[1] Nilagiri Balasubramanian, K. B., & Ramesh, T. (2018). The role, effect, and influences of micro and nano-fillers on various properties of polymer matrix composites for microelectronics: A review. Polymers for Advanced Technologies, 29(6), 1568–1585. doi:10.1002/pat.4280
[2] Han, S., Meng, Q., Pan, X., Liu, T., Zhang, S., Wang, Y, Araby, S. (2019). Synergistic effect of graphene and carbon nanotube on lap shear strength and electrical conductivity of epoxy adhesives. Journal of Applied Polymer Science, 48056. doi:10.1002/app.48056
[3] Du, X., Xu, F., Liu, H.-Y., Miao, Y., Guo, W.-G., & Mai, Y.-W. (2016). Improving the electrical conductivity and interface properties of carbon fiber/epoxy composites by low-temperature flame growth of carbon nanotubes. RSC Advances, 6(54), 48896–48904. doi:10.1039/c6ra09839h
[4] Bao, H.-D., Guo, Z.-X., & Yu, J. (2008). Effect of electrically inert particulate filler on the electrical resistivity of polymer/multi-walled carbon nanotube composites. Polymer, 49(17), 3826–3831. doi:10.1016/j.polymer.2008.06.024
[5] Jin-Ping Peng, Hui Zhang, Long-Cheng Tang, Yu Jia, and Zhong Zhang(2012): Dielectric Properties of Carbon Nanotubes/Epoxy Composites, Journal of Nanoscience and Nanotechnology Vol. 12, 1–6, doi:10.1166/jnn.2012.6041
[6] Yeo H, Md IA, You NH(2017). Characteristic correlation between liquid crystalline epoxy and alumina filler on thermal conducting properties. Compos Sci Technol, 141:99‐105. https://doi.org/10.1016/j. compscitech.2017.01.01
[7] Ma, P.-C., Liu, M.-Y., Zhang, H., Wang, S.-Q., Wang, R., Wang, K., … Kim, J.-K. (2009). Enhanced Electrical Conductivity of Nanocomposites Containing Hybrid Fillers of Carbon Nanotubes and Carbon Black. ACS Applied Materials & Interfaces, VOL. 1, NO. 5,1090–1096
[8] Lee GW, Lee JI, Lee SS, Park M, Kim J. Comparisons of thermal properties between inorganic filler and acid-treated multiwall nanotube/polymer composites. J Mater Sci 2005;40(5):1259e63.
[9] Amr IT, Al-Amer A, Al-Harthi M, Girei SA, Sougrat R, Atieh MA. Effect of acid treated carbon nanotubes on mechanical, rheological and thermal properties of polystyrene nanocomposites. Compos Part B Eng 2011;42(6):1554e61.
[10] Park SJ, Jeong HJ, Nah C. A study of oxyfluorination of multi-walled carbon nanotubes on mechanical interfacial properties of epoxy matrix nanocomposites. Mater Sci Eng A 2004;385(1):13e
[11] Zhi C, Bai X, Wang E. Enhanced field emission from carbon nanotubes by hydrogen plasma treatment. Appl Phys Lett 2002;81(9):1690e2.
[12] Ge Y, Li Z, Xiao D, Xiong P, Ye N. Sulfonated multi-walled carbon nanotubes for the removal of copper (II) from aqueous solutions. J Ind Eng Chem 2014;20(4): 1765e71.
[13] Male KB, Hrapovic S, Liu Y, Wang D, Luong JH. Electrochemical detection of carbohydrates using copper nanoparticles and carbon nanotubes. Anal Chim Acta 2004;516(1):35e41.
[14] Ma, Y., Wu, D., Liu, Y., Li, X., Qiao, H., & Yu, Z.-Z. (2014). Electrically conductive and super-tough polypropylene/carbon nanotube nanocomposites prepared by melt compounding. Composites Part B: Engineering, 56, 384–391. doi:10.1016/j.compositesb.2013.08.026
[15] Dorigato. Giusti.G, Bondioli., Pegoretti(2013): Electrically conductive epoxy nanocomposites containing carbonaceous fillers and in-situ generated silver nanoparticles, eXPRESS Polymer Letters Vol.7, No.8,673–682
[16] Marcq, F. and Demont, Philippe and Monfraix, P. and Peigney, Alain and Laurent, Christophe and Falat, T. and Courtade, F. and Jamin, T(2011): Carbon nanotubes and silver flakes filled epoxy resin for new hybrid conductive adhesives, Microelectronics Reliability, vol. 51 (n° 7). pp. 1230- 1234. ISSN 0026-2714
[17] Xin, F., & Li, L. (2011). Decoration of carbon nanotubes with silver nanoparticles for advanced CNT/polymer nanocomposites. Composites Part A: Applied Science and Manufacturing, 42(8), 961–967. doi:10.1016/j.compositesa.2011.03.024
[18] Fortunati, E., D’Angelo, F., Martino, S., Orlacchio, A., Kenny, J. M., & Armentano, I. (2011). Carbon nanotubes and silver nanoparticles for multifunctional conductive biopolymer composites. Carbon, 49(7), 2370–2379. doi:10.1016/j.carbon.2011.02.004
[19] Oluwalowo, A., Nguyen, N., Zhang, S., Park, J. G., & Liang, R. (2019). Electrical and thermal conductivity improvement of carbon nanotube and silver composites. Carbon. doi:10.1016/j.carbon.2019.01.073
[20] Kumari Jyoti, Mamta Baunthiyal, Ajeet Singh(2016): Characterization of silver nanoparticles synthesized using Urtica dioica Linn. leaves and their synergistic effects with antibiotics, journal of Ra d i a t i o n Research and Ap p l i e d S c i e n c e s 9, 2 1 7-2 2 7
[21] Islam, M. S., Naz, A. N., Alam, M. N., Das, A. K., & Yeum, J. H. (2020). Electrospun poly(vinyl alcohol)/silver nanoparticle/carbon nanotube multi-composite nanofiber mat: Fabrication, characterization and evaluation of thermal, mechanical and antibacterial properties. Colloid and Interface Science Communications, 35, 100247. doi:10.1016/j.colcom.2020.100247
[22] Vidhu, V. K., Aromal, S. A., & Philip, D. (2011). Green synthesis of silver nanoparticles using Macrotyloma uniflorum. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 83(1), 392–397. doi:10.1016/j.saa.2011.08.051
[23] Bose, D., & Chatterjee, S. (2015). Antibacterial Activity of Green Synthesized Silver Nanoparticles Using Vasaka (Justicia adhatoda L.) Leaf Extract. Indian Journal of Microbiology, 55(2), 163–167. doi:10.1007/s12088-015-0512-1
[24] Sunderam, V., Thiyagarajan, D., Vishal Lawrence, A., Sameer Shaik Mohammed, S., & Selvaraj, A. (2018). In-vitro antimicrobial and anticancer properties of green synthesized gold nanoparticles using Anacardium occidentale leaves extract. Saudi Journal of Biological Sciences. doi:10.1016/j.sjbs.2018.12.001
[25] Singhal GR, Bhavesh K, Kasariya AR, Sharma R, Singh P (2011) Biosynthesis of silver nanoparticles using Ocimum sanctum (Tulsi) leaf extract and screening its antimicrobial activity. J Nanoparticle Res 13:2981–2988. doi:10.1007/s11051-010- 0193-y
[26] Amkamwar B, Damle C, Ahamad A, Sastry M (2005) Biosynthesis of gold and silver nanoparticles using Emblica officinails fruit extract, their phase transfer and transmetallation in an organic solution. J Nanosci Nanotechnol 5:1665–1671. doi:10.1166/jnn.2005.184
[27] Huang J, Li Q, Sun D, Lu Y, Su Y, Yang X, Wang H, Wang Y, Shao W, He N, Hong J, Chen C (2007) Biosynthesis of silver and gold nanoparticles by novel sun dried Cinnamomum camphora leaf. Nanotechnology 18:105104–105115. doi:10.1088/0957- 4484/18/10/105104
[28] Panacek A, Kvitek L, Prucek R, Kolar M, Vecerova R, Pizurova N (2006) Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J Phys Chem B 110:16248–16253. doi:10.1021/jp063826h
[29] Shankar SS, Rai A, Ahmad A, Sastry M (2004) Rapid synthesis of Au, Ag, and bimetallic Au core–Ag shell nanoparticles usingNeem (Azadirachta indica) leaf broth. J Colloid Interface Sci 275:496–502. doi:10.1016/j.jcis.2004.03.003
[30] Chandran SP, Chaudhary M, Pasricha R, Ahmad A, Sastry M (2006) Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract. Biotechnol Prog 22:577–588.doi:10.1021/bp0501423
[31] Xiao Min Zhang, Xiao Li Yang, and Kun Yan Wang(2019): Electrical Conductivity Enhancement of Epoxy by Hybrid Carbon Nanotubes and Self-made Silver Nanoparticles, Fibers and Polymers Vol.20, No.7, 1480-1485
[32] Li, X.-H., He, Y., Li, X., An, F., Yang, D., & Yu, Z.-Z. (2017). Simultaneous Enhancements in Toughness and Electrical Conductivity of Polypropylene/Carbon Nanotube Nanocomposites by Incorporation of Electrically Inert Calcium Carbonate Nanoparticles. Industrial & Engineering Chemistry Research, 56(10), 2783–2788. doi:10.1021/acs.iecr.7b00446
[33] Xin, F., & Li, L. (2011). Decoration of carbon nanotubes with silver nanoparticles for advanced CNT/polymer nanocomposites. Composites Part A: Applied Science and Manufacturing, 42(8), 961–967. doi:10.1016/j.compositesa.2011.03.024
[34] Ma, P. C., Tang, B. Z., & Kim, J.-K. (2008). Effect of CNT decoration with silver nanoparticles on the electrical conductivity of CNT-polymer composites. Carbon, 46(11), 1497–1505. doi:10.1016/j.carbon.2008.06.048
[35] Karthik Babu Nilagiri Balasubramanian Thillaigovindan Ramesh(2018): Role, effect, and influences of micro and nano‐fillers on various properties of polymer matrix composites for microelectronics: A review, Polym Adv Technol.;1–18.
[36] Mohd Radzuan NA, Yusuf Zakaria M, Sulong AB, Sahari J(2017): The effect of milled carbon fiber filler on electrical conductivity in highly conductive polymer composites. Compos Part B Eng;110:153‐160. https://doi.org/10.1016/j. composites.2016.11.021
[37] Hamed Tanabia, and Merve Erdala(2019): Effect of CNTs dispersion on electrical, mechanical and strain sensing properties of CNT/epoxy nanocomposites, Results in Physics 12, 486–503
[38] Zhang, X. M., Yang, X. L., & Wang, K. Y. (2019). Electrical Conductivity Enhancement of Epoxy by Hybrid Carbon Nanotubes and Self-made Silver Nanoparticles. Fibers and Polymers, 20(7), 1480–1485. doi:10.1007/s12221-019-8640-6