1. A.K. Geim, K.S. Novoselov, The rise of graphene, Nat. Mater. 6 (2007) 183–191. doi:10.1038/nmat1849.
2. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, The electronic properties of graphene, Rev. Mod. Phys. 81 (2009) 109–162. doi:10.1103/RevModPhys.81.109.
3. W. Hu, Z. Li, J. Yang, W. Hu, Z. Li, J. Yang, Electronic and optical properties of graphene and graphitic ZnO nanocomposite Electronic and optical properties of graphene and graphitic ZnO nanocomposite structures, J. Chem. Phys. 124706 (2015) 124706. doi:10.1063/1.4796602.
4. F. Rezaee, F. Yousefi, F. Khoeini, Heat transfer in strained twin graphene: A non-equilibrium molecular dynamics simulation, Phys. A Stat. Mech. Its Appl. 564 (2021) 125542. doi:10.1016/j.physa.2020.125542.
5. A. Kumar, K. Sharma, A.R. Dixit, A review on the mechanical and thermal properties of graphene and graphene-based polymer nanocomposites: understanding of modelling and MD simulation, Https://Doi.Org/10.1080/08927022.2019.1680844. 46 (2019) 136–154. doi:10.1080/08927022.2019.1680844.
6. L.-B. Shi, Y.-Y. Zhang, X.-M. Xiu, H.-K. Dong, Structural characteristics and strain behavior of two-dimensional C3N : First principles calculations, Carbon N. Y. 134 (2018) 103–111. doi:10.1016/j.carbon.2018.03.076.
7. D. Kong, H. Wang, J.J. Cha, M. Pasta, K.J. Koski, J. Yao, Y. Cui, Synthesis of MoS 2 and MoSe 2 Films with Vertically Aligned Layers, Nano Lett. 13 (2013) 1341–1347. doi:10.1021/nl400258t.
8. A.J. Mannix, X.-F. Zhou, B. Kiraly, J.D. Wood, D. Alducin, B.D. Myers, X. Liu, B.L. Fisher, U. Santiago, J.R. Guest, M.J. Yacaman, A. Ponce, A.R. Oganov, M.C. Hersam, N.P. Guisinger, Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs, Science (80-. ). 350 (2015) 1513–1516. doi:10.1126/science.aad1080.
9. S. Das, M. Demarteau, A. Roelofs, Ambipolar Phosphorene Field Effect Transistor, ACS Nano. 8 (2014) 11730–11738. doi:10.1021/nn505868h.
10. J.O. Sofo, A.S. Chaudhari, G.D. Barber, Graphane: A two-dimensional hydrocarbon, Phys. Rev. B - Condens. Matter Mater. Phys. 75 (2007). doi:10.1103/PhysRevB.75.153401.
11. D.C. Elias, R.R. Nair, T.M.G. Mohiuddin, S. V. Morozov, P. Blake, M.P. Halsall, A.C. Ferrari, D.W. Boukhvalov, M.I. Katsnelson, A.K. Geim, K.S. Novoselov, Control of Graphene's Properties by Reversible Hydrogenation: Evidence for Graphane, Science (80-. ). 323 (2009) 610–613. doi:10.1126/science.1167130.
12. A.K. Singh, B.I. Yakobson, Electronics and Magnetism of Patterned Graphene Nanoroads, Nano Lett. 9 (2009) 1540–1543. doi:10.1021/nl803622c.
13. A. Rajabpour, S.M. Vaez Allaei, F. Kowsary, Interface thermal resistance and thermal rectification in hybrid graphene-graphane nanoribbons: A non-equilibrium molecular dynamics study, Appl. Phys. Lett. 99 (2011) 051917. doi:10.1063/1.3622480.
14. M. Shavikloo, S. Kimiagar, Thermal rectification in partially hydrogenated graphene with grain boundary, a non-equilibrium molecular dynamics study, Comput. Mater. Sci. 139 (2017) 330–334. doi:10.1016/j.commatsci.2017.08.024.
15. C. W. Chang, D. Okawa, A. Majumdar, A. Zettl, Solid-State Thermal Rectifier, Science (80-. ). 314 (2006) 1121. http://www.sciencemag.org/content/314/5802/1121.full.pdf.
16. K. Gordiz, S. Mehdi Vaez Allaei, Thermal rectification in pristine-hydrogenated carbon nanotube junction: A molecular dynamics study, J. Appl. Phys. 115 (2014) 163512. doi:10.1063/1.4873124.
17. F. Yousefi, F. Khoeini, A. Rajabpour, Thermal conductivity and thermal rectification of nanoporous graphene: A molecular dynamics simulation, Int. J. Heat Mass Transf. 146 (2020) 118884. doi:10.1016/j.ijheatmasstransfer.2019.118884.
18. S.K. Chien, Y.T. Yang, C.K. Chen, Influence of hydrogen functionalization on thermal conductivity of graphene: Non-equilibrium molecular dynamics simulations, Appl. Phys. Lett. (2011). doi:10.1063/1.3543622.
19. O. Farzadian, C. Spitas, K. V Kostas, Graphene-carbon nitride interface-geometry effects on thermal rectification: a molecular dynamics simulation, Nanotechnology. 32 (2021) 215403. doi:10.1088/1361-6528/abe786.
20. O. Farzadian, A. Razeghiyadaki, C. Spitas, K. V Kostas, Phonon thermal rectification in hybrid graphene-$\mathrm{C_{3}N}$: a molecular dynamics simulation, Nanotechnology. 31 (2020) 485401. doi:10.1088/1361-6528/abb04b.
21. L. Kiani, J. Hasanzadeh, F. Yousefi, P.A. Anaraki, Phonon modes contribution in thermal rectification in graphene-C3B junction: A molecular dynamics study, Phys. E Low-Dimensional Syst. Nanostructures. (2021) 114724. doi:10.1016/j.physe.2021.114724.
22. F. Yousefi, F. Khoeini, A. Rajabpour, Thermal rectification and interfacial thermal resistance in hybrid pillared-graphene and graphene: a molecular dynamics and continuum approach, Nanotechnology. 31 (2020) 285707. doi:10.1088/1361-6528/ab8420.
23. F. Yousefi, M. Shavikloo, M. Mohammadi, Non-equilibrium molecular dynamics study on radial thermal conductivity and thermal rectification of graphene, Mol. Simul. 45 (2019) 646–651. doi:10.1080/08927022.2019.1578354.
24. X. Cartoixà, L. Colombo, R. Rurali, Thermal Rectification by Design in Telescopic Si Nanowires, Nano Lett. 15 (2015) 8255–8259. doi:10.1021/acs.nanolett.5b03781.
25. S. Plimpton, Fast Parallel Algorithms for Short-Range Molecular Dynamics, J. Comput. Phys. 117 (1995) 1–19. doi:10.1006/jcph.1995.1039.
26. S.J. Stuart, A.B. Tutein, J.A. Harrison, A reactive potential for hydrocarbons with intermolecular interactions, J. Chem. Phys. 112 (2000) 6472–6486. doi:10.1063/1.481208.
27. S. Melchionna, G. Ciccotti, B. Lee Holian, Hoover NPT dynamics for systems varying in shape and size, Mol. Phys. 78 (1993) 533–544. doi:10.1080/00268979300100371.
28. M. Khalkhali, A. Rajabpour, F. Khoeini, Thermal transport across grain boundaries in polycrystalline silicene: A multiscale modeling, Sci. Rep. 9 (2019) 5684. doi:10.1038/s41598-019-42187-w.
29. B. Li, J. Lan, L. Wang, Interface thermal resistance between dissimilar anharmonic lattices, Phys. Rev. Lett. 95 (2005) 1–5. doi:10.1103/PhysRevLett.95.104302.
30. H. Budd, J. Vannimenus, Thermal Boundary Resistance, Phys. Rev. Lett. 26 (1971) 1637–1640. doi:10.1103/PhysRevLett.26.1637.
31. A. Rajabpour, S. Volz, Thermal boundary resistance from mode energy relaxation times: Case study of argon-like crystals by molecular dynamics, J. Appl. Phys. 108 (2010) 094324. doi:10.1063/1.3500526.
32. K. Gordiz, A. Henry, A formalism for calculating the modal contributions to thermal interface conductance, New J. Phys. 17 (2015). doi:10.1088/1367-2630/17/10/103002.
33. K. Gordiz, A. Henry, Phonon transport at interfaces: Determining the correct modes of vibration, J. Appl. Phys. 119 (2016). doi:10.1063/1.4939207.