[1]
T. R. Cech and J. A. Steitz, “The noncoding RNA revolution-trashing old rules to forge
new ones.,” Cell, vol. 157, no. 1, pp. 77–94, Mar. 2014.
[2]
L. Szabo and J. Salzman, “Detecting circular RNAs: bioinformatic and experimental
challenges,” Nature Reviews Genetics, vol. 17, no. 11, pp. 679–692, Oct. 2016.
[3]
F. Kopp and J. T. Mendell, “Functional Classification and Experimental Dissection
of Long Noncoding RNAs,” Cell, vol. 172, no. 3, pp. 393–407, Jan. 2018.
[4]
R. Fernandez-Leiro and S. H. W. Scheres, “Unravelling biological macromolecules with
cryo-electron microscopy,” Nature, vol. 537, no. 7620, pp. 339–346, Sep. 2016.
[5]
J. A. Cruz, M.-F. Blanchet, M. J. Boniecki, J. M. Bujnicki, S.-J. Chen, S. Cao, R.
Das, F. Ding, N. V. Dokholyan, S. C. Flores, L. Huang, C. A. Lavender, V. Lisi, F.
Major, K. Mikolajczak, D. J. Patel, A. Philips, T. Puton, J. Santalucia, F. Sijenyi,
T. Hermann, K. M. Rother, M. Rother, A. Serganov, M. Skorupski, T. Soltysinski, P.
Sripakdeevong, I. Tuszyńska, K. M. Weeks, C. Waldsich, M. Wildauer, N. B. Leontis,
and E. Westhof, “RNA-Puzzles: a CASP-like evaluation of RNA three-dimensional structure
prediction.,” RNA, vol. 18, no. 4, pp. 610–625, Apr. 2012.
[6]
Z. Miao, R. W. Adamiak, M.-F. Blanchet, M. J. Boniecki, J. M. Bujnicki, S.-J. Chen,
C. Y. Cheng, G. Chojnowski, F.-C. Chou, P. Cordero, J. A. Cruz, A. R. Ferré-D'Amaré,
R. Das, F. Ding, N. V. Dokholyan, S. Dunin-Horkawicz, W. Kladwang, A. Krokhotin, G.
Lach, M. Magnus, F. Major, T. H. Mann, B. Masquida, D. Matelska, M. Meyer, A. Peselis,
M. Popenda, K. J. Purzycka, A. Serganov, J. Stasiewicz, M. Szachniuk, A. Tandon, S.
Tian, J. Wang, Y. Xiao, X. Xu, J. Zhang, P. Zhao, T. Zok, and E. Westhof, “RNA-Puzzles
Round II: assessment of RNA structure prediction programs applied to three large RNA
structures.,” RNA, vol. 21, no. 6, pp. 1066–1084, Jun. 2015.
[7]
Z. Miao, R. W. Adamiak, M. Antczak, R. T. Batey, A. J. Becka, M. Biesiada, M. J. Boniecki,
J. M. Bujnicki, S.-J. Chen, C. Y. Cheng, F.-C. Chou, A. R. Ferré-D'Amaré, R. Das,
W. K. Dawson, F. Ding, N. V. Dokholyan, S. Dunin-Horkawicz, C. Geniesse, K. Kappel,
W. Kladwang, A. Krokhotin, G. E. Łach, F. Major, T. H. Mann, M. Magnus, K. Pachulska-Wieczorek,
D. J. Patel, J. A. Piccirilli, M. Popenda, K. J. Purzycka, A. Ren, G. M. Rice, J.
Santalucia, J. Sarzynska, M. Szachniuk, A. Tandon, J. J. Trausch, S. Tian, J. Wang,
K. M. Weeks, B. Williams, Y. Xiao, X. Xu, D. Zhang, T. Zok, and E. Westhof, “RNA-Puzzles
Round III: 3D RNA structure prediction of five riboswitches and one ribozyme.,” RNA, vol. 23, no. 5, pp. 655–672, May 2017.
[8]
P. Boccaletto, M. Magnus, C. Almeida, A. Zyła, A. Astha, R. Pluta, B. Bagiński, E.
J. Jankowska, S. Dunin-Horkawicz, T. K. Wirecki, M. J. Boniecki, F. Stefaniak, and
J. M. Bujnicki, “RNArchitecture: a database and a classification system of RNA families,
with a focus on structural information.,” Nucleic Acids Research, vol. 46, no. 1, pp. D202–D205, Jan. 2018.
[9]
T. Puton, L. P. Kozlowski, K. M. Rother, and J. M. Bujnicki, “CompaRNA: a server for
continuous benchmarking of automated methods for RNA secondary structure prediction.,”
Nucleic Acids Research, vol. 42, no. 8, pp. 5403–5406, Apr. 2014.
[10]
S. E. Seemann, J. Gorodkin, and R. Backofen, “Unifying evolutionary and thermodynamic
information for RNA folding of multiple alignments.,” Nucleic Acids Research, vol. 36, no. 20, pp. 6355–6362, Nov. 2008.
[11]
C. Weinreb, A. J. Riesselman, J. B. Ingraham, T. Gross, C. Sander, and D. S. Marks,
“3D RNA and Functional Interactions from Evolutionary Couplings,” Cell, vol. 165, no. 4, pp. 1–14, Oct. 2016.
[12]
E. De Leonardis, B. Lutz, S. Ratz, S. Cocco, R. Monasson, A. Schug, and M. Weigt,
“Direct-Coupling Analysis of nucleotide coevolution facilitates RNA secondary and
tertiary structure prediction,” Nucleic Acids Research, pp. gkv932–12, Sep. 2015.
[13]
F. Pucci and A. Schug, “Shedding light on the dark matter of the biomolecular structural
universe: Progress in RNA 3D structure prediction.,” Methods, Apr. 2019.
[14]
R. Bonneau, C. E. M. Strauss, and D. Baker, “Improving the performance of rosetta
using multiple sequence alignment information and global measures of hydrophobic core
formation,” Proteins: Structure, Function, and Bioinformatics, vol. 43, no. 1, pp. 1–11, Apr. 2001.
[15]
J. J. Trausch, J. G. Marcano-Velázquez, M. M. Matyjasik, and R. T. Batey, “Metal Ion-Mediated
Nucleobase Recognition by the ZTP Riboswitch,” Chem. Biol., vol. 22, no. 7, pp. 1–10, Jun. 2015.
[16]
P. B. Kim, J. W. Nelson, and R. R. Breaker, “An ancient riboswitch class in bacteria
regulates purine biosynthesis and one-carbon metabolism.,” Mol. Cell, vol. 57, no. 2, pp. 317–328, Jan. 2015.
[17]
A. Ren, Y. Xue, A. Peselis, A. Serganov, H. M. Al-Hashimi, and D. J. Patel, “Structural
and Dynamic Basis for Low-Affinity, High-Selectivity Binding of L-Glutamine by the
Glutamine Riboswitch,” Cell Reports, vol. 13, no. 9, pp. 1800–1813, 2015.
[18]
E. Westhof, “The amazing world of bacterial structured RNAs.,” vol. 11, no. 3, p.
108, 2010.
[19]
Z. Weinberg, P. B. Kim, T. H. Chen, S. Li, K. A. Harris, C. E. Lünse, and R. R. Breaker,
“New classes of self-cleaving ribozymes revealed by comparative genomics analysis.,”
Nat. Chem. Biol., vol. 11, no. 8, pp. 606–610, Aug. 2015.
[20]
T. Frickey and A. Lupas, “CLANS: a Java application for visualizing protein families
based on pairwise similarity,” Bioinformatics, vol. 20, no. 18, pp. 3702–3704, Dec. 2004.
[21]
A. R. Ferré-D'Amaré and J. A. Doudna, “Methods to crystallize RNA.,” Curr Protoc Nucleic Acid Chem, vol. 7, no. 1, pp. Unit 7.6–7.6.13, May 2001.
[22]
O. Pikovskaya, A. A. Serganov, A. Polonskaia, A. Serganov, and D. J. Patel, “Preparation
and crystallization of riboswitch-ligand complexes.,” Methods Mol. Biol., vol. 540, no. 9, pp. 115–128, 2009.
[23]
F. E. Reyes, A. D. Garst, and R. T. Batey, “20946787,” Biophysical, Chemical, and Functional Probes of RNA Structure, Interactions and Folding:
Part B, vol. 469, pp. 119–139, 2009.
[24]
C. Weinreb, T. Gross, C. Sander, and D. S. Marks, “3D RNA from evolutionary coupling,”
bioRxiv, pp. 1–16, Oct. 2015.
[25]
H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. N. Shindyalov,
and P. E. Bourne, “The Protein Data Bank.,” Nucleic Acids Research, vol. 28, no. 1, pp. 235–242, Jan. 2000.
[26]
A. Serganov, Y.-R. Yuan, O. Pikovskaya, A. Polonskaia, L. Malinina, A. T. Phan, C.
Höbartner, R. Micura, R. R. Breaker, and D. J. Patel, “Structural basis for discriminative
regulation of gene expression by adenine- and guanine-sensing mRNAs.,” Chem. Biol., vol. 11, no. 12, pp. 1729–1741, Dec. 2004.
[27]
A. Serganov, A. Polonskaia, A. T. Phan, R. R. Breaker, and D. J. Patel, “Structural
basis for gene regulation by a thiamine pyrophosphate-sensing riboswitch.,” Nature, vol. 441, no. 7097, pp. 1167–1171, Jun. 2006.
[28]
P. Bénas, G. Bec, G. Keith, R. Marquet, C. Ehresmann, B. Ehresmann, and P. Dumas,
“The crystal structure of HIV reverse-transcription primer tRNA(Lys,3) shows a canonical
anticodon loop.,” RNA, vol. 6, no. 10, pp. 1347–1355, Oct. 2000.
[29]
K. D. Smith, C. A. Shanahan, E. L. Moore, A. C. Simon, and S. A. Strobel, “Structural
basis of differential ligand recognition by two classes of bis-(3‘-5’)-cyclic dimeric
guanosine monophosphate-binding riboswitches.,” Proceedings of the National Academy of Sciences, vol. 108, no. 19, pp. 7757–7762, May 2011.
[30]
J. J. Trausch and R. T. Batey, “A disconnect between high-affinity binding and efficient
regulation by antifolates and purines in the tetrahydrofolate riboswitch.,” Chem. Biol., vol. 21, no. 2, pp. 205–216, Feb. 2014.
[31]
A. Ren, N. Vušurović, J. Gebetsberger, P. Gao, M. Juen, C. Kreutz, R. Micura, and
D. J. Patel, “Pistol ribozyme adopts a pseudoknot fold facilitating site-specific
in-line cleavage.,” Nat. Chem. Biol., vol. 12, no. 9, pp. 702–708, Sep. 2016.
[32]
E. P. Nawrocki, S. W. Burge, A. Bateman, J. Daub, R. Y. Eberhardt, S. R. Eddy, E.
W. Floden, P. P. Gardner, T. A. Jones, J. Tate, and R. D. Finn, “Rfam 12.0: updates
to the RNA families database.,” Nucleic Acids Research, vol. 43, no. Database issue, pp. D130–7, Jan. 2015.
[33]
A. M. Waterhouse, J. B. Procter, D. M. A. Martin, M. Clamp, and G. J. Barton, “Jalview
Version 2--a multiple sequence alignment editor and analysis workbench.,” Bioinformatics, vol. 25, no. 9, pp. 1189–1191, May 2009.
[34]
R. Das, J. Karanicolas, and D. Baker, “Atomic accuracy in predicting and designing
noncanonical RNA structure.,” Nat. Methods, vol. 7, no. 4, pp. 291–294, Apr. 2010.
[35]
M. Magnus, M. J. Boniecki, W. K. Dawson, and J. M. Bujnicki, “SimRNAweb: a web server
for RNA 3D structure modeling with optional restraints.,” Nucleic Acids Research, vol. 44, no. 1, pp. W315–9, Jul. 2016.
[36]
C. Y. Cheng, F.-C. Chou, and R. Das, “Modeling complex RNA tertiary folds with Rosetta.,”
Meth. Enzymol., vol. 553, pp. 35–64, 2015.
[37]
K. T. Simons, R. Bonneau, I. Ruczinski, and D. Baker, “Ab initio protein structure
prediction of CASP III targets using ROSETTA.,” Proteins, vol. 3, pp. 171–176, 1999.
[38]
R. Moretti, S. Lyskov, R. Das, J. Meiler, and J. J. Gray, “Web-accessible molecular
modeling with Rosetta: The Rosetta Online Server That Includes Everyone (ROSIE).,”
Protein Sci., Sep. 2017.
[39]
M. J. Boniecki, G. Lach, W. K. Dawson, K. Tomala, P. Lukasz, T. Soltysinski, K. M.
Rother, and J. M. Bujnicki, “SimRNA: a coarse-grained method for RNA folding simulations
and 3D structure prediction.,” Nucleic Acids Research, vol. 44, no. 7, pp. e63–e63, Apr. 2016.
[40]
I. Tuszyńska and J. M. Bujnicki, “DARS-RNP and QUASI-RNP: new statistical potentials
for protein-RNA docking.,” BMC Bioinformatics, vol. 12, no. 1, p. 348, Aug. 2011.
[41]
I. Tuszyńska, M. Magnus, K. Jonak, W. K. Dawson, and J. M. Bujnicki, “NPDock: a web
server for protein-nucleic acid docking.,” Nucleic Acids Research, vol. 43, no. 1, pp. W425–30, Jul. 2015.
[42]
K. T. Simons, I. Ruczinski, C. Kooperberg, B. A. Fox, C. Bystroff, and D. Baker, “Improved
recognition of native‐like protein structures using a combination of sequence‐dependent
and sequence‐independent features of proteins,” Proteins: Structure, Function, and Bioinformatics, vol. 34, no. 1, pp. 82–95, Jan. 1999.
[43]
T. Waleń, G. Chojnowski, P. Gierski, and J. M. Bujnicki, “ClaRNA: a classifier of
contacts in RNA 3D structures based on a comparative analysis of various classification
schemes,” Nucleic Acids Research, vol. 42, no. 19, pp. e151–e151, Oct. 2014.
[44]
P. J. A. Cock, T. Antao, J. T. Chang, B. A. Chapman, C. J. Cox, A. Dalke, I. Friedberg,
T. Hamelryck, F. Kauff, B. Wilczynski, and M. J. L. de Hoon, “Biopython: freely available
Python tools for computational molecular biology and bioinformatics.,” Bioinformatics, vol. 25, no. 11, pp. 1422–1423, Jun. 2009.
[45]
W. L. DELANO, The PyMOL Molecular Graphics System. DeLano Scientific; Palo Alto, CA, USA: 2002. 2002.
[46]
J. D. Hunter, “Matplotlib: A 2D Graphics Environment,” Computing in Science & Engineering, vol. 9, no. 3, pp. 90–95, 2007.
[47]
M. Waskom, O. Botvinnik, D. OKane, P. Hobson, J. Ostblom, S. Lukauskas, D. C. Gemperline,
T. Augspurger, Y. Halchenko, J. B. Cole, J. Warmenhoven, J. de Ruiter, C. Pye, S.
Hoyer, J. Vanderplas, S. Villalba, G. Kunter, E. Quintero, P. Bachant, M. Martin,
K. Meyer, A. Miles, Y. Ram, T. Brunner, T. Yarkoni, M. L. Williams, C. Evans, C. Fitzgerald,
Brian, and A. Qalieh, mwaskom/seaborn: v0. 9.0 (July 2018). 10.5281/zenodo.1313201. 2018.
[48]
F. Pérez and B. E. Granger, “IPython: a system for interactive scientific computing,”
Computing in Science & Engineering, vol. 9, no. 3, pp. 21–29, 2007.
[49]
A. Gao and A. Serganov, “Structural insights into recognition of c-di-AMP by the ydaO
riboswitch.,” Nat. Chem. Biol., vol. 10, no. 9, pp. 787–792, Sep. 2014.
[50]
A. Ren and D. J. Patel, “c-di-AMP binds the ydaO riboswitch in two pseudo-symmetry-related
pockets.,” Nat. Chem. Biol., vol. 10, no. 9, pp. 780–786, Sep. 2014.
[51]
C. P. Jones and A. R. Ferré-D'Amaré, “Crystal structure of a c-di-AMP riboswitch reveals
an internally pseudo-dimeric RNA.,” vol. 33, no. 22, pp. 2692–2703, Nov. 2014.