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Abstract: 10 

Different plant species within the grasses were parallel targets of domestication, giving 11 

rise to crops with distinct evolutionary histories and traits. Key traits that distinguish these 12 

species are mediated by specialized cell types within organs. Here, we compare the 13 

transcriptomes of all cells within roots in three grasses—Zea mays (maize), Sorghum 14 

bicolor (sorghum), and outgroup Setaria viridis (Setaria). We first show that single-cell and 15 

single-nucleus RNA-seq provide complementary readouts of cell identity, warranting a 16 

combined analysis. Comparative cellular analysis shows that the transcriptomes of some 17 

cell types diverged more rapidly than others, in part by recruiting gene modules from other 18 

cell types. Furthermore, examining the whole genome duplication in maize, we detect 19 

extensive dosage compensation in surviving co-expressed homeologs, reinforcing 20 

genomic balance1. Homeolog pairs that underwent subfunctionalization2, partitioning their 21 

expression among cell types, represented a minor pattern but showed the highest rate of 22 

acquiring a novel (non-ancestral) domain. These results fit a conjecture in which 23 

mechanisms that maintain stoichiometric balance at the molecular level aid in homeolog 24 

retention for extended periods to allow new functions to arise. An unexpected synergy 25 

between spatial sub- and neo-functionalization then contributes to changes in 26 

transcriptional cell identity. 27 

Single-cell mRNA profiling has opened up new opportunities to study cellular evolution by 28 

comparing gene regulation in specialized cells across species3,4. In plants, high-resolution cellular 29 

profiling also has the potential to associate cell-level transcriptional regulation to key agricultural 30 

traits, many of which are mediated by specialized cells5.  31 

Zea mays (maize) is a staple crop and Sorghum bicolor (sorghum) is an important dryland crop 32 

and biofuel candidate that is closely related to maize, separated by about 12 million years6,7. 33 

However, the two species differ substantially in key traits such as drought and chilling tolerance, 34 

and release of root exudates that shape soil interactions8–12. The importance of the two crops, 35 

their evolutionary proximity, and their functional differences present a novel opportunity for 36 

comparative analysis of cellular evolution in plants13,14. In addition, since sharing a common 37 

ancestor with sorghum, maize underwent a whole genome duplication 5 to 12 million years ago 38 
7, offering an opportunity to analyze changes in fine-scale gene regulation among paralogous 39 



genes on duplicated chromosomes (homeologs) in the relatively early stages after a 40 

duplication7,15.  41 

Cells Provide Depth While Nuclei Give Breadth  42 

Single-cell analyses in plants have relied on the generation of protoplasts by enzymatic digestion 43 

of cell walls16–21. However, certain tissues and even some species like sorghum are quite 44 

recalcitrant to digestion. There is also historic concern about the effects of protoplast generation 45 

on the cellular transcriptome, leading to growing interest in nuclear profiling22–24. To assess the 46 

fidelity of nuclear profiling in depth, we first compared single-cell vs single-nucleus vs whole-root 47 

profiles in both Arabidopsis thaliana (Arabidopsis/At, a dicot model with plentiful resources, 48 

15,967 cells and 17,373 nuclei) and maize (Zm, a monocot model, 4,235 cells25 and 2,668 nuclei) 49 

(Supplementary Table 1). 50 

Measures of unique molecular indices (UMIs) per dataset showed an increase of 10x (At) and 6x 51 

(Zm) in cells than in nuclei (Extended Data Fig. 1a), similar to animal studies26,27. Accordingly, the 52 

average number of genes detected was 2.7x (At) and 1.4x (Zm) higher in cells than in nuclei 53 

(5,281 vs 1,895 in At, 4,198 vs 2,304 in maize) (Extended Data Fig.1b, Supplementary Table 1). 54 

However, despite the lower mRNA content, nuclear profiling detected 89% (At) and 88% (Zm) of 55 

total genes present in cells (Supplementary Table 1).  56 

Both cell and nuclei “pseudo-bulked” transcriptomes displayed a high correlation to whole-root 57 

transcriptomes (r ~ 0.7-0.8, Extended Data Fig. 1c), confirming that both sampling methods 58 

generally reflected expression patterns of intact tissue.  59 

In both Arabidopsis and maize, cells and nuclei generated UMAP clusters corresponding to all 60 

the major cell identities (Extended Data Fig. 2, 5). However, in both species, the nuclear dataset 61 

generated fewer distinct clusters, often failing to resolve between closely related or subcellular 62 

identities (Extended Data Fig. 2, 5). For example, in maize, stele cells contained a subcluster that 63 

we identified as xylem cells, where no such subcluster was apparent in the nuclear UMAP 64 

(Extended Data Fig. 5). Using a down-sampling approach on each dataset, a general rule-of-65 

thumb emerged that twice as many nuclei as cells are needed to discover the same number of 66 

cell-type clusters as protoplasts (Extended Data Fig. 3a,b). Thus, the shallower depth of nuclear 67 

profiles provides less resolution for classification of cell identity—a drawback that down-sampling 68 

showed we could rectify, at least in part, by increasing the number of nuclei sampled compared 69 

to cells.   70 

Either simultaneous or independent analysis of cells and nuclei generated clusters that reflected 71 

the same underlying biological patterns (Fig. 1a-c, Extended Data Fig. 3c,d). The highest-scoring 72 

markers extracted from nuclei generally matched the highest-scoring ones from cells (Fig. 1c,e, 73 

Extended Data Fig. 3d). In addition, the assignment of cells to specific clusters was stable when 74 

cells or nuclei were clustered either alone or together (Supplementary Table 2). 75 

One advantage of nuclear profiles was their ability to capture a more representative sampling of 76 

cells within the tissue (Fig. 1d, Extended Data Fig. 4d). In one example in maize, we detected a 77 

unique cluster in single-nucleus profiling not present in single-cell/protoplast profiling, which we 78 

confirmed as columella cells using previously published hand-sectioned RNA-seq profiles 79 

(Extended Data Fig. 5,25). 80 

In Arabidopsis, we found that 14% of total genes (3,218) were differentially expressed between 81 

cells and nuclei in a cluster-by-cluster analysis (Supplementary Table 3). While cells showed a 82 



higher proportion of stress related genes (Fig. 1f, Extended Data Fig. 4a,b), most of the 83 

differences between cell and nuclear profiling appeared to be related to compartmental RNA 84 

stability, as mRNAs enriched in nuclei significantly overlapped with transcripts shown to have 85 

higher decay rates in the cytoplasm28,29 (Extended Data Fig. 4c). This analysis showed that 86 

nuclear profiles did indeed show a lower stress response than protoplasts, but the difference was 87 

subtle and not a dominant component of the difference between cells and nuclei. 88 

 89 



 90 

Fig. 1: Cell and nucleus profiles identify the same markers but show different sensitivities 91 

and artifacts. a, b UMAP of combined Arabidopsis cells and nuclei with clusters colored 92 

according to assigned cell identity (a) or cells vs. nuclei origin (b). c Dot plots of Arabidopsis 93 

marker genes in cells (blue) or in nuclei (red). d Proportion of cells vs nuclei present in each cell 94 

type cluster. e Heatmaps of the 10 highest-scoring marker genes for each cell type found using 95 

Seurat in the combined single-cell + single-nucleus dataset. This combined dataset was then 96 

divided into a cell dataset and a nucleus dataset. Within each of the four panels, rows correspond 97 

to genes, and columns correspond to cell-type clusters. Upper two heatmaps show highest-98 

scoring markers within the cell dataset (left) vs expression of the same markers in the nucleus 99 

dataset (right). Lower row shows highest-scoring markers found in nucleus dataset (right) vs 100 

expression of the same markers in the cell dataset (left). f Pie charts showing the difference in 101 

the prevalence of GO terms among differentially expressed genes between cells (top) and nuclei 102 

(bottom), aggregated from cluster-by-cluster differences. GO term analysis is for up-regulated 103 

genes in either cells or nuclei. 104 

A High-confidence cell-type Map in sorghum and Setaria Using a maize Reference. 105 

Given the comprehensive coverage of a combined analysis, we pursued both whole cell and 106 

nuclear profiling to investigate cellular evolution in the maize-sorghum clade. We further 107 

generated profiles for sorghum (3,510 cells and 7,620 nuclei) and, as an outgroup, Setaria viridis 108 

(Setaria, 974 cells and 12,192 nuclei, Supplementary Table 1). We took advantage of comparative 109 

genomic sequence analyses in maize, sorghum, and Setaria that mapped orthologs among the 110 

three species, including the homeologs created by whole genome duplication in maize13,15 111 

(hereafter subgenome M1 and M2). We first used a set of single-copy orthologs in the three 112 

species to cluster the maize cells and nuclei and then mapped the sorghum and Setaria datasets 113 

onto the maize anchor30 (Fig. 2a, Supplementary Table 1). To validate the mapping, we performed 114 

an independent MetaNeighbor analysis (Extended Data Fig. 6) as well as whole mount in situ 115 

hybridizations in maize and sorghum (Fig. 2b, Extended Data Fig. 7,8), and spatial transcriptomics 116 

in maize (Fig. 2c, Extended Data Fig. 7), confirming the maize-to-sorghum-to-Setaria mapping of 117 

cell identities. Thus, we could use the well-annotated maize cell type map to rapidly generate a 118 

high confidence single-cell “pan-transcriptome” of these key crop species, including hundreds of 119 

new cell-type specific marker genes (Supplementary Table 4). 120 



 121 

Fig. 2: Mapping cell identities from maize to sorghum reveals global dosage compensation 122 

between maize duplicates in cell types. a UMAP of combined maize single-cell and single-123 

nucleus profiles. Clusters are colored and labeled according to cell identity. b in situ hybridization 124 

in maize (top) and sorghum (bottom). The maize phloem marker in magenta is orthologous to the 125 

sorghum phloem marker in red. Cyan in the lower panel corresponds to a sorghum endodermal 126 

marker. Autofluorescence highlighting anatomy is in grayscale. The minimum/maximum values 127 

for each channel in the fluorescence images have been adjusted to show the localization more 128 

clearly in the merged image. UMAPS next to images show the respective expression in single-129 

cell / single-nucleus profiles, which were used initially to determine their expression pattern. c 130 

Spatial transcriptomics showing simultaneous localization of multiple markers that enable detailed 131 

mapping of single-cell profiles to specific tissues. d Expression ratios of sorghum over maize 132 



orthologous genes, where the red line indicates equivalent expression levels. The first two 133 

boxplots represent cases where a sorghum ortholog is co-expressed with a single maize 134 

homeolog (either M1 or M2). The third and fourth boxplots represent cases in which both 135 

homeologs are expressed in the same cells. The last boxplot shows the ratio when both of the 136 

co-expressed homeologs are summed in the denominator. White bar is median, box limits 137 

represent 25th and 75th percentiles, lines are the 95th percentile. e Ka/Ks distribution of 138 

comparative patterns measured against sorghum. Cell type specific expression is averaged. 139 

Letters signify comparative patterns of cell type expression for sorghum and M1 and M2 140 

subgenome expression: i.e. S = only the sorghum ortholog is present in the cell type cluster, SM1 141 

= sorghum and maize 1 homeologs are co-expressed in the cell type cluster, etc. Statistical 142 

analysis was performed using ANOVA followed by the Tukey pairwise test. All “a” designates are 143 

statistically significant from “b” at p < 0.05. f GO terms enriched within each category of genes in 144 

each cell types.  145 

Widespread Dosage Compensation between maize homeologs 146 

The comparative cell-type maps provided an opportunity to quantify patterns in preserved gene 147 

duplicates – a potential source of innovation particularly following whole genome duplication. One 148 

hypothesis, known as the genomic balance model, holds that the viability of a duplicated gene is 149 

dependent on the capacity to adjust for dosage effects, such that the stoichiometry of molecular 150 

complexes is retained following a whole genome duplication1.  151 

However, we could observe changes in expression patterns in the 5 to 12 million years since 152 

whole genome duplication that were likely to disrupt the stoichiometric balance. Prior studies have 153 

demonstrated dosage compensation between gene duplicates in aneuploids and in newly 154 

generated polyploids1,31. However, it is not clear if this phenomenon has a role after ancient 155 

genome duplication events. The cellular resolution of our dataset offered an opportunity to test 156 

whether dosage compensation within cells could fine tune genomic balance.  157 

To examine this issue, we adapted a ranked-based method to compare gene expression levels 158 

across genomes in each cell type32. This enabled us to use sorghum gene expression in each 159 

cell type as proxies for the “ancestral” state (expression level and cell-type domains). In addition, 160 

ancestral expression domains were supported by at least one maize homeolog. We also made 161 

the assumption that both homeologs had identical expression patterns at the time of whole 162 

genome duplication33. We categorized a homeolog as "dominant” if its average expression level 163 

per cell type is more than twice the expression of the other homeolog, and as “co-expressed” if 164 

both homeologs are detected and neither is dominant. 165 

When one of the M1 or M2 homeologs was dominant in a cell type, this dominant homeolog was 166 

expressed at the same level as its sorghum ortholog (Fig. 2d). Interestingly, these dominant 167 

homeologs were enriched in GO terms for stress adaptation, immunity and response to stimulus 168 

(Fig. 2f, Supplementary Table 5). At the same time, the dominant homeologs display a higher 169 

cell-type specificity than co-expressed homeolog pairs34 (), while the non-dominant ones show a 170 

higher nonsynonymous-to-synonymous substitution rate (Ka/Ks) suggesting a more relaxed 171 

purifying selection (Extended Data Fig. 9a-c).  172 

Alternatively, when maize M1 and M2 homeolog pairs were co-expressed in the same cell types 173 

as their sorghum ortholog, each showed an expression level of about half that of the sorghum 174 

ortholog (Fig. 2d, Extended Data Fig. 9d,e). These co-expressed homeologs further displayed a 175 

marginally lower Ka/Ks ratio than dominant cases, suggesting that they are under more stringent 176 

purifying selection (Fig. 2e, Extended Data Fig. 9a). Finally, these homeologs showed GO term 177 



enrichments for categories known to be favored for retention after whole genome duplication—178 

cell homeostasis processes, translation, or ribosome biosynthesis1,15 (Fig. 2f, Supplementary 179 

Table 5). The analysis therefore showed strikingly widespread dosage compensation in cell types 180 

where both homeologs are co-expressed likely fine tuning stoichiometric balance over long 181 

periods on a cell-type basis35. 182 

Neofunctionalization and subfunctionalization are linked  183 

It has been suggested that mechanisms permitting stoichiometric balance could act as a bridge 184 

for the generation of new gene function, promoting the retention of gene duplicates to allow 185 

sufficient time for beneficial or complementary mutations to arise1. Two possible mechanisms for 186 

long-term duplicate gene retention are subfunctionalization and neofunctionalization2, both of 187 

which we consider here at the transcriptional level. Thus, we define subfunctionalization here as  188 

a case in which duplicated genes partition the expression of the ancestral2 (sorghum) domain 189 

(Fig.3a). Neofunctionalization is presumed to occur when one homolog retains ancestral and the 190 

second is free to diverge and adopt a new function36. Thus, at the transcriptional level, we define 191 

neofunctionalization as the dominance of one homolog in the ancestral domain and the 192 

expression of the second homolog in a cell type outside the ancestral domain (Fig.3c). We 193 

classified each homeolog pair across cell types on a scale from –1 (full dominance of one 194 

homeolog over the other), to 0 (full co-expression of both homeologs) to 1 (full 195 

subfunctionalization; Fig. 3a,b). Overall, 70% of the homeolog pairs showed dominance, 11% 196 

showed full co-expression, and 19% showed subfunctionalization (Fig. 3a,b, Supplementary 197 

Table 6). 198 

 199 

To assess potential evolutionary forces driving each pattern, we assumed both homeologs 200 

matched the sorghum ortholog expression pattern at the time of duplication. We then randomly 201 

removed gene expression of either homeolog across cell types until their matrix of gene 202 

expression matched the overall presence/absence matrix of homeologs in the observed data.  203 

The analysis revealed that dominance patterns were highly over represented in the observed data 204 

compared to the random model (Fig. 3b), with full dominance being the most abundant category. 205 

In instances of dominance, the non-dominant homeolog (in either subgenome) showed slightly 206 

relaxed purifying selection on average33 (Extended Data Fig. 9b). There were many instances of 207 

domain expansion/neofunctionalization in the dominance categories (18%; Fig. 3d). However, 208 

counter to expectations, 80% of the time it was the dominant homeolog that expanded its domain 209 

(Supplementary Table 6). Dominance patterns were largely stable when we examined single cell 210 

profiles from the maize inflorescence37, with 72% of the root dominance patterns falling into the 211 

same category in the inflorescence cells, swapping the dominant homeolog in a minority of cases, 212 

while 26% display a subfunctionalization pattern and 2% co-express (Supplementary Table 6). 213 

These observations suggest that the non-dominant homeolog could have a more essential role in 214 

at least one context in the plant or may possibly be in the early stages of pseudogenization.  215 

While subfunctionalized homeolog patterns were highly underrepresented compared to the 216 

random model (Fig. 3b), homeolog pairs in this category showed a significantly higher proportion 217 

of neofunctionalization compared to dominance categories (33% vs. 18%, Fisher’s exact test, p-218 

value < 0.001; Fig. 3d, Supplementary Table 6). This was unexpected as it suggests that 219 

subfunctionalization, rather than dominance, was more likely to be accompanied by 220 

neofunctionalization. In addition, in contrast to the dominance categories above, there was no 221 

evidence of relaxed purifying selection in either the homeolog that extended or the one that 222 

retained the ancestral domain (Extended Data Fig. 10a). The result indicates that transcriptional 223 

neofunctionalization and subfunctionalization are somehow linked. We cannot determine which 224 



precedes the other, although our model suggests that completely random forces acting on both 225 

homeologs could account for the observed subfunctionalization, which could then serve as a 226 

transition state to neofunctionalization38.  227 

 228 

Overall, we propose a model in which dosage compensation maintains stoichiometric balance for 229 

an extended period after whole genome duplication. This could be considered a form of 230 

quantitative subfunctionalization in which selection for full, ancestral dosage preserves the activity 231 

of both homeologs2. In any case, such a mechanism would prevent pseudogenization and permit 232 

the retention of gene duplicates. The prolonged survival of both homeologs would thus enable 233 

spatial subfunctionalization that then enhances the likelihood that homeologs expand their 234 

expression domains (spatial neofunctionalization)—presumably through changes in cis-235 

regulatory regions39—leading to new transcriptional states in specialized cells.  236 

 237 

 238 

 239 

Fig. 3: Gene pairs that subfunctionalize undergo a high rate of neofunctionalization. a 240 

Conceptual schematic of patterns that characterize different categories of subfunctionalization vs. 241 



dominance. b Observed distribution of genes pairs by their dominance (all categories <0) vs. 242 

subfunctionalization (all categories >0) score, where a score of 1 reflects complete dominance 243 

and -1 equal partitioning of the ancestral expression domain (subfunctionalization). Complete co-244 

expression = 0. Dark bars represent the observed data while light gray bars represent the random 245 

model where expression domains of homeologs are randomly removed (see Methods), showing 246 

an over-representation of dominance patterns and an under-representation of 247 

subfunctionalization patterns. c Same schematic as in (a) but now showing novel expression 248 

domains (neofunctionalization) in blue. d The same distribution as shown in (b) with 249 

neofunctionalized events (domain expansion) mapped onto the distribution. Domain expansion is 250 

more frequent in subfunctionalized homeolog pairs, while dominance patterns show less frequent 251 

domain expansion with the vast majority being the dominant homeolog.  252 

Root Cap “Slime” Drives a Case of Rapid Cell-Type Divergence 253 

Using a three-taxa comparative approach, we next asked which cell types diverged most rapidly 254 

in maize and sorghum compared to the outgroup Setaria. To compare cell identity across species, 255 

we adapted MetaNeighbor, which uses neighbor voting to quantify the similarity of cell clusters 256 

across datasets using a given marker set of genes and their orthologs40 (Fig. 4a).  257 

The analysis showed that transcriptomes of columella, phloem, cortex subcluster 3, endodermis, 258 

pericycle, and stele cell types are the most divergent compared to Setaria, suggesting that the 259 

function of these tissues diverged from Setaria before the maize-sorghum split. In addition, certain 260 

cell types—such as cortex subcluster 1, phloem, and young stele subcluster 1—were statistically 261 

different between maize and sorghum, implying additional divergence after the maize-sorghum 262 

split. Interestingly, in maize, columella was among the most divergent cell types relative to Setaria 263 

(Fig. 4a).   264 

To further investigate the potential functions involved in columella divergence, we used a measure 265 

of co-expression conservation to identify transcripts within clusters of interest that showed 266 

divergent patterns of expression across species in co-expression networks35,41 (Supplementary 267 

Table 7). We identified 443 genes displaying high expression divergence across species in 268 

Columella. Many of these genes showed dramatic expression changes in spatial domain between 269 

species, such as downy mildew resistant 6 (DMR6), which is expressed in columella and 270 

epidermis in maize but in cortex and endodermis in sorghum (Extended Data Fig. 10b,c). 271 

Furthermore, GO term analysis showed enrichment in enzymes leading to the synthesis of 272 

mannose, raffinose, and oligosaccharides (Supplementary Table 7). These sugars and 273 

carbohydrates are key components of mucilage, also called slime, whose roles include shaping 274 

of the root-associated microbiome and lubricating the root-soil interface8,10,42–44.  275 

To further examine the potential change in mucilage-associated genes, we examined all genes 276 

implicated in mucilage component synthesis10,11,45. We found that this set of mucilage-annotated 277 

genes were mostly expressed in maize columella, while, in sorghum and Setaria, they were 278 

predominantly expressed in cortical layers (Fig. 4b,c,d). Overall, these results suggest that maize 279 

underwent a relatively rapid cellular divergence in columella, in part, by recruiting a mucilage gene 280 

expression module from ancestral expression pattern in the cortex. The most parsimonious model 281 

is that the recruitment of the mucilage module occurred before the maize whole genome 282 

duplication, as both maize homeologs, when conserved, tended to share expression in the 283 

columella. 284 

Overall, the high-resolution comparative analysis provides evidence for three phenomena—285 

dosage compensation, subfunctionalization, and neofunctionalization—as a driver of cell type 286 



divergence following whole genome duplication. The results extend the genomic balance model35 287 

by showing its effects are reinforced after duplication at the transcriptional level. Furthermore, the 288 

data show that both single-cell and single-nucleus profiling produce high-fidelity maps of cell-type 289 

specific expression, with a combination of the two leveraging their complementary strengths. Cell 290 

type specific maps in a well-annotated species can then serve as an anchor for neighboring 291 

taxonomic groups, rapidly generating homologous maps in a related group of plant species. 292 

These maps provide powerful tools for analysis of cell type evolution that can identify genes 293 

associated with specific traits. 294 

 295 

Fig. 4: Differential evolution between cell types reveals that columella is highly divergent 296 

compared to Setaria. a MetaNeighbor analysis showing transcriptome conservation scores 297 

between cell types in maize and sorghum compared to the outgroup Setaria. High conservation 298 

scores reflect similar transcriptomes across species. Statistical significance between maize and 299 

sorghum was performed using the Hanley McNeil test (see Methods; p-values:  300 

*<0.05,**<0.01,***<0.001). b–d Mucilage gene expression heatmaps for maize (b), sorghum (c), 301 

and Setaria (d) columella and cortical layers, showing predominant columella expression in maize 302 



compared to cortical layers in sorghum and Setaria. Maize genes are identified in (b) and their 303 

corresponding sorghum and Setaria orthologs are listed on the same row in (c) and (d). 304 
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Extended Data 450 

 451 

Extended Data Fig. 1: a Violin plot distribution of the number of UMI detected among cells vs. 452 

nuclei in Arabidopsis, maize, sorghum, and Setaria. b Violin plot distribution of the number of 453 

genes detected among cells vs. nuclei in the same species as in (a). Black bar is median, box 454 

represents 25th and 75th percentile, and vertical line is the 5th and 95th percentile. c Pearson 455 

correlation distributions of gene expression from single-cell or single-nuclei compared to whole-456 

root RNAseq in Arabidopsis and maize, performed on replicate runs of single-cell or single-457 

nucleus profiles.  458 

  459 



 460 
 461 

Extended Data Fig. 2: a, b UMAP clustering in Arabidopsis single-cell (a) and single-nucleus (b) 462 

datasets clustered independently, showing clusters with the same assigned cell identities. c, d 463 

Dot plots showing cluster-wise average expression levels and percent of cells detected for a set 464 

of Arabidopsis cell type markers in cells (c) vs. nuclei (d). The plot shows that markers for a given 465 

cell type identified in one profile type (cells or nuclei) show largely the same enriched expression 466 

in the second profile type.  467 

  468 



 469 
 470 

Extended Data Fig. 3: a Arabidopsis down-sampling analysis shows the number of cells needed 471 

to resolve clusters into different cell types within tissues. A branch signifies the number of cells 472 

needed for Seurat to distinguish a new cluster from a cloud of points when analyzing lower 473 

numbers of cells. b A similar analysis using the single-nucleus dataset, showing more nuclei are 474 

needed to resolve clusters compared to cell profiles in (a). Tracking the branches of graphs in (a) 475 

vs. (b) leads to a rule-of-thumb that two-fold more nuclei than cells are needed to identify clusters. 476 

c UMAPs of the combined maize single-cell and single-nucleus datasets with clusters colored by 477 

cell type. d Dot plot of maize marker genes in cells (blue) or in nuclei (red), showing concordance 478 

of marker expression in the two datasets. 479 

  480 



 481 

 482 

Extended Data Fig. 4: a, b Heatmaps of Arabidopsis genes known to be induced by protoplast 483 

generation (Birnbaum et al., 2003) showing their expression in cells (a) vs. nuclei (b). The analysis 484 

shows that stress-induced genes also have higher expression in cells vs. nuclei, with particular 485 

induction in specific cell types. c Distribution of expression levels of genes annotated for mRNA 486 

decay in cells or in nuclei. The same genes are analyzed in both cells and nuclei. A significant 487 

increase in mRNA decay gene expression level was detected in nuclei (Wilcoxon rank sum test, 488 

p-value = 1.98e-11). d Proportion of cells (blue) vs nuclei (red) present in each cell type cluster 489 

for maize.  490 

  491 



 492 

Extended Data Fig. 5: a, b UMAPs of maize single-cell and single-nucleus datasets clustered 493 

independently. Only the single-nucleus dataset displays a cluster annotated as columella, which 494 

is absent in the single-cell dataset. c, d Dot plot of maize marker genes for each cell type cluster, 495 

showing expression in cells (c) and in nuclei (d) datasets independently. Markers for columella 496 

outlined in the red box are only present in the nuclei dataset. 497 

  498 



 499 
 500 

Extended Data Fig. 6: AUROC test as performed in MetaNeighbor comparing every cell type in 501 

maize, sorghum, and Setaria using single-cell and single-nucleus datasets separately, showing 502 

that cells and nuclei largely group by cell type and not by either species or profiling method (cells 503 

vs. nuclei).  504 
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 506 

Extended Data Fig. 7: a-n in situ hybridization using Hairpin Chain Reaction (HCR) probes 507 

labeling various transcripts in maize. UMAPs showing each transcript’s cluster localization are 508 

shown next to each probe’s fluorescent image. Additionally, spatial transcriptomics imaging data 509 

is shown for a three probes in maize (c-e), further validating the cluster annotations. The 510 

minimum/maximum values for each fluorescence channel (grey: autofluorescence, magenta: 511 

HCR probes) have been adjusted to show the localization more clearly in the merged image. 512 

  513 



 514 

Extended Data Fig. 8: a-i in situ hybridization using Hairpin Chain Reaction (HCR) probes 515 

labeling various transcripts in sorghum. UMAPs showing each transcript’s cluster localization are 516 

shown next to each probe’s fluorescent image. The minimum/maximum values for each 517 

fluorescence channel (grey: autofluorescence, magenta: HCR probes) have been adjusted to 518 

show the localization more clearly in the merged image. 519 

  520 



 521 
 522 

Extended Data Fig. 9: a Distribution of Ka/Ks values (relative to Setaria) of genes or homeologs 523 

among the different genomes or subgenomes across cell types (labeled on bottom graph in (c)), 524 

with expression pattern by cell type shown in subcategories. Letters represent co-expression 525 

categories of sorghum genes and maize homeologs in a given cell type (i.e. S = only sorghum 526 

gene expressed in cell type, SM1 = sorghum and M1 genes expressed in cell type, etc.). b 527 

Distribution of Ka/Ks values in cases of specific co-expression patterns (listed in title of graph) for 528 

each cell type (labeled in (c)). For example, in the first graph on the left, when sorghum and M1 529 

are co-expressed in a given cell type, the M2 homeolog always has a slightly higher Ka/Ks value, 530 

showing they are under less stringent purifying selection. c Distribution of taux (cell specificity) 531 

measure of genes in different cell types according to comparative expression patterns. For 532 

example, in the first graph on the left, sorghum genes have a higher taux (i.e. more specificity) 533 

when they are not expressed in the same cell type as M1 or M2. d Analysis similar to Fig. 2d 534 

showing expression ratios between sorghum and M1 or M2 homeologs, here broken down by cell 535 

type and genomic status of M1 or M2 homeolog (retained or lost). The trends show the strongest 536 

dosage compensation at the cell-type level when both copies are retained and expressed. e 537 



Analysis similar to Fig. 2d on only the retained homeologs showing ratios of expression between 538 

sorghum and M1 and/or M2 homeologs broken down by cell type depending on their co-539 

expression with sorghum. The trends show dosage compensation by cell type only when the two 540 

homeologs are expressed in that cell type.  541 



 542 

Extended Data Fig. 10: a Ka/Ks distribution of co-expressed vs dominant vs neofunctionalized 543 

genes. Co-expressed genes display higher purifying selection. However, only the non-dominant 544 

ortholog shows an increas in Ka/Ks distribution compared to the dominant ortholog, while other 545 

categories don’t display significant differences in purifying selection. Pairwise Wilcoxon Test *** 546 

p < 0.001. b Heatmap represents the 443 most divergent genes across species in the CoCoCoNet 547 

analysis, showing expression differences in the columella of the three grass species. c Example 548 

of the gene DMR6 switching its expression between columella in maize vs epidermis / cortex in 549 

sorghum. 550 

 551 

  552 



Methods 553 

Plant growth conditions 554 

Seeds of Arabidopsis thaliana var Col0, Zea maize B73 and Sorghum bicolor Btx623, Setaria 555 

viridis (Accession PI 669942, U.S. National Plant Germplasm System) 556 

Arabidopsis seeds were imbibed for 48h at 4°C before being surface sterilized and placed on a 557 

nylon mesh (110um) and agar plates-1/2 × Murashige and Skoog salts (Sigma M5524), 0.5% 558 

sucrose, 0.8% Agar (Sigma A1296). Plant were transferred vertically in growth chambers set to 559 

23°C and a 16 h light/8 h dark cycle (400 μmol m−2 s−1). Root tips were collected 7 days after 560 

transfer, cut with a feather scalpel at 150um from the tip and directly transferred to either the 561 

protoplast solution at room temperature or the nuclei lysis buffer at 4°C. 562 

 563 

Maize, Sorghum seeds were sterilized using bleach (1.5% active chloride) and 0.001% tween 564 

20 for 20mins then 4% chloramine T for 20mins. Setaria seed germination was induced by 565 

incubation in 4% liquid smoke (Colgin, Authentic Natural Hickory) at 29°C for 24h.Then setaria 566 

seeds were sterilized using bleach (1.5% active chloride) and 0.001% tween 20 for 20mins. All 567 

seeds were placed between two layers of brown paper (Anchor Paper&Cie., 38# regular), rolled 568 

and covered with aluminum foil to prevent roots from exposure to direct light. Rolls were placed 569 

in a bucket of tap water at 28/24°C at 16 h light/8 h dark cycle (250 μmol m−2 s−1) for 7 days 570 

(15days for Setaria) before harvesting the root tips. Primary and seminal root tips were cut using 571 

a fine scalpel at 0.5 cm form the tip for Maize and Sorghum, 0.2cm from the tip for Setaria and 572 

transferred either to the pre-incubation solution for single cell or to the nuclei lysis buffer. 573 

 574 

Protoplasting 575 

Protoplasts were generated from primary and seminal roots as described previously 46. For Maize, 576 

Sorghum and Setaria, roots were cut above the meristem as describe above and placed in 577 

pretreatment solution containing L-cysteine for 40 min (3% sorbitol, 2.5mM L‐cysteine, 20mM 578 

MES, pH 5.8 with Tris) to improve enzyme efficiency and cell wall digestion. Cell walls were 579 

digested for 90 min in an enzyme solution optimized for monocot roots (Mannitol 8%, 400mM, 580 

MES 20mM, KCl 20mM, CaCl2 40mM, pH 5.8 with Tris, BSA 100ug/ml, 2% cellulase “Onozuka” 581 

RS, 1.2% cellulase “Onozuka” R10, 0.4% macerozyme R‐10 (all three Yakult Pharmaceutical 582 

Industry CO.), 0.36% pectolyase Y‐23 (MP Biomedicals)). Protoplast were then filtered through a 583 

40 µm cell strainer and transferred to microcentrifuge tubes for centrifugation. 584 

For Arabidopsis, roots were cut above the meristem as described above and placed in an enzyme 585 

solution optimized for Arabidopsis (Mannitol 8%, 400mM, MES 20mM, KCl 20mM, CaCl2 40mM, 586 

pH 5.8 with Tris, BSA 100ug/ml, 1.2% cellulase “Onozuka” R10, 0.4% macerozyme R‐10 (all three 587 

Yakult Pharmaceutical Industry CO.)). Protoplast were then filtered through a 20 µm cell strainer 588 

and transferred to microcentrifuge tubes for centrifugation. 589 

 590 

Protoplast were centrifuge for 3 min at 500 x g and the pellets were washed and resuspended in 591 

washing solution twice (Mannitol 8%, MES 20mM, KCl 20mM, CaCl2 10mM, pH 5.8 with Tris, 592 

BSA 100ug/ml) and used immediately for single-cell RNAseq. 593 

An aliquot of protoplasts was stained with trypan blue (0.2% final) and check on hematocytometer 594 

under microscope to determine viability and cell concentration before loading into the 10x 595 

chromium. 596 

 597 

Nuclei extraction 598 

For all species, root tips are directly transferred in prechilled lysis buffer (0.3M sucrose, 15mM 599 

Tris HCl pH8, 60mM KCl, 15mM NaCl, 2mM EDTA, Spermine 0.5mM, Spermidine 0.5mM, 15mM 600 

MES, 0.1% Triton, 5mM DTT*, 1mM PMSF* , 1% Plant Protease Inhibitors* 1ml(Sigma P9599), 601 

BSA 0.4%*, RNase inhibitor 0.2u/ul*, (* add last minute)). Roots are chopped on ice with scalpel 602 



blades for 5-10mins and transferred into a pre-chilled dounce homogenizer (Kimble, 885302). 603 

Pestle is moved for 10 back and forth, sample keep on ice for 10mins then additional 10 back and 604 

forth. Then root extracts are filtered at 20m into a centrifuge tube and centrifuge for 10mins at 605 

500g (Maize, Sorghum, Setaria) or 1000g (Arabidopsis). Pellet is washed once with washing 606 

buffer (0.3M sucrose, 15mM Tris HCl pH8 , 60mM KCl, 15mM NaCl, Spermine 0.5mM, 607 

Spermidine 0.5mM, 15mM MES, 5mM DTT*,1mM PMSF*, 1% Plant Protease Inhibitors* 608 

1ml(Sigma P9599), BSA 0.4%*, RNase inhibitor 0.2u/ul*, (* add last minute)). Finally, nuclei are 609 

resuspended into final buffer (0.3M sucrose, 15mM Tris HCl pH8 , 60mM KCl, 15mM NaCl, 610 

Spermine 0.5mM, Spermidine 0.5mM, 15mM MES, 5mM DTT*, 1% Plant Protease Inhibitors* 611 

1ml(Sigma P9599), BSA 0.4%*, RNase inhibitor 0.2u/ul*,(* add last minute)) and filtered using a 612 

10m filter. A nuclei aliquot is stained with DAPI for quality check and nuclei counting under 613 

microscope and used immediately for single-nuclei RNAseq. 614 

 615 

Single cell RNA-seq  616 

16,000 cells or nuclei were loaded in a Single Cell B Chip (10x Genomics) per replicate. Single-617 

cell libraries were then prepared using the Chromium Single Cell 3´ library kit, following 618 

manufacturer instructions. Libraries were sequenced with an Illumina NextSeq 550 platform using 619 

a 1x150 high-output (2 libraries per chip) or Novaseq 6000 chip SP V2.5, 4 libraries per chip. Raw 620 

scRNAseq data was analyzed by Cell Ranger 5.0.1 (10x Genomics) to generate gene-cell 621 

matrices. Gene reads were aligned to Arabidopsis TAIR10.38, Maize B73 v4, Sorghum bicolor v3 622 

and Setaria viridis v2 reference genome. 623 

 624 

UMAP and ICI analysis 625 

Replicates (see supplementary Table 1) were integrated and cells mapped using the Seurat 626 

package v3.0 47 as follows: first, genes with counts in fewer than three cells were excluded from 627 

the analysis and their counts were removed. Second, low quality cells were removed using 628 

threshold variable depending on the libraries quality (see supplementary Table 1). Clustering of 629 

cells or nuclei separately were done by log-normalized raw counts and the 2000 most variable 630 

genes were identified for each replicate using the “vst” method in Seurat. Next, we used the 631 

FindIntegrationAnchors function to identify anchors between the three datasets, using 20 632 

dimensions. A new profile with an integrated expression matrix containing cells from all replicates 633 

was produced with the IntegrateData function. For dimensionality reduction, the integrated 634 

expression matrix was scaled (linear transformed) using the ScaleData function, and Principal 635 

Component analysis (PCA) performed. The top 30 principal components were selected. Cells or 636 

nuclei were clustered using a K-nearest neighbor (KNN) graph, which is based on the Euclidean 637 

distance in PCA space. The FindNeighbors and FindClusters function with a resolution of 0.5. 638 

was applied. Next, non-linear dimensional reduction was performed using the UMAP algorithm 639 

with the top 30 PCs. Co clustering of cells and nuclei was performed using the SCT approach. 640 

First raw reads were normalized using the SCTransform function, then SelectIntegrationFeatures 641 

was used to identify anchors between the three datasets, using 3000 features. For multiple 642 

species clustering, all orthologous genes names were replace by their corresponding maize ID in 643 

sorghum and setaria raw features.tsv.gz files. Anchors are combined using PrepSCTIntegration 644 

and selected using FindIntegrationAnchors. For clustering of maize, sorghum and setaria 645 

together, maize was selected as a reference dataset in the FindIntegrationAnchors function, for 646 

single species integration all datasets are considered equally for the integration. Finally, a 647 

Principal Component analysis (PCA) is performed using the first 100 principal components and a 648 

non-linear dimensional reduction was performed using the UMAP algorithm with the top 100 PCs. 649 

 650 

GO enrichments. 651 

All GO enrichment were performed using shinyGO V0.61 (http://bioinformatics.sdstate.edu/go/) 652 

with an FDA of 0.05. 653 



 654 

Gene expression analysis across species. 655 

Whole-root transcriptomes were obtained from Ortiz-Ramírez et al., 202125 for maize 656 

and Hernández Coronado et al., 202148 for arabidopsis. 657 

Gene expression was normalized for each species using the Normalizedata function from Seurat. 658 

Then the average expression per cluster was calculated using AverageExpression from Seurat. 659 

Ka and Ks values were provided upon request by J.C. Schnable from the lab publication Zhang 660 

et al., 2017 661 

Tau t was calculated as describe in (Yanai et al., 2.005)  where N is the total 662 

number of cell type and xi is the expression profile component normalized by the maximal 663 

component value. 664 

 665 

 Cell type prediction across species and technologies. 666 

 667 

To determine how well the cell clusters characterized the shared identities of cells in their own 668 

clusters and the overlaps with the identities of all other cells, we utilized the MetaNeighbor 669 

package in Python (https://github.com/gillislab/pyMN) (Fischer et al. 2021; Crow et al. 2018). 670 

MetaNeighbor measures the replicability of cell-types by learning a model in one dataset (or 671 

subset) and testing for its ability to reconstruct cell-type clusters in the other dataset.  First, we 672 

labeled all cells and nuclei by the technology used to sequence the transcriptome, by the cluster 673 

identity, and by the plant species to which they belonged. Then, we used the 674 

PyMN.variable_genes function from MetaNeighbor to subset the gene list to variable genes. This 675 

generates a list of genes that are variable across the technology and species. Next, we employed 676 

the PyMN.MetaNeighborUS function to measure how well the transcriptional profiles of cells from 677 

clusters in one division of the dataset (e.g., technology) predict the identities of cell clusters in the 678 

other fraction of the data. This generates pairwise AUROCs for each combination of clusters. To 679 

generate the heatmaps, the PyMN.plotMetaNeighborUS was used with a Brown Blue-green color 680 

map. This plots the pairwise AUROCs generated previously. 681 

 682 

Co-expression Conservation between maize subgenomes and sorghum. 683 

To generate co-expression conservation scores between the two maize sub genomes and 684 

sorghum, we use our existing aggregated co-expression networks (Lee et al. 2020).  In brief, 685 

these networks are built by taking all publicly available data and calculating average correlations 686 

between genes pairs within experiments, standardizing within experiments, and then averaging 687 

to construct robust meta-analytic networks. We filtered these networks to a previously generated 688 

list of gene triplet pairs for maize sub genomes and sorghum. Next, for each gene, we compare 689 

the top co-expression partners across species to determine the degree of functional conservation, 690 

as described in more detail in previous work (Crow et al. 2022). We calculate this by taking the 691 

ranks of a gene’s co-expression strength to all other genes in one species and using it to predict 692 

that gene’s top 10 co-expressed partners in the second species. This is then done again in the 693 

reverse direction, and the two scores are averaged (calculated as an AUROC). 694 

with the lowest co-expression scores (0.34 < FC.Score) and highest cell specificity (  > 0.8) in 695 

the root cap (Supplementary Table 7; Extended Data Fig. 10b). Similar to trends in other cell 696 

types, these highly cell-type specific genes 697 

Dominance vs. partition score: 698 



To calculate the Dominance vs. partition score, for each ortholog triplet (S, M1, M2) we calculated 699 

the number of cells in which M1 or M2 was dominant or co-expressed together in the same cells 700 

where the sorghum ortholog was expressed. 701 

Score = (number of cells in which M1 is dominant * number of cells in which M2 is dominant) - 702 

(number number of cell of the dominant ortholog - number of cell of the non dominant ortholog) 703 

If the score is negative, the score is normalized by  704 𝑁𝑜𝑟𝑚𝑆𝑐𝑜𝑟𝑒 = 𝑆𝑐𝑜𝑟𝑒# 𝑜𝑓 𝑐𝑒𝑙𝑙 in which M1 and M2 are expressed   705 

If the score is positive, the score is normalized by dividing it by: 706 𝑁𝑜𝑟𝑚𝑆𝑐𝑜𝑟𝑒 = 𝑆𝑐𝑜𝑟𝑒(# 𝑜𝑓 𝑐𝑒𝑙𝑙 in which M1 and M2 are expressed ∗ 0.5)2 707 

Statistical analysis: 708 

Each species marker genes were identified using FindAllmarkers functions from Seurat, log.FC= 709 

0.25, pt.1 > 0.750 pt.2 < 0.250. Differential gene expression was done using the Findmarkers 710 

function from Seurat with default parameter function. For Fig2 e, Extended Data Fig. 4 c, 10 a, 711 

statistical analysis was performed on R using a pairwise Wilcoxon test with p.adjust method "BH" 712 

as data is not normally distributed.  713 

 714 

Correlation analysis on Extended Data Fig 1 c was performed using Pearson correlation function 715 

on R between whole-root data coming from and single cell or single nuclei. Briefly averaged gene 716 

expression was calculated for each gene while combining every cell types using the 717 

AverageExpression function from Seurat. 718 

 719 

For Fig 4 a, to generate p-values for evaluating the significance of the differences between each 720 

pair of AUROCs generated by MetaNeighbor, we utilized the Hanley McNeil test, which produces 721 

a Z-score for the difference (Hanley and McNeil 1983). As each MetaNeighbor AUROC is the 722 

averaged AUROC from two reciprocal tests between a pair of cell clusters, we chose the smaller 723 

of the two clusters as the number of true positives (NTP) to generate the most conservative p-724 

value. The number of true negatives was the total number of cells, less the number of true 725 

positives. Following the calculation of Z-scores for each pairwise combination of AUROCs, we 726 

utilized the scipy.stats.norm.sf function in Python to convert the Z-scores into p-values for a two 727 

tailed test.  728 

 729 

Hanley, J. A., and B. J. McNeil. 1983. “A Method of Comparing the Areas under Receiver 730 

Operating Characteristic Curves Derived from the Same Cases.” Radiology 148 (3): 839–43. 731 

https://doi.org/10.1148/radiology.148.3.6878708. 732 

 733 

“Half mount” in situ hybridization: 734 

Probes (Hairpin Chain Reaction (HCR) RNA-FISH) and reagents (including the Probe 735 

Hybridization Buffer, Probe Wash Buffer and Amplification buffer) are ordered from Molecular 736 

Instruments (https://www.molecularinstruments.com/shop)(Supplementary Table 9). 737 

   738 

For fixation, germination paper containing 7 day old maize or sorghum roots are unrolled and 739 

small volume of fixative FAA (4% formaldehyde, 5% glacial acetic acid, 50% ethanol in RNAse 740 



free water) is pipetted onto each root. Then longitudinal sectioning of root tips is performed using 741 

a 15° microscalpel. Roots are cut up to ~3cm from the tip, then immediately fixed by transferring 742 

to FAA in 5ml screw caps and put under vacuum several times until they no longer float. Roots 743 

are then agitated at RT for at least 1 hour in a tube revolver. (All washes in the protocol are 744 

performed in a tube revolver or stated otherwise.) 745 

Samples are dehydrated in a series of washes at RT: 70% ethanol for 15 min, 90% ethanol for 15 746 

min, 100% ethanol 2x for 15 min each, 100% methanol 2x for 15 min each. Samples can then be 747 

stored at -20°C for several weeks. Samples are washed 2x for 15 min in 100% ethanol at RT 748 

before being permeabilized for 30 min in 50% Histo-Clear II / 50% EtOH at RT. Then they are 749 

incubated 2x for 30 minutes in a solution of 100% Histo-Clear II at RT. Each time, vacuum is 750 

applied for the first 10 minutes. 751 

 752 

Samples are rehydrated through a series of washes: 50% Histo-Clear II / 50% EtOH for 15 min, 753 

100% EtOH for 15 min, 50% EtOH / 50% DPBS-T (0.1% Tween20, 1x DPBS) for 15 min (roots 754 

will float up then settle after a few minutes), 100% DPBS-T 2x for 15 min (roots will float up again). 755 

Samples are incubated with Proteinase K (0.1 M Tris-HCl (pH 8), 0.05 M EDTA (pH 8), Proteinase 756 

K 80 μg ml−1 final) at RT under vacuum for 5 min  then digested with Proteinase K for 25 min in a 757 

37°C water bath with manual agitation every 5-10 minutes (roots should turn a little yellow after 758 

this step). Samples are washed 2x for 15 min in DPBS-T at RT then incubated with Fixative II (4% 759 

formaldehyde in DPBS-T) under gentle vacuum for 10 min then in a tube revolver for 30 mins at 760 

RT. They are then washed 2x for 15 min each in DPBS-T at RT. Roots are aliquoted into 2 mL 761 

Eppendorf tubes and incubated in 500 μL of HCR Probe Hybridization Buffer, vacuum is applied 762 

for 10 mins then roots are incubated for 1 hour at 37°C in a thermomixer with agitation (1000 763 

rpm). 764 

 765 

Samples can then be stored in Probe Hybridization Buffer at -20°C up to several weeks. 766 

Probe buffers are made by adding 0.8 pmol of each probe set (e.g. 2 μL of the 1 μM stock) to 500 767 

μL of HCR Probe Hybridization Buffer at 37°C. Pre-hybridization solution is removed and replaced 768 

with probe solution. Samples are hybridized by incubating overnight (~20h) at 37°C in a 769 

thermomixer with agitation (1000 rpm). The following day, excess probes are removed by washing 770 

4x for 15 min each with 1 mL of HCR Probe Wash Buffer at 37°C in a thermomixer with agitation. 771 

Samples are washed 2x for 5 min each with 1 mL of 5x SSC-T (25% 20x SSC, 0.1% Tween20) 772 

at RT in a thermomixer with agitation. SSC-T is replaced with 500 μL of amplification buffer, gentle 773 

vacuum is applied in a fume hood for 10 minutes and then samples are pre-amplified by incubating 774 

in a tube rotator at RT for 50 min. While samples pre-amplify, 6 pmol of hairpin h1 and 6 pmol of 775 

hairpin h2 (i.e. 5 μL of the 3 μM stocks) are prepared, each in its own separate tube. Hairpins are 776 

snap-cooled by heating at 95°C for 90 seconds then kept in a dark drawer at RT for 30 min. 777 

Amplification solution is prepared by combining snap-cooled h1 and h2 hairpins in 250 μL of HCR 778 

Amplification Buffer at RT. Pre-amplification solution is removed and and replaced with 779 

amplification buffer containing hairpin solution overnight (~20h) in the dark at RT in a thermomixer 780 

with agitation (1000 rpm). Excess hairpins are removed by washing with 1 mL of 5x SSC-T at RT 781 

in a thermomixer with agitation, 2x for 5 min each, then 2x for 30 min each, 1x for 5 min. Samples 782 

are transferred onto a glass slide (in 5x SSC-T) and cut using a 30° microscalpel and arranged 783 

so that the cut face of the roots is facing upwards. They are then covered  with coverslip and 784 

imaged on confocal microscope. 785 

Spatial transcriptomics: 786 

Tissue fixation and embedding was performed as described in49.  787 

 788 



Sample slide preparation: Formaldehyde-fixed paraffin-embedded tissue sections (10 µm) were 789 

placed within capture areas on Resolve Bioscience slides and incubated on a hot plate for 10 min 790 

at 60 °C to attach the samples to the slides. Slides were treated to allow deparaffinization, 791 

permeabilization, acetylation, and refixation. After complete dehydration of the samples, a few 792 

drops of SlowFade-Gold Antifade reagent (Invitrogen) were added to the sections and covered 793 

with a thin glass coverslip to prevent damage during shipment to Resolve BioSciences (Germany).  794 

 795 

Sample pre-treatment and priming: In preparation for hybridization, the coverslip is removed 796 

and the mounting reagent is washed twice in 1x PBS for 30 min 4 °C, followed by one min washes 797 

in 50% Ethanol and 70% Ethanol at room temperature. Samples were primed, after the aspiration 798 

of ethanol, by the addition of buffer BST1 for optimal hybridization of probes during the Molecular 799 

CartographyTM procedure, which uses a combination of probes and single-molecule fluorescence 800 

in-situ hybridization to identify 100 separate transcripts. Tissues were hybridized overnight at a 801 

constant temperature with all probes specific to the target genes. Samples were washed the next 802 

day to remove excess probes and fluorescently labeled in a two-step procedure. Regions of 803 

interest were imaged as described below and fluorescent signals were removed after imaging via 804 

a decolorization procedure. Color development, imaging, and decolorization were repeated over 805 

several cycles to develop a unique combinatorial code for every target gene that was derived from 806 

raw images as described below. 807 

 808 

Probe design: The probes for 100 genes were designed based on full-length protein-coding 809 

transcript sequences (Supplementary Table 9). Probe design is based the manufacturer’s 810 

proprietary algorithm, with probes available from the Resolve. After screening to generate probe 811 

candidates and discard ambiguous ones, the probes were mapped to the background 812 

transcriptome using ThermonucleotideBLAST, and probes with stable off-target hits were 813 

discarded.  814 

 815 

Imaging: Samples were imaged on a Zeiss Celldiscoverer 7, using the 50x Plan Apochromat 816 

water immersion objective with an NA of 1.2 and the 0.5x magnification changer, resulting in a 25x 817 

final magnification. Standard CD7 LED excitation light source, filters, and dichroic mirrors were 818 

used together with customized emission filters optimized for detecting specific signals. Excitation 819 

time per image was fixed at 1000 ms for each channel, 20 ms for DAPI, and 1 ms for Calcofluor 820 

White. A z-stack was taken at each region with a distance per z-slice according to the Nyquist-821 

Shannon sampling theorem. A custom CD7 CMOS camera (Zeiss Axiocam Mono 712, 3.45 µm 822 

pixel size) was used. The imaging for the cell-wall specific stain, Calcofluor White, was done at 823 

the end of all primary imaging. Before the preprocessing of the images, all images were corrected 824 

for background fluorescence. Based on the raw data image, the 20% darkest local pixel values 825 

and positions were determined and copied to a new empty image (background image) having the 826 

same size as the image to be corrected. The remaining 80% of pixels of the background image 827 

were generated based upon the surrounding existing pixel values using a distance-weighted 828 

average value. Finally, the background-corrected image (bc-image) was created by subtracting 829 

the background image values from the raw data image values. 830 

 831 

Extraction of features: In the first step, a target value for the allowed number of maxima was 832 

calculated based on the area of the slice in µm² multiplied by an empirically optimized factor 833 

(0.5x). The resulting target value was used to adapt the threshold for the algorithm iteratively 834 

searching local 2D-maxima. The threshold leading to the closest number of maxima equal to or 835 

smaller than the target value was used for further steps and the respective maxima were stored 836 

in a reiterative process for every image slice independently. Maxima that did not have a 837 

neighboring maximum in an adjacent slice (termed as z-group) within a radius of one pixel were 838 

excluded. For the resulting list of maxima, the absolute brightness (Babs), the local background 839 



(Bback), and the average brightness of the pixels surrounding the local maximum (Bperi) were 840 

measured and stored. The resulting maxima list was further filtered in an iterative loop by adjusting 841 

the allowed thresholds for (Babs-Bback) and (Bperi-Bback) to reach a feature target value based 842 

on the total volume of the 3D image. Only maxima still in a z-group with a size of at least 2 passed 843 

this stringent filter step. Each z-group was counted as one hit and the members of the z-groups 844 

with the highest absolute brightness were used as features to resemble 3D point clouds. 845 

 846 

Determination of transformation matrices, pixel evaluation, and decoding: To align the raw 847 

data images from different imaging rounds, these images had to be corrected for the 6 degrees 848 

of freedom in 3D-space The extracted feature point clouds were used to find the transformation 849 

matrices to align the raw data images. Based on the transformation matrices, the corresponding 850 

images were processed by a rigid transformation using trilinear interpolation. The aligned images 851 

were used to create a profile for each pixel, which were then filtered for a variance from zero 852 

normalized by the total brightness of all pixels in the profile. Matched pixel profiles with the highest 853 

score were assigned as an ID to the pixel to further group the neighboring pixel with the same ID. 854 

The local 3D-maxima of the groups were determined as potential final transcript locations, which 855 

were additionally evaluated by the number of maxima in the raw data images where a maximum 856 

was expected. The finalized maxima were decoded by the fit to the corresponding code to be 857 

written to the results file and considered to resemble transcripts of the corresponding gene. The 858 

ratio of signals matching to codes used in the experiment and signals matching to codes not used 859 

in the experiment were used as estimation for specificity (false positives). Final image analysis 860 

was performed in ImageJ using the Polylux tool plugin from Resolve BioSciences to examine 861 

specific Molecular Cartography signals. 862 

 863 

All R scripts related to models and statistical analyses are available upon request. 864 

 865 

All raw RNA-seq data will be deposited in GEO upon publication. 866 

 867 

 868 

 869 
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