A, C., Tc, S., C, O., L, G., C, C., D, G., Ts, S., Tm, M., Sm, P., I, C., M, C., G, B., & H, N. (2016). TCGAbiolinks: An R/Bioconductor package for integrative analysis of TCGA data. Nucleic Acids Research, 44(8). https://doi.org/10.1093/nar/gkv1507
Agarwal, V., Bell, G. W., Nam, J.-W., & Bartel, D. P. (2015). Predicting effective microRNA target sites in mammalian mRNAs. ELife, 4, e05005. https://doi.org/10.7554/eLife.05005
Bedre, R. (2020). bioinfokit: Bioinformatics data analysis and visualization toolkit. Zenodo. https://doi.org/10.5281/zenodo.3747737
Chen, E. Y., Tan, C. M., Kou, Y., Duan, Q., Wang, Z., Meirelles, G. V., Clark, N. R., & Ma’ayan, A. (2013). Enrichr: Interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics, 14(1), 128. https://doi.org/10.1186/1471-2105-14-128
Cheng, X., Xu, X., Chen, D., Zhao, F., & Wang, W. (2019). Therapeutic potential of targeting the Wnt/β-catenin signaling pathway in colorectal cancer. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 110, 473–481. https://doi.org/10.1016/j.biopha.2018.11.082
Danielsen, S. A., Cekaite, L., Ågesen, T. H., Sveen, A., Nesbakken, A., Thiis-Evensen, E., Skotheim, R. I., Lind, G. E., & Lothe, R. A. (2011). Phospholipase C Isozymes Are Deregulated in Colorectal Cancer – Insights Gained from Gene Set Enrichment Analysis of the Transcriptome. PLOS ONE, 6(9), e24419. https://doi.org/10.1371/journal.pone.0024419
Del Rio, M., Molina, F., Bascoul-Mollevi, C., Copois, V., Bibeau, F., Chalbos, P., Bareil, C., Kramar, A., Salvetat, N., Fraslon, C., Conseiller, E., Granci, V., Leblanc, B., Pau, B., Martineau, P., & Ychou, M. (2007). Gene Expression Signature in Advanced Colorectal Cancer Patients Select Drugs and Response for the Use of Leucovorin, Fluorouracil, and Irinotecan. Journal of Clinical Oncology, 25(7), 773–780. https://doi.org/10.1200/JCO.2006.07.4187
Di Nicolantonio, F., Vitiello, P. P., Marsoni, S., Siena, S., Tabernero, J., Trusolino, L., Bernards, R., & Bardelli, A. (2021). Precision oncology in metastatic colorectal cancer—From biology to medicine. Nature Reviews. Clinical Oncology, 18(8), 506–525. https://doi.org/10.1038/s41571-021-00495-z
Fu, Y., Liu, X., Chen, Q., Liu, T., Lu, C., Yu, J., Miao, Y., & Wei, J. (2018). Downregulated miR-98-5p promotes PDAC proliferation and metastasis by reversely regulating MAP4K4. Journal of Experimental & Clinical Cancer Research, 37(1), 130. https://doi.org/10.1186/s13046-018-0807-2
He, W., Wong, S. C., Ma, B., Ng, S. S., Lam, M. Y., Chan, C. M., Au, T. C., Chan, J. K., & Chan, A. T. (2011). The expression of frizzled-3 receptor in colorectal cancer and colorectal adenoma. Journal of Clinical Oncology, 29(4_suppl), 444–444. https://doi.org/10.1200/jco.2011.29.4_suppl.444
Høydahl, Ø., Edna, T.-H., Xanthoulis, A., Lydersen, S., & Endreseth, B. H. (2020). Long-term trends in colorectal cancer: Incidence, localization, and presentation. BMC Cancer, 20(1), 1077. https://doi.org/10.1186/s12885-020-07582-x
Ji, Y., Lv, J., Sun, D., & Huang, Y. (2022). Therapeutic strategies targeting Wnt/β‑catenin signaling for colorectal cancer (Review). International Journal of Molecular Medicine, 49(1). https://doi.org/10.3892/ijmm.2021.5056
Jiang, F., Yu, Q., Chu, Y., Zhu, X., Lu, W., Liu, Q., & Wang, Q. (2019). MicroRNA-98-5p inhibits proliferation and metastasis in non-small cell lung cancer by targeting TGFBR1. International Journal of Oncology, 54(1), 128–138. https://doi.org/10.3892/ijo.2018.4610
Kanehisa, M., Furumichi, M., Sato, Y., Ishiguro-Watanabe, M., & Tanabe, M. (2021). KEGG: Integrating viruses and cellular organisms. Nucleic Acids Research, 49(D1), D545–D551. https://doi.org/10.1093/nar/gkaa970
Kim, B.-K., Yoo, H.-I., Kim, I., Park, J., & Kim Yoon, S. (2015). FZD6 expression is negatively regulated by miR-199a-5p in human colorectal cancer. BMB Reports, 48(6), 360–366. https://doi.org/10.5483/bmbrep.2015.48.6.031
L, N., P, A., & Vs, L. (2015). Targeting Wnt signaling in colorectal cancer. A Review in the Theme: Cell Signaling: Proteins, Pathways and Mechanisms. American Journal of Physiology. Cell Physiology, 309(8). https://doi.org/10.1152/ajpcell.00117.2015
Li, C., Nguyen, V., Clark, K. N., Zahed, T., Sharkas, S., Filipp, F. V., & Boiko, A. D. (2019). Down-regulation of FZD3 receptor suppresses growth and metastasis of human melanoma independently of canonical WNT signaling. Proceedings of the National Academy of Sciences, 116(10), 4548–4557. https://doi.org/10.1073/pnas.1813802116
Li, W., Wang, J., Zhang, D., Zhang, X., Xu, J., & Zhao, L. (2019). MicroRNA-98 targets HMGA2 to inhibit the development of retinoblastoma through mediating Wnt/β-catenin pathway. Cancer Biomarkers: Section A of Disease Markers, 25(1), 79–88. https://doi.org/10.3233/CBM-182315
Li, X., Ortiz, M. A., & Kotula, L. (2020). The physiological role of Wnt pathway in normal development and cancer. Experimental Biology and Medicine, 245(5), 411–426. https://doi.org/10.1177/1535370220901683
Licursi, V., Conte, F., Fiscon, G., & Paci, P. (2019). MIENTURNET: An interactive web tool for microRNA-target enrichment and network-based analysis. BMC Bioinformatics, 20(1), 545. https://doi.org/10.1186/s12859-019-3105-x
Marisa, L., Reyniès, A. de, Duval, A., Selves, J., Gaub, M. P., Vescovo, L., Etienne-Grimaldi, M.-C., Schiappa, R., Guenot, D., Ayadi, M., Kirzin, S., Chazal, M., Fléjou, J.-F., Benchimol, D., Berger, A., Lagarde, A., Pencreach, E., Piard, F., Elias, D., … Boige, V. (2013). Gene Expression Classification of Colon Cancer into Molecular Subtypes: Characterization, Validation, and Prognostic Value. PLOS Medicine, 10(5), e1001453. https://doi.org/10.1371/journal.pmed.1001453
Mi, B., Li, Q., Li, T., Liu, G., & Sai, J. (2020). High miR-31-5p expression promotes colon adenocarcinoma progression by targeting TNS1. Aging (Albany NY), 12(8), 7480–7490. https://doi.org/10.18632/aging.103096
Moazzendizaji, S., Sevbitov, A., Ezzatifar, F., Jalili, H. R., Aalii, M., Hemmatzadeh, M., Aslani, S., Navashenaq, J. G., Safari, R., Hosseinzadeh, R., Rahmany, M. R., & Mohammadi, H. (n.d.). microRNAs: Small molecules with a large impact on colorectal cancer. Biotechnology and Applied Biochemistry, n/a(n/a). https://doi.org/10.1002/bab.2255
Nagy, Á., Munkácsy, G., & Győrffy, B. (2021). Pancancer survival analysis of cancer hallmark genes. Scientific Reports, 11, 6047. https://doi.org/10.1038/s41598-021-84787-5
Nie, X., Liu, H., Liu, L., Wang, Y.-D., & Chen, W.-D. (2020). Emerging Roles of Wnt Ligands in Human Colorectal Cancer. Frontiers in Oncology, 10, 1341. https://doi.org/10.3389/fonc.2020.01341
Paraskevopoulou, M. D., Georgakilas, G., Kostoulas, N., Vlachos, I. S., Vergoulis, T., Reczko, M., Filippidis, C., Dalamagas, T., & Hatzigeorgiou, A. G. (2013). DIANA-microT web server v5.0: Service integration into miRNA functional analysis workflows. Nucleic Acids Research, 41(Web Server issue), W169–W173. https://doi.org/10.1093/nar/gkt393
Patel, S., Alam, A., Pant, R., & Chattopadhyay, S. (2019). Wnt Signaling and Its Significance With in the Tumor Microenvironment: Novel Therapeutic Insights. Frontiers in Immunology, 10, 2872. https://doi.org/10.3389/fimmu.2019.02872
Piawah, S., & Venook, A. P. (2019a). Targeted therapy for colorectal cancer metastases: A review of current methods of molecularly targeted therapy and the use of tumor biomarkers in the treatment of metastatic colorectal cancer. Cancer, 125(23), 4139–4147. https://doi.org/10.1002/cncr.32163
Piawah, S., & Venook, A. P. (2019b). Targeted therapy for colorectal cancer metastases: A review of current methods of molecularly targeted therapy and the use of tumor biomarkers in the treatment of metastatic colorectal cancer. Cancer, 125(23), 4139–4147. https://doi.org/10.1002/cncr.32163
Ritchie, M. E., Phipson, B., Wu, D., Hu, Y., Law, C. W., Shi, W., & Smyth, G. K. (2015). Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Research, 43(7), e47–e47. https://doi.org/10.1093/nar/gkv007
Robinson, M. D., McCarthy, D. J., & Smyth, G. K. (2010). edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics (Oxford, England), 26(1), 139–140. https://doi.org/10.1093/bioinformatics/btp616
Sabates-Bellver, J., Van der Flier, L. G., de Palo, M., Cattaneo, E., Maake, C., Rehrauer, H., Laczko, E., Kurowski, M. A., Bujnicki, J. M., Menigatti, M., Luz, J., Ranalli, T. V., Gomes, V., Pastorelli, A., Faggiani, R., Anti, M., Jiricny, J., Clevers, H., & Marra, G. (2007). Transcriptome profile of human colorectal adenomas. Molecular Cancer Research: MCR, 5(12), 1263–1275. https://doi.org/10.1158/1541-7786.MCR-07-0267
Sala, C. F., Formenti, E., Terstappen, G. C., & Caricasole, A. (2000). Identification, gene structure, and expression of human frizzled-3 (FZD3). Biochemical and Biophysical Research Communications, 273(1), 27–34. https://doi.org/10.1006/bbrc.2000.2882
Sanchez-Vega, F., Mina, M., Armenia, J., Chatila, W. K., Luna, A., La, K. C., Dimitriadoy, S., Liu, D. L., Kantheti, H. S., Saghafinia, S., Chakravarty, D., Daian, F., Gao, Q., Bailey, M. H., Liang, W.-W., Foltz, S. M., Shmulevich, I., Ding, L., Heins, Z., … Schultz, N. (2018). Oncogenic Signaling Pathways in The Cancer Genome Atlas. Cell, 173(2), 321-337.e10. https://doi.org/10.1016/j.cell.2018.03.035
Schatoff, E. M., Leach, B. I., & Dow, L. E. (2017). WNT Signaling and Colorectal Cancer. Current Colorectal Cancer Reports, 13(2), 101–110. https://doi.org/10.1007/s11888-017-0354-9
Siegel, R. L., Miller, K. D., Fuchs, H. E., & Jemal, A. (2021). Cancer Statistics, 2021. CA: A Cancer Journal for Clinicians, 71(1), 7–33. https://doi.org/10.3322/caac.21654
Smith, A. J., Sompel, K. M., Elango, A., & Tennis, M. A. (2021). Non-Coding RNA and Frizzled Receptors in Cancer. Frontiers in Molecular Biosciences, 8, 879. https://doi.org/10.3389/fmolb.2021.712546
Sompel, K., Elango, A., Smith, A. J., & Tennis, M. A. (2021). Cancer chemoprevention through Frizzled receptors and EMT. Discover Oncology, 12(1), 32. https://doi.org/10.1007/s12672-021-00429-2
Tian, L., Chen, M., He, Q., Yan, Q., & Zhai, C. (2020). MicroRNA‑199a‑5p suppresses cell proliferation, migration and invasion by targeting ITGA3 in colorectal cancer. Molecular Medicine Reports, 22(3), 2307–2317. https://doi.org/10.3892/mmr.2020.11323
To, K. K., Tong, C. W., Wu, M., & Cho, W. C. (2018). MicroRNAs in the prognosis and therapy of colorectal cancer: From bench to bedside. World Journal of Gastroenterology, 24(27), 2949–2973. https://doi.org/10.3748/wjg.v24.i27.2949
Ueno, K., Hirata, H., Hinoda, Y., & Dahiya, R. (2013a). Frizzled homolog proteins, microRNAs and Wnt signaling in cancer. International Journal of Cancer, 132(8), 1731–1740. https://doi.org/10.1002/ijc.27746
Ueno, K., Hirata, H., Hinoda, Y., & Dahiya, R. (2013b). Frizzled homolog proteins, microRNAs and Wnt signaling in cancer. International Journal of Cancer, 132(8), 1731–1740. https://doi.org/10.1002/ijc.27746
Ueno, K., Hirata, H., Hinoda, Y., & Dahiya, R. (2013c). Frizzled homolog proteins, microRNAs and Wnt Signaling in Cancer. International Journal of Cancer. Journal International Du Cancer, 132(8), 1731–1740. https://doi.org/10.1002/ijc.27746
Wang, Q., Zhu, L., Jiang, Y., Xu, J., Wang, F., & He, Z. (2017). MiR‑219‑5p suppresses the proliferation and invasion of colorectal cancer cells by targeting calcyphosin. Oncology Letters, 13(3), 1319–1324. https://doi.org/10.3892/ol.2017.5570
Wang, X., Li, Y., Gong, B., Zhang, K., Ma, Y., & Li, Y. (2021). MiR-199b-5p enhances the proliferation of medullary thymic epithelial cells via regulating Wnt signaling by targeting Fzd6. Acta Biochimica et Biophysica Sinica, 53(1), 36–45. https://doi.org/10.1093/abbs/gmaa145
Wang, Z., Han, Y., Xing, X., Jiang, C., Guo, H., & Guan, Y. (2021). MiRNA-98 inhibits ovarian carcinoma cell proliferation, migration and invasion via targeting SALL4. Minerva Medica, 112(1), 154–155. https://doi.org/10.23736/S0026-4806.19.06179-2
Wong, S. C. C., He, C. W., Chan, C. M. L., Chan, A. K. C., Wong, H. T., Cheung, M. T., Luk, L. L. Y., Au, T. C. C., Chiu, M. K., Ma, B. B. Y., & Chan, A. T. C. (2013). Clinical Significance of Frizzled Homolog 3 Protein in Colorectal Cancer Patients. PLOS ONE, 8(11), e79481. https://doi.org/10.1371/journal.pone.0079481
Xia, M., Liu, C.-J., Zhang, Q., & Guo, A.-Y. (2019). GEDS: A Gene Expression Display Server for mRNAs, miRNAs and Proteins. Cells, 8(7), 675. https://doi.org/10.3390/cells8070675
Xie, Y.-H., Chen, Y.-X., & Fang, J.-Y. (2020). Comprehensive review of targeted therapy for colorectal cancer. Signal Transduction and Targeted Therapy, 5(1), 1–30. https://doi.org/10.1038/s41392-020-0116-z
Xu, X., Bao, Z., Liu, Y., Ji, J., & Liu, N. (2017). MicroRNA-98 Attenuates Cell Migration and Invasion in Glioma by Directly Targeting Pre-B Cell Leukemia Homeobox 3. Cellular and Molecular Neurobiology, 37(8), 1359–1371. https://doi.org/10.1007/s10571-017-0466-4
Ye, K., Xu, C., & Hui, T. (2019). MiR-34b inhibits the proliferation and promotes apoptosis in colon cancer cells by targeting Wnt/β-catenin signaling pathway. Bioscience Reports, 39(10). https://doi.org/10.1042/BSR20191799
Zeng, C.-M., Chen, Z., & Fu, L. (2018). Frizzled Receptors as Potential Therapeutic Targets in Human Cancers. International Journal of Molecular Sciences, 19(5), E1543. https://doi.org/10.3390/ijms19051543
Zhan, P., Shu, X., Chen, M., Sun, L., Yu, L., Liu, J., Sun, L., Yang, Z., & Ran, Y. (2021). MiR-98-5p inhibits gastric cancer cell stemness and chemoresistance by targeting branched-chain aminotransferases 1. Life Sciences, 276, 119405. https://doi.org/10.1016/j.lfs.2021.119405
Zheng, Y.-F., Luo, J., Gan, G.-L., & Li, W. (2019). Overexpression of microRNA-98 inhibits cell proliferation and promotes cell apoptosis via claudin-1 in human colorectal carcinoma. Journal of Cellular Biochemistry, 120(4), 6090–6105. https://doi.org/10.1002/jcb.27895
American Cancer Society. (n.d.). Key Statistics for Colorectal Cancer. Retrieved from https://www.cancer.org/cancer/colon-rectal-cancer/about/key-statistics.html