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Abstract

Objectives: This paper developed federated solutions based on two approximation
algorithms to achieve federated generalized linear mixed effect models (GLMM).
The paper also proposed a solution for numerical errors and singularity issues.
And compared the developed model’s outcomes with each other, as well as that
from the standard R package (‘lme4’).
Methods: The log-likelihood function of GLMM is approximated by two
numerical methods (Laplace approximation and Gaussian Hermite
approximation), which supports federated decomposition of GLMM to bring
computation to data. To solve the numerical errors and singularity issues, the
loss-less estimation of log-sum-exponential trick and the adaptive regularization
strategy was used to tackle the problems caused by federated settings.
Results: Our proposed method can handle GLMM to accommodate hierarchical
data with multiple non-independent levels of observations in a federated setting.
The experiment results demonstrate comparable (Laplace) and superior
(Gaussian-Hermite) performances with simulated and real-world data.
Conclusion: We modified and compared federated GLMMs with different
approximations, which can support researchers in analyzing versatile biomedical
data to accommodate mixed effects and address non-independence due to
hierarchical structures (i.e., institutes, region, country, etc.).

Keywords: GLMM; Federated learning; Mixed effects; Laplace approximation;
Gauss-Hermite approximation

Introduction
Background

There is an increasing surge of interest in analyzing biomedical data to improve

health. Biostatisticians and machine learning researchers are keen to access personal

health information for a deeper understanding of diagnostics, disease development,

and potential preventive or treatment options [1].

In the US, healthcare and clinical data are often collected by local institutions.

For many situations, combining these datasets would increase statistical power in

hypothesis testing and provide better means to investigate regional differences and

subpopulation bias (e.g., due to differences in disease prevalence or social deter-

minants). However, such an information harmonization process needs to respect

the privacy of individuals, as healthcare data contain sensitive information about

personal characteristics and health conditions. As a minimum requirement, HIPAA

(Health Insurance Portability and Accountability Act)[2] specifies PHIs (protected
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health information) and regulations to de-identify the sensitive information (i.e.,

safe harbor mechanism). But HIPAA compliance does not mean full protection of

the data, as several studies demonstrated re-identifiability of HIPAA de-identified

data [3, 4, 5]. Ethical healthcare data sharing and analysis should also respect the

“minimum necessary” principle to reduce the unnecessary risk of potential data

leakage, which might increase the likelihood of information leakage.

Figure1.png

Figure 1 Schema of federated learning model in multiple geographically distributed healthcare
institutions. The local institutions periodically exchange intermediate statistics and update the
convergence situation of the global model.

The recent development of federated learning, which intends to build a shared

global model without moving local data from their host institutions (Fig. 1), shows

good promise in addressing the challenge in data sharing mentioned above. Despite

the exciting progress, there is still an important limitation as existing models can-

not effectively handle mixed-effects (i.e., both fixed and random effects), which is

very important to analyzing non-independent, multilevel/hierarchical, longitudinal,

or correlated data. Also, due to the sampling errors (i.e., smaller sample size in

local sites), variances from these local statistics are larger than those of the global

model. These issues, if not addressed appropriately, would lead to failure in global

optimization. The goal of this paper is to improve existing techniques and provide

practical solutions with open-source implementation and to allow ordinary biomed-

ical/healthcare researchers to build federated mixed effect learning models for their

studies.

Related Work

Federated learning for healthcare data analysis is not a new topic, and there have

been many previous studies. However, most of the existing methods assume the

observations are independent and identically distributed[6, 7]. In the presence of

non-independence due to hierarchical structures (e.g., due to institutional or re-

gional differences), existing federated models have strong limitations in ignoring

the regional differences. The generalized linear mixed model (GLMM), which takes

the heterogeneous factors into consideration, is more amenable to accommodate

the heterogeneity across healthcare systems. There have been very few studies in

this area and one relevant work is a privacy-preserving Bayesian GLMM model[8],

which proposed an Expectation-Maximization (EM) algorithm to fit the model col-

laboratively on horizontally partitioned data. The convergence process is relatively

slow (due to the Metropolis–Hastings sampling in the E-step) and it is also not

very stable (likely to be trapped in local optima[9] in high-dimensional data). In

the experiment, a loose threshold (i.e., 0.08) was used as a convergence condition

[8] while typical federated learning algorithms [10] in healthcare use much stringent

convergence threshold (i.e., 10−6).

Another related work to fit GLMM in a federated manner is the distributed pe-

nalized quasi-likelihood (dPQL) algorithm[11]. This algorithm reduces the compu-

tational complexity by considering the target function of penalized quasi-likelihood,
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which is motivated from Laplacian approximation. The model has communication

efficiency over the EM approach and can converge in a few shots. However, the

target function PQL can have first order asymptotic bias [12] due to the Laplacian

approximation of the integrated likelihood.

There is an alternative strategy, Gauss-Hermite (GH), which supports high-order

approximation. It is computationally more intensive and requires special techniques

to handle the numerical instability of the logSumExp operation (due to the overflow

issue when the dimensionality grows in the sum of the exponential terms). We will

explain both models in this manuscript and compare their performance on simulated

and real-world data.

Methods
In this section, we will discuss the statistic model along with challenges to be tackled.

A high-level schema of the method is shown in algorithm 1.

Notation

Before we introduce the formation of GLMM, let us define some notations.

i Index of sites li Log-likelihood function for site i
j Index of patients in a specific site β Parameters of fixed effect
k Index of Hermite polynomial µi Parameters of random effect in site i
K Order of Hermite polynomial τ Hyper-parameters
m Number of sites θ Parameter space (β, τ)

ni Number of patients in site i Xij
A vector represents the data of j-th
patient in i-th site

Li Likelihood function for site i yij The outcome of patient j from site i
λ The parameter of regularization term p Number of variables

Fitting GLMM with quasi-likelihood

Let us provide the formation of the GLMM. Define P is the distribution of interest

and depending on patient-level data Xij , yij . Define φ as the distribution of random

effects. We can compose the joint distribution as following

ni
∏

j=1

P(θ|Xij , yij)φ(µi; τ)

Now we have the log-likelihood function of the joint distribution:

log{L(θ)} =

m
∑

i=1

log







∫

µi





ni
∏

j=1

P(θ|Xij , yij)



φ(µi; τ)dµi







(1)

From the log-likelihood function Eq. (1), one can see that it does not support

direct linear decomposition. In order to support federated learning, we will leverage

approximation strategies to make the objective linearly decomposable with simple

summary statistics.

We will compare Laplace approximation and Gauss-Hermite approximation in the

following sections.
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Laplace (LA) approximation

With the help of Laplace approximation, the integration from Eq.(1) can be ap-

proximated by an exponential family expression.

∫

µi

fθ(µi)dµi =

∫

µi

elog fθ(µi)dµi ≜

∫

µi

eg(µi,θ)dµi (2)

After the deduction in Appendix Supplementary proofs A.1, the intractable problem

is solved and the objective is to maximize the following formula with respect to θ,

where g is an exponential family function defined above (Eq.(2))

ni
∑

i=1

(

g(µ̂i,θ)−
ni

2
log (gµµ(µ̂i,θ)))

)

, for which the terms are linearly decomposable from local sites. Site i needs to

calculate the following aggregated data:

• p× p matrix:

ω̂ββω̂ − ω̂βω̂β

ω̂2
+ µ̂ββgµ + µ̂β(µ̂βgµµ + gµβ) + µ̂βgµβ + gββ (3)

• p - dim vector:

ω̂β

ω̂
+ ω̂2gµβ(µ̂i)gµ + gβ (4)

• scalar of random effect: µ̂i and first order derivative of τ by

ω̂τ

ω̂
+ ω̂2gµτ (µ̂i)gµ + gτ

where ω̂ =

√

− 1

gµµ(µ̂i0)

Gauss-Hermite (GH) approximation

Gauss-Hermite approximation [13] implements Hermite interpolation concerning

Eq. (2). And after the deduction in Appendix Supplementary proofs A.2, notice that

when the order of Hermite polynomial K = 1, the objective function is identical

to the method with Laplace approximation. Because GH is more generalizable, we

will describe the distributed federated learning model on the GLMM problem with

the formation of Gauss-Hermite approximation in Appendix Supplementary proofs

A.2 Eq.(2). For each site i, the followings need to calculate and transmit:

• p× p matrix:

ω̂ββω̂ − ω̂βω̂β

ω̂2
+

1
∑K

k=1 fk

K
∑

k=1

∂

∂β
(fkµ

µ̂β + fkω
ω̂β + fkβ

)

− 1

(
∑K

k=1 fk)
2
∥

l
∑

k=1

(fkµ
µ̂β + fkω

ω̂β + fkβ
)∥22 (5)
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• p - dim vector:

ω̂β

ω̂
+

1
∑K

k=1 fk

K
∑

k=1

(fkµ
µ̂β + fkω

ω̂β + fkβ
) (6)

• scalar of random effect: µ̂i and first order derivative of τ by

ω̂τ

ω̂
+

1
∑K

k=1 fk

K
∑

k=1

(fkµ
µ̂τ + fkω

ω̂τ + fkτ
)

Training Penalization GLMM with GH approximation

The convergence of the approximation of the likelihood function may be compro-

mised due to over-fitting. Also, for those spatially correlated data, the convergence

of them may lead to a complex model. Hence, L2 regularization is added to the

local log-likelihood function of Gauss-Hermite approximation form, and as shown

below

li = logLi = log

(

√
2πω̂

K
∑

k=1

hk exp
{

g(µ̂i +
√
2πω̂xk;θ) + x2

k

}

)

− λ∥β∥22 (7)

note that when K = 1, it is represented as regularized Laplace approximation to

the problem. To evaluate and find the optimum λ, we steadily increased the value

of λ in range [0, 10] by 1. Set λopt as the optimized regularization term with largest
∑m

i li. And choose β̂opt as the optimized estimator for β.

Due to the limited computation digits, computers are not able to calculate the cor-

rect results of the local log-likelihood function li of the Gauss-Hermite approxima-

tion form as stated above. Such problem is also known as the Log-Sum-Exponential

problem and can be solved by shifting the center of the exponential sum for easier

computation,

log

K
∑

k=1

exp
{

g(µ̂i +
√
2πω̂xk;θ) + x2

k

}

= a+log

K
∑

k=1

exp
{

g(µ̂i +
√
2πω̂xk;θ) + x2

k − a
}

where a is an arbitrary number.

Thus, the global problem of maximizing
∑m

i li can be divided into several local

maximization problems Eq. (7). Each local site i will update the regression interme-

diates, and they will be combined to update the iteration status. Specifically, in each

iteration of the federated GLMM algorithm, the following statistics are exchanged

from each site to contribute aggregated data for the global model

LA GH
number of variables p number of variables p
p× p matrix (Eq. (3)) p× p matrix (Eq. (5))
p - dim vector (Eq. (4)) p - dim vector (Eq. (6))
p - dim vector β p - dim vector β
scalar λ scalar λ
scalar µ̂i scalar µ̂i

scalar first order derivative τ scalar first order derivative τ
scalar K
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Detailed derivatives with the logistic regression setting of the optimization are

presented in the Appendix Supplementary proofs A.3.

Algorithm 1: Distributed GLMM with approximation methods

Data: Local data Xi from site i

Result: Global model with coefficients β̂global, test P-values, upper and

lower bound

Initialization: coefficients β, random effects µi and τ , regularization term λ;

for λ = 0 to 10 do

while ∆µ ̸= 0 do
Maximized µi with respect to θ

while ∆θ ̸= 0 do
1. Approximate the log-likelihood functions lapprox with Laplace or

Gauss-Hermite;

2. Calculate intermediate statistics. For Laplace, Eq. (3), (4); for

Gauss-Hermite, Eq. (5), (6);

3. Send the intermediate statistics to center server, and then the

center server will aggregate them;

4. Update θ and lapprox(θ, λ) in center server and send back to

each client i;

end

end

end

Return: The largest lapprox(θ̂, λ̂), the coefficients β̂global = β̂,

hyperparameter τ̂ , and the regularization term λ̂

Results
Our algorithm is developed in Python with packages pandas, numpy, scipy, and the

benchmark algorithm is glmer function in R package ‘lme4’.

Benchmarking the methods using synthetic data

To test the performance of our proposed methods, we first designed a stress test

based on a group of synthetic data, which include 8 different settings (Tab.1), and

each set contains 20 datasets. In each dataset, it consists of 4 categorical variables

with value in {0, 1}; 6 categorical variables with value in range [−1, 1.5] ∈ R; 1

outcome variable with value in {0, 1}; Site ID, represents the id of which site the

entry belongs to; Site sample size, represents the number of samples in this specific

setting; Log-odds ratio for each sample; Number of true positive, true negative, true

positive, false positive, false negative.

To evaluate which method can reach better performance, we proposed the follow-

ing evaluation measurements: discrimination of the estimated coefficients β̂, the test

power of each coefficient, and the precision and recall of the number of significant

coefficients.

The valuation experiments were conducted among federated GLMM with Laplace

approximation, federated GLMM with Gauss-Hermite approximation, and central-

ized GLMM (all of the data stored in single host) in the R package. And the stress

test will be run in 160 different datasets in 8 different settings as mentioned in
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Table 1 The summary of data in each setting.

Setting
Number of

sites
Sample size
in each site

variance

1 2 500 small
2 2 500 large
3 10 500 small
4 10 500 large
5 2 30 small
6 2 30 large
7 10 30 small
8 10 30 large

Tab.1. All of the data in different settings were randomly separated into training

sets and validation sets with a ratio of 7:3. And we trained the federated learning

model on training data sets, then by slowly increasing the regularization term λ, we

chose the optimum model with the best Akaike information criterion and Bayesian

information criterion performance on the validation sets. All testing was performed

on 2017 iMac with 16 GB memory, CPU (4.2 GHz Quad-Core Intel Core i7), macOS

Big Sur version 11.6, Python 3.8, and R version 3.5.0.

Although we tested the data sets with the state-of-art benchmark algorithm for

centralized GLMM in R, the regression is not perfect for the ground truth coeffi-

cients we used to generate the data (Fig.2). So, it is also important to have the

P-values of variables into consideration when interpreting the model. Thus, We

made comparisons among centralized GLMM, Laplace method, and Gauss-Hermite

method concerning the p-values of coefficients. Supplementary Tab.1, 2, 3 in the

Appendix B captured the performance of different methods. Fig.3 shows the preci-

sion and recall results of centralized, Laplace, and Gauss-Hermite methods. Noted

that we set our Gauss-Hermite approximation to 2-degree.

Figure2.png

Figure 2 The difference from coefficients to the true parameters that are used to generate
data. (Left) The distributed GLMM with Laplace approximation; (Middle) The distributed GLMM
with 2-degree Gauss-Hermite approximation. Reminds that X1 is the intercept; (Right) The
benchmark of centralized GLMM in R package.

Figure3Left.png Figure3Right.png

Figure 3 The precision and recall among centralized, Laplace, and Gauss-Hermite method
under significance level α = 0.05. (Left) The precision of the test compared to the true value.
(Right) The recall of the test compared to the true value.

Figure4.png

Figure 4 The curve of test power among centralized, Laplace, and Gauss-Hermite methods.
(Left) The power of the test of the Laplace method. (Middle) The power of the test of the
2-degree Gauss-Hermite method. (Right) The power of the test of the Centralized method. Power
was calculated as the two-sided t-test on p-values among different methods.

The simulation results showed the federated Gauss-Hermite approximation per-

formed better than the method based on Laplace approximation on every vari-

able. Also, the federated Gauss-Hermite method achieved higher test power (Fig.4).
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Table 2 The convergence rates on approximation methods LA and GH. (Both LA and GH held the
same convergence threshold 10−3. The mean values and standard deviations (in parentheses) were
given)

LA GH
Setting Steps Runtime (s) Steps Runtime (s)

1 22.875 (21.623) 47.953 (20.513) 34.850 (9.213) 104.460 (10.614)
2 21.500 (21.977) 40.947 (36.466) 35.000 (8.711) 100.940 (19.940)
3 29.867 (31.719) 108.931 (65.486) 34.900 (6.138) 1259.285 (231.956)
4 27.846 (24.034) 84.343 (76.502) 36.650 (6.310) 1342.695 (250.603)
5 59.722 (42.057) 10.631 (3.945) 33.750 (10.146) 12.568 (2.116)
6 67.188 (48.994) 10.499 (4.054) 31.400 (11.081) 11.430 (3.064)
7 96.286 (53.635) 96.501 (38.632) 37.450 (3.818) 369.165 (41.998)
8 116.083 (46.479) 91.304 (62.410) 37.150 (4.295) 309.693 (36.621)

When considering the convergence rates between the two approximation methods,

both showed less convergence efficiency in Setting 7 and 8 (Tab.2). The result Indi-

cates that more local sites and smaller sample sizes will make the federated GLMM

more inefficient to converge. Also, GH approximation method will required more

computation time compared with LA approximation. In sum, one-degree increase

of the approximation function in LA with our developed GH method, GH outper-

formed LA methods for federated GLMM implementation.

Mixed-effects logistic regression on mortality for patients with COVID-19

We analyzed the data of COVID-19 electronic health records collected by Optum®

from February 2020 to January 28, 2021, from a network of healthcare providers.

The dataset has been de-identified and based on HIPAA statistical de-identification

rules and managed by Optum® customer data user agreement. In this database,

there are 56,898 unique positive tested COVID-19 patients. After removing the

patients with missing data, the final cohort contains 4,531 patients who died and

the rest population (41,781) survived. The database contains a regional variable

with five levels (Midwest, Northwest, South, West, Others/unknown) to provide

privacy-preserving area information to indicate where the samples were collected.

We have conducted a GLMM model (considering region-distinct random effect)

using this dataset with the following predictors: age, gender, race, ethnicity, Chronic

obstructive pulmonary disease (COPD), Congestive heart failure (CHF), Chronic

kidney disease (CKD), Multiple sclerosis (MS), Rheumatoid arthritis (RA), LU

(other lung diseases), High blood pressure (HTN), ischemic heart disease (IHD),

diabetes (DIAB), Asthma (ASTH), obesity (Obese). Our proposed method with

GH approximation performed the best with both the smallest Akaike information

criterion (AIC) and Bayesian information criterion (BIC) according to the table of

the goodness of fit (Tab.3). And the performance of different methods can be shown

in (Tab.4).

Table 3 Statistics of goodness of fit among different methods

Log-likelihood AIC BIC
R 13562.9 27165.9 27340.8

LA -13695.0 27428.0 27594.1
GH -11.8 61.6 227.7

We also compared the ROC curves (Fig.5) between our proposed GH method and

centralized method to check their performance. And the result showed that GH
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Figure5.png

Figure 5 The ROC curve with Area Under Curve (AUC) among centralized, Laplace, and
Gauss-Hermite methods. The orange ROC curve is the centralized method without regularization
and the Laplace approximation(i.e., R implementation in the ‘lme4’ package, which does not have
an option for including regularization). AUC values are also included, a higher AUC value
implicates better performance of the model. The green ROC curve is the 2-degree Gauss-Hermite
method with regularization.

Table 4 Statistics of performances among different methods (95% CIs were generated by Wilson
Score interval)

Precision Recall F1-score AUC threshold

Centralized
method
with LA

Value 0.1507 0.6204 0.2425 0.6789 0.0900
Lower bound (0.95) 0.1474 0.6160 0.2386 0.6700
Upper bound (0.95) 0.1539 0.6248 0.2464 0.6878

GH
with

regularization

Value 0.1705 0.6546 0.2705 0.7178 0.0108
Lower bound (0.95) 0.1670 0.6503 0.2664 0.7091
Upper bound (0.95) 0.1739 0.6589 0.2745 0.7265

approximation (AUC=0.72) outperforms the centralized method without regular-

ization (AUC=0.68). Indicating GH-based GLMM method has better classification

performance than the GLMM based on LA approximation. In our proposed model, it

showed variables: Unknown race, Chronic kidney disease (CKD), Multiple sclerosis

(MS), and other lung diseases (LU) are not significant to the mortality of COVID-

19. The result of the regression is in the Appendix B (Supplementary Tab.4, 5,

6).

Discussion
We developed solutions to address the limited digit problem (i.e., overflow issue of

fixed-length object types due to extremely large numbers in local estimation) using

an alternative loss-less estimation of log-sum-exponential term, and the singularity

issue (involved in Newton optimization) with an adaptive regularization strategy to

avoid inverting low-rank matrices without imposing too much unnecessary smooth-

ness. We further compared two federated GLMM algorithms with our developed

federated solutions (LA vs. GH) and demonstrated the performance of the feder-

ated GLMM based on the GH method surpassed the method based on LA in terms

of the accuracy of estimation, power of tests, and AUC. Although the GH method

is requiring slightly more computations than the LA method, it is still acceptable

for more accurate results. For example, in the prediction of COVID-19 mortality

rates, the accuracy of prediction will be more reliable, as we have shown in the pre-

vious section. During the optimization iterations, we noticed that some sites have

already achieved convergence in very few steps. If those sites stop communicating

with the central server, they can be released from extra computations. We would

investigate more efficient algorithms based on such a strategy of ‘lazy regression’

for minimizing communication for federated learning models.

Another limitation of the proposed federated GLMM model is not yet differen-

tially private and iterative summary statistics exchange can lead to incremental

information disclosure, which might increase the re-identification risk over time.

There are several strategies to improve the model based on secure operations like

homomorphic encryption and differential privacy, which we have previously studied
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in GLM models [14]. Finally, in practice, there can be extra heterogeneity that can-

not be explained by random intercepts only, it is of interest to further develop our

algorithms toward GLMM that allows multiple random effects including random

coefficients in the regression models.
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Additional Files

Additional file 1 — Appendix.pdf

The supplementary file contains two parts. Part A contains detailed proofs with respect to Laplace approximation

and Gauss Hermite approximation. And the derivatives of federated learning with Gauss Hermite approximation;

Part B contains tables of Performance in precision, recall, true-negative rate, and accuracy rate. Each table has

detailed explanation on a specific experiment.



Figures

Figure 1

Schema of federated learning model in multiple geographically distributed healthcare

institutions. The local institutions periodically exchange intermediate statistics and update the

convergence situation of the global model.

Figure 2

The difference from coe�cients to the true parameters that are used to generate

data. (Left) The distributed GLMM with Laplace approximation; (Middle) The distributed GLMM

with 2-degree Gauss-Hermite approximation. Reminds that X1 is the intercept; (Right) The

benchmark of centralized GLMM in R package.



Figure 3

The precision and recall among centralized, Laplace, and Gauss-Hermite method

under signi�cance level α = 0.05. (Left) The precision of the test compared to the true value.

(Right) The recall of the test compared to the true value.

Figure 4



The curve of test power among centralized, Laplace, and Gauss-Hermite methods.

(Left) The power of the test of the Laplace method. (Middle) The power of the test of the

2-degree Gauss-Hermite method. (Right) The power of the test of the Centralized method. Power

was calculated as the two-sided t-test on p-values among different methods.

Figure 5

The ROC curve with Area Under Curve (AUC) among centralized, Laplace, and

Gauss-Hermite methods. The orange ROC curve is the centralized method without regularization

and the Laplace approximation(i.e., R implementation in the ‘lme4’ package, which does not have

an option for including regularization). AUC values are also included, a higher AUC value

implicates better performance of the model. The green ROC curve is the 2-degree Gauss-Hermite

method with regularization.
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