & Mao, B.-H. Borderline-smote: a new over-sampling method in imbalanced data sets learning. In

International conference on intelligent computing, 878–887 (Springer, 2005).

10/11



36. Mani, I. & Zhang, I. knn approach to unbalanced data distributions: a case study involving information extraction. In

Proceedings of workshop on learning from imbalanced datasets, vol. 126, 1–7 (ICML, 2003).

37. Beckmann, M., Ebecken, N. F., de Lima, B. S. P. et al. A knn undersampling approach for data balancing. J. Intell. Learn.

Syst. Appl. 7, 104 (2015).

38. Barandela, R., Valdovinos, R. M., Sánchez, J. S. & Ferri, F. J. The imbalanced training sample problem: Under or over

sampling? In Joint IAPR international workshops on statistical techniques in pattern recognition (SPR) and structural and

syntactic pattern recognition (SSPR), 806–814 (Springer, 2004).

39. Turney, P. D. Cost-sensitive classification: Empirical evaluation of a hybrid genetic decision tree induction algorithm. J.

artificial intelligence research 2, 369–409 (1994).

40. Ling, C. X., Yang, Q., Wang, J. & Zhang, S. Decision trees with minimal costs. In Proceedings of the twenty-first

international conference on Machine learning, 69 (2004).

41. Liu, X.-Y., Wu, J. & Zhou, Z.-H. Exploratory undersampling for class-imbalance learning. IEEE Transactions on Syst.

Man, Cybern. Part B (Cybernetics) 39, 539–550 (2008).

42. Gao, M., Hong, X., Chen, S. & Harris, C. J. A combined smote and pso based rbf classifier for two-class imbalanced

problems. Neurocomputing 74, 3456–3466 (2011).

43. Fernández, A., del Jesus, M. J. & Herrera, F. Hierarchical fuzzy rule based classification systems with genetic rule selection

for imbalanced data-sets. Int. J. Approx. Reason. 50, 561–577 (2009).

44. Chawla, N. V., Lazarevic, A., Hall, L. O. & Bowyer, K. W. Smoteboost: Improving prediction of the minority class in

boosting. In European conference on principles of data mining and knowledge discovery, 107–119 (Springer, 2003).

45. Mease, D., Wyner, A. J. & Buja, A. Boosted classification trees and class probability/quantile estimation. J. Mach. Learn.

Res. 8 (2007).

46. Barnes, S. L. A technique for maximizing details in numerical weather map analysis. J. Appl. Meteorol. Climatol. 3,

396–409 (1964).

47. Cox, M. A. & Cox, T. F. Multidimensional scaling. In Handbook of data visualization, 315–347 (Springer, 2008).

48. Goodfellow, I. J., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016).

49. Dempster, A. P., Laird, N. M. & Rubin, D. B. Maximum likelihood from incomplete data via the em algorithm. J. Royal

Stat. Soc. Ser. B (Methodological) 39, 1–22 (1977).

11/11



Supplementary Files

This is a list of supplementary �les associated with this preprint. Click to download.

PredictionofForestFireRiskforArtilleryTrainingusingWeightedSupportVectorMachineforimbalanceddata.zip

https://assets.researchsquare.com/files/rs-1736556/v1/459be63c9a897df0de9418d4.zip

