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Abstract: 

Background: Liver cancer due to hepatic tumors is one of the primary mortality causes globally. Detecting and diagnosing 

such tumors can be very tricky in reducing death rates. Segmenting liver tumors from computed tomography (CT) images 

is a very tricky and challenging task due to many factors such as fuzziness of the liver intensities range, liver pixels 

intensities values intersection with the neighboring abdomen organs, noise imposed by CT scanner, and variance in tumors 

and appearances. This paper introduces a Computer-Aided Diagnosis (CAD) system based on some of the Fuzzy C-means 

(FCM) method variations to detect liver tumors on CT images. Furthermore, one of the main objectives of this paper is to 

diagnose and label detected liver tumors, either benign or malignant.  

Methods: Multi-scale Fuzzy C-Means (MSFCM) is used as the liver segmentation method, and its output is the liver 

segmented out of the abdomen CT image. In order to achieve high-quality liver tumors segmentation, the segmentation 

is done using two FCM algorithms; Gaussian Kernelized Fuzzy C-Means (GKFCM) and Fast Generalized Fuzzy C-Means 

(FGFCM), respectively. The diagnosis is achieved by extracting features from segmented tumors and passing them to the 

support vector machines (SVM) classifier. 

Results: To evaluate the overall performance of the proposed CAD system, the system was implemented using CT images 

from three liver benchmark datasets with a total of 250 subjects. The used datasets are MICCAI-Sliver07, LiTS17 and 

3Dircadb. Different performance metrics were calculated, such as accuracy (ACC), sensitivity (SEN), specificity (SPE), and 

dice similarity score (DSC). The proposed system achieved reasonable performance results with an average ACC, SEN, SPE, 

and DSC of 96.62%, 95.84%,94.20%, and 95.21%, respectively.  

Conclusions: The proposed system was able to differentiate benign and malignant tumors with reasonable accuracy. The 

resulted accuracy resulted from our CAD system features such as noise robustness, detail persevering, and being a fully-

automatic system with no need for user interaction. The experimental results showed the applicability of the proposed 

system using different liver datasets.   

Keywords: Liver tumors, Hepatic tumors, Computer-aided diagnosis system, Computed tomography, Liver tumors 

segmentations, Liver tumors diagnosis, Fuzzy c-means. 

 

 

Background

The liver plays a vital role in the human body. It takes the 

responsibility of administrating and performing more than 

500 essential functions.  
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Liver functions include blood clotting regulation, blood 

filtering and raising the body's immunity against infections. 

Hence, any liver problem will affect the health of the human 

body. More than 40,000 adults are expected to be diagnosed 

with primary liver cancer in the US this year according to the 

American Cancer Society (ACS), The recent death rates due 

to liver cancer compared to those of 1980 have increased 

RESEARCH 
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three times [1]. Liver cancer is ranked as the 5th and the 7th 

death caused by cancer for men and women, respectively. It 

causes almost 30,000 deaths each year [2]. This makes the 

process of liver tumor detection one of the essential tasks in 

reducing morbidity or death rates. 

One of the most critical research issues in the radiology 

field is the early detection and diagnosis along with the 

staging of chronic liver diseases (CLDs). Tumors mostly 

cause CLDs, and their development can be divided into many 

stages with different physiological and pathological 

characteristics. The early stage of liver cancer as CLD is 

called fatty liver infiltration or steatosis, by which fats 

increase in hepatocytes [3]. As cancer develops to the critical 

stage by which the liver enters the damage stage, liver fibrosis 

starts to exist. The development of fibrosis is highly 

dependent on the source of liver failure, such as chronic 

hepatitis. The evolution of cirrhosis is the very late stage of 

liver cancer as CLD. Cirrhosis appearance indicates long-

term liver damage that affects its functionality [4]. When 

cirrhosis develops in late stages, the case diagnosis is primary 

liver cancer or hepatocellular carcinoma (HCC) [5]. 

The staging of CLD can be subdivided into two steps, 

detection and diagnosis of tumors. The staging can be 

achieved by using computer-aided diagnosis (CAD) systems 

and medical imaging modalities [6]. CAD systems consist of 

computer algorithms and methods to extract hidden 

knowledge from medical images/scans from different 

medical imaging modalities. The main concern of CAD 

systems is to enhance the quality of diagnosis and the process. 

Computed tomography (CT) imaging modality is the most 

popular imaging modality in use when designing hepatic 

tumors CAD.  

CAD development is one of the hottest research topics in 

the computer-aided medical field. The main objectives of 

hepatic or liver CAD systems development research can be 

enumerated as follows; improving medical images quality 

using enhanced and efficient algorithms and techniques, 

segmentation, and detection of liver tumors while keeping a 

tradeoff between segmentation accuracy and implementation 

efficiency, labeling detected liver tumors with their medical 

categories and names such as labeling a detected liver tumor 

into benign (category) and cyst (medical name) [7]. The 

process of segmenting liver tumors from CT scans can be 

done either manually by radiologists or automatically with 

the aid of CAD.  

Tumor manual segmentation is a tedious and excessively 

time-consuming process in a clinical-experimental setting. 

On the other hand, the process of automatically segmenting 

liver tumors is very challenging for several reasons. Some of 

these reasons appear when a tumor is segmented with the 

liver segmentation as an intermediate stage. The other part of 

the problem is related to the tumor segmentation process 

itself. Segmenting the liver first and then using the segmented 

liver area to segment out tumors will be advantageous in 

reducing the error rates resulting from segmenting abdomen 

organs as tumors. 

The first problem appears with the liver segmentation from 

neighboring abdomen organs as the liver stretches through 

100 slices with different shapes and sizes through CT slices 

in a CT volume. The second problem is the huge intensities 

of intersection between the liver and other neighboring 

organs. The tumor segmentation problems include indefinite 
tumor shapes and appearances, low-intensities contrast with 

huge intensities overlap between tumors and the liver areas. 

All those problems together make the tumor segmentation 

process challenging and difficult [8].  

We can divide the segmentation methods used in the 

segmentation process into semi, interactive, or fully 

automatic methods. The most common segmentation 

techniques used to build a liver segmentation method are 

based on approaches such as histogram, region, edge, model, 

watershed, and fuzzy logic methods [9-10]. Table 1 compares 

some of the most popular segmentation methods in terms of 

their complexity, speed, advantages, disadvantages, 

suitability, and applicability.  

The main challenges related to the liver tumors 

segmentation task can be enumerated as follows. When the 

liver is first segmented as an intermediate stage before tumor 

segmentation, problems related to liver segmentation appear, 

such as the high ambiguity between the liver and its 

surrounding organs, especially the heart, right kidney, and 

spleen. Second, the liver and tumors can have several shapes, 

sizes, and appearances across CT slices for the same subject 

and different subjects. Finally, the existence of tumors may 

cause severe intensity inhomogeneity [11].  

After the successful segmentation of liver tumors, the 

tumor diagnosis stage starts by which detected tumors are 

labeled. CAD system diagnoses liver tumors by labeling 

segmented tumors by either their category (i.e. malignant or 

benign) or by their medical names such as cyst or HCC. The 

labelling process is implemented as a classification task 

which needs features to be extracted from tumors areas.  

Tumors features are the quantitative measurements that 

best characterize tumors areas. Classification accuracy is 

directly proportional to the extracted features' quality. To 

reduce the complexity of the classification process and to 

enhance the efficiency, a features selection stage is added to 

CAD systems to select the most tumors characteristic 

features. Some search strategies such as exhaustive, heuristic 

and non-deterministic approaches are used to build feature 

selection methods [12].  

Liver tumor features are mainly divided into two main 

categories, namely textural and statistical features. Textural-

based features indicate the change in appearance and textural 

variance between benign and malignant tumors. 

Homogeneity, Gabor energy, energy, contrast, and 

correlation are examples of textural features. Statistical-based 

features indicate the changes in intensities values between 

benign and malignant tumor tissues and include uniformity, 

entropy, variance, and mean [12]. 

 



Y Al-Saeed et.al. 

Table 1 Comparison of Popular Image Segmentation Methods. 

Criteria Fuzzy-Based Thresholding Region-Based Edge- Based Watershed-

Based 

Complexity Moderate Low High Low Moderate 

Noise 
Sensitivity 

Yes Yes Yes Yes Yes 

Advantages 
 

Efficient method 
reasonable coverage. 

Result in reasonable 
accuracy when used 
with greyscale images 
or for the task of image 
linearization. 
Prior image 
information is not 
required. 

Provide an exact image 
with clear edges. 
Require a small number 
of seed points for 
function, probably.  
 

Edge-based 
methods without 
any prior 
knowledge about 
image content. 

Classify the 
pixels of images 
based on their 
intensities. 

Disadvantages The output is highly 

dependable on the 

number of partitions 

used for segmentation. 

A fuzzy member's 
identification process is 
difficult. 

Threshold selection is 
critical and difficult. 

Difficult to determine 
the number of optimal 
classes. 
Difficult spatial 
information utilization. 
Complex features 
extraction process. 

Low segmentation 
quality if the image 
contains too many 
edges. 

The usage of 
pixel intensities 
for pixel 
separations may 
lead to over-
segmentation. 

Suitability Suitable to be used 
rather than K-Means, 
and it gives better 
results. 

Used in real-time 
applications 

- Suitable with 
images with a low 
number of edges. 

- 

Applicability Yes Yes No Yes Yes 

 

The sophisticated liver tumors classification task, which 

aims to label detected tumors into their categories and 

medical names, needs some sophisticated features to be used 

along with conventional statistical and textural features [13]. 

Those sophisticated features include first-order statistics 

(FOS), spatial gray-level dependence matrix (SGLDM), 

gray-level difference matrix (GLDM), Laws' texture energy 

measures (TEM), and fractal dimension measurements 

(FDM).  

Methods proposed to solve liver and tumor segmentation 

problems using CT scans fall either direct or indirect. The 

direct methods segment tumors directly without segmenting 

the liver first. Indirect methods segment the liver first as an 

intermediate stage for tumor segmentation.   

Moltz et al. [14] proposed a hybrid indirect technique for 

liver tumor segmentation. They started by adaptive 

thresholding rough segmentation to segment the liver. Then 

a model-based morphological method was applied to 

segment tumors. The main limitation of their technique was 

its dependency on the user choice for the region of interest 

(ROI) center points. Huang et al. [15] proposed a fully 

automatic hybrid technique for liver tumor segmentation. 

Their method used some input information to detect the liver 

intensities. They combined atlas-based affine and non-rigid 

registration to achieve automatic detection of ROI. To 

enhance the accuracy of tumor segmentation, tumors were 

segmented using pixel intensities along with some prior 

knowledge. The experimental outcomes indicated the 

applicability of this method for clinical application.  

Wong et al. [16] proposed a region-growing based semi-

automatic method for liver tumors segmentation using CT 

scans. They applied knowledge-based rules were set to make 

the region growing process in terms of shape and size within 

adequate limits. This method suffered mainly from requiring 

user interaction to specify two main points before the region 

growing process manually. Li et al. [17] proposed a hybrid 

method based on fuzzy C-means (FCM) and level-set 

approaches to segment liver tumors. The actual tumor 

segmentation was implemented using FCM. The 

segmentation output was refined using the level set approach. 

The main limitation of this method was the high processing 

time imposed by the level set technique.  

Zhou et al. [18] evaluated three liver segmentation 

methods based on semi-automatic approaches. Those 

methods include knowledge-based constraints region 

growing method, tumors pixels clustering using 

propagational learning method, and Bayesian-based region 

method. Experimental results indicated that the first two 

methods had higher accuracy when compared with the third 

method. Pohle et al. [19] proposed an automatic 

segmentation method based on the adaptive region growing 

technique. This method was able to identify ROI by 

automatically acquiring homogeneity characteristics 

automatically. If the segmented ROI was heterogeneous, this 

method failed to provide reasonable segmentation quality and 

led to under-segmentation.  

Massieh et al. [20] proposed hepatic/liver tumor 

segmentation from CT scans based on an enhanced 

threshold-based method. This method started by adding each 
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CT scan to enhance the contrast of CT scans. Contrast 

enhancement was effective in improving the quality of tumor 

segmentation. The main limitation of this was its high 

sensitivity to noise, which affected the overall accuracy. 

Accuracy was enhanced using roundness and knowledge 

acquired from neighboring slices. Danciu et al. [21] proposed 

using textural features such as volume, diameter, and size-to-

region ratio for tumor segmentation and characterization 

texture. This method had the advantage of selecting unique 

features with minimum redundancy and a maximum 

dependency approach.  

Ji et al. [22] proposed a hybrid method based on a 

combination of structural and contextual features for tumor 

segmentation. This method was able to learn about implicit 

tumor characteristics automatically by using the active 

contour model (ACM). Segmentation refinement was 

achieved using the mean shift method. Experimental results 

indicate the applicability of this method since it showed 

reasonable segmentation accuracy by combining multiple 

atlas scans. However, this method required user interaction 

to manually specify ground truth (GT). Smeets et al. [23] 

proposed a level set-based method to segment liver tumors. 

Their method started with spiral scanning by assigning a seed 

point inside tumor areas. Then, the level set method is applied 

according to a speed image. The seed image was obtained 

using supervised learning with statistical pixel classification. 
This method could not automatically identify the seed points 

in the middle of tumors and required the user to specify them 

manually.  

Moghe et al. [24] proposed a threshold-based automatic 

tumor segmentation method from CT scans. This method had 

two thresholds, and their values were selected using 

statistical and texture measures. However, choosing 

threshold values was a very challenging task. Nural and Hans 

[25] proposed a tumor segmentation method for the liver 

area. First, they started by segmenting the liver using a 

combination of morphological and graphical methods. Then, 

tumors were segmented by integrating anisotropic diffusion, 
adaptive thresholding, and connected component algorithms. 

Kumar et al. [26] proposed an automatic method to segment 

liver tumors efficiently using CT scans. Their proposed 

method started by segmenting the liver using the confidence 
connected region growing technique. Then, tumors were 

segmented using alternative FCM clustering. They validated 

the performance of their method using 10 CT volumes. 

Zhao et al. [27] proposed a liver segmentation method by 

integrating FCM and multilayer perceptron. The applicability 

of their method was validated using 10 CT volumes with 40 

slices per volume. Before the actual segmentation, the quality 

of CT volumes was enhanced. The initial liver segmentation 

at which the boundaries of the liver were de-lined was 

achieved by implementing FCM along with morphological 

reconstruction filter. Then, the output from the initial 

segmentation was used in the training stage of the multilayer 

perceptron neural network. The stop condition was to stop 

training whenever the network could differentiate the liver 

areas successfully. Hame [28] proposed a hybrid tumor 

segmentation method using morphological features and 

thresholding techniques. Liver segmentation refinement was 

achieved using the FCM method. Liver tumor segmentation 

was achieved using building a geometric deformable model 

and then fitting the generated model. The used model was 

built using the FCM membership function. 

Adcock et al. [29] proposed a hepatic CAD system to 

diagnose and label tumors as cysts, metastases, and 

hemangiomas. Their system used 2D persistent homology, 

bottleneck matching, and SVM for liver segmentation, tumor 

segmentation, and tumor classification. Their system 

produced an output that many machine learning algorithms 

can reuse. However, the experimental results showed poor 

segmentation and misclassification with large tumors. 

Huang et al. [30] proposed a binary tumor classification 

method for labeling benign or malignant tumors. Their 

method segmented tumor areas using the FCM clustering 

method. Fast Discrete Curvelet Transform (FDCT) was used 

to extract tumor features. The extracted features were passed 

to a feed-forward classifier in order to label tumors.  

Li et al. [31] proposed a hybrid technique for tumor 

classification from CT scans. This method is considered a 

method with a high dependency on the radiologist. The 

applicability of this method was maximized when the 

radiologist identified the tumor region prior to the 

segmentation process. The usage of some sort of prior 

knowledge decreased the time required for segmentation and 

minimized the complexity of the feature extraction task. 

Extracted features were spatial domain features such as 

dependency, run length, and different metrics. Tumor 

classification was achieved using Multiclass SVM (MSVM) 

to classify liver regions into healthy liver regions, primary 

hepatic carcinoma affected regions, or hemangioma regions. 

MSVM used the normal binary SVM classifier to perform 

actual classification by breaking the non-binary class 

classification tasks into a series of binary classification tasks.   

The problem of liver segmentation task automation is still 

an open research point. Automatic methods usually fail with 

enormous and complex liver shapes through CT slices. 

Complex liver shapes increase the needed processing time for 

the training stage. This makes most of the proposed liver 

segmentation semi-automatic methods.  

Semi-automatic segmentation methods are superior when 

it comes to segmentation accuracy. This is because it makes 

the process of liver and tumor differentiation a simpler task 

by allowing computer capabilities and user interaction to 

complement each other. However, the segmentation accuracy 

is directly proportional to the user skills and may be affected 

by user errors and biases.  

Despite the rapid vast advances in liver image analysis, 

there are some key challenges that remain unsolved. First is 

the noise sensitivity of segmentation methods. Segmentation 

methods with low noise robustness may fail to de-line liver 

and tumor areas accurately. Second, the automatic methods 

are usually time hunger methods which consume a long 
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processing time. The longer the processing time, the higher 

the implementation complexity. Finally, the liver and 

abdomen organs of high intensities intersection may result in 

false segmentation.  

This paper proposes a CAD system that aims to solve those 

problems. The proposed system has the ability to overcome 

the problem related to automation level and resulting 

segmentation quality due to the variance of the liver shapes 

through CT slices. This was achieved by creating 2D CT 

scans from 3D CT volumes by adding each volume's CT 

slices to each other.  

The proposed CAD system overcame the noise sensitivity 

problem using color mapping, contrast enhancement, and 

median filtering. Median filter reduces impulse noise 

generated by CT scanner while color mapping and contrast 

enhancement enhance the quality of CT scan. The resulted 

filtered, color-mapped, and contrast-enhanced scan improved 

segmentation process quality. The proposed method uses 

FCM methods for segmentation stages with low noise 

sensitivity and high detail-preserving abilities. The used 

FCM methods include Multi-Scale Fuzzy C-Means 

(MSFCM), Gaussian Kernelized Fuzzy C-Means (GKFCM), 

and Fast Generalized Fuzzy C-Means (FGFCM) 

segmentation methods. Combining the preprocessing stage 

with the usage of the FCM method with low noise sensitivity 

produced reliable segmentation results and solved the 

problem of segmentation-noise sensitivity.  

Finally, the proposed CAD system produced low rates of 

false segmentation and solved the problem of the liver-

neighboring organ intensities intersection by preprocessing 

stage after creating 2D abdomen scans. This resulted in 

efficient segmentation with low false rates.  
The main objective of this paper is to propose a CAD that 

can efficiently segment and diagnose liver tumors. The 

proposed CAD system starts by creating 2D scans out of 3D 

CT volumes by adding volume slices to each other. Then, the 

quality of the generated 2D scans is enhanced using color 

mapping, contrast-enhancing, and filtering. 2D CT scans are 

homogeneous and more likely to produce reliable 

segmentations at this point. The actual liver segmentation in 

this CAD system is achieved by passing enhanced 2D liver 

CT scans to the MSFCM method. The segmented liver is 

used instead of the whole abdomen scan to reduce tumor 

segmentation task complexity. Reliable tumor segmentation 

is achieved by applying GKFCM and FGFCM and then 

taking the intersection between their outputs as the final 

tumor segmentation. The segmented tumors were then 

labeled into malignant or benign tumors using the support 

vector machines (SVM) classifier. SVM is considered 

computationally efficient and provides good accuracy for 

liver disease diagnosis problems [32].  

The main objectives of this paper can be outlined as 

follows: 

 Proposing a CAD system framework to efficiently 

segment and diagnosis liver tumors.  

 Reducing the effect of noise on segmentation 

quality by creating 2D abdomen scans from each 3D 

CT volume and enhancing the quality of the 

generated 2D scans.  

 Reducing false segmentation rates resulted from 

intensities of intersection between the liver and 

other neighboring organs. This was achieved by a 

preprocessing stage that precedes the segmentation 

stage. It consists of filtering using the Adaptive 

Median Filter (AMF), color mapping, and contrast-

enhancing using Brightness Preserving Dynamic 

Fuzzy Histogram Equalization (BPDFHE) method.  

 Producing reliable segmentation results using FCM 

methods with high noise sensitivity robustness and 

details-preserving capabilities. The proposed 

system used the MSFCM method for liver 

segmentation and the GKFCM and FGFCM method 

for tumor segmentation.  

 Producing accurate tumor diagnosis by combing 

statistical intensity-based, shape-based and texture-

based features rather than using features from a 

single category.  

 Validating the applicability of the proposed system 

using different benchmark datasets with a total of 

250 CT volumes with different performance 

metrics.  

Methods 

The main objective of the proposed CAD system is to assist 

radiologist diagnosis decisions by providing reliable 

differentiation of malignant and benign liver tumors. The 

proposed framework can be divided into four main stages, 2D 

CT scan creation, 2D scan quality enhancement, 

segmentation, feature extraction, and tumor classification. 

Fig. 1 illustrates the workflow of the proposed CAD system.  

The CAD systems start by converting datasets' CT 

volumes into 2D scans. The generated 2D scans are then 

color mapped into greyscale, contrast-enhanced using 

BPDFHE, and noise reduced using AMF. The 2D CT scans 

are homogeneous and more appropriate for segmentation at 

this point. The actual liver segmentation is achieved using the 

MSFCM method. Then, tumors are segmented using a 

segmented liver area rather than a full abdomen scan. Tumor 

segmentation is achieved by applying GKFCM and FGFCM 

methods and then taking the intersection between their 

outputs as the final tumor segmentation. After the successful 

segmentation of liver tumors, the classification or diagnosis 

stage starts by extracting some shape, textural and statistical 

features from tumor areas. Extracted features determine the 

quality of the tumor labeling stage. The labeling, diagnosis, 

or classification of tumors is achieved by passing segmented 

tumors along with the extracted features to SVM. The 

proposed CAD system could reliably label segmented tumors 

into malignant or benign tumors.  
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Figure 1 The proposed CAD system framework for the segmentation and diagnosis of liver tumors can be divided into four main stages, 

2D CT scan creation, 2D scan quality enhancement, segmentation, features extraction, and tumor classification. The input CT scans are 

CT volumes from benchmark datasets; MICCAI-Sliver07, 3Dircadb, and LiTS17 datasets. Each CT volume's slices are combined to create 

a single 2D image for each volume. The quality enhancement stage aims to improve the quality of the segmentation stage by reducing CT 

noises. This is mainly because segmentation methods have high noise sensitivity. The segmentation stage aims mainly to segment hepatic 

tumors by first segmenting the liver. Using the segmented liver to segment tumors is beneficial for reducing error rates. Since the quality of 

the classification stage is highly dependable on the extracted features' quality, features from different categories are extracted.  

Creating 2D CT Scans 

CT imaging modality produces slices or cross-sectional 

images of the imaged organs, such as the abdomen organs. 

The CT scanner uses rotating X-ray beams around the 

abdomen section of the body to acquire abdomen slices. After 

the completion of the acquisition process, the abdomen slices 

and 3D CT volumes are created. CT is the most preferred 

imaging modality for organs tissues imaging, such as the 

liver. CT scanner can acquire an image of body organs in a 

relatively short time (i.e., 0.4 seconds). This paper uses CT 

volumes from benchmark datasets which are the Computer-

Assisted Intervention Society MICCAI- Sliver07 dataset 

[33], IEEE International Symposium on Biomedical Imaging 

LiTS17 dataset [34], and Research Institute against Digestive 

Cancer 3Dircadb dataset [35]. MICCAI- Sliver07 dataset is a 

liver segmentation dataset. The LiTS17 and 3Dircadb 

datasets fit tumor segmentation with liver tumors presented 

in 75% of the subjects in the 3Dircadb dataset. Table 2 

discusses the main characteristic of the used datasets.  

To create 2D abdomen scans out of 3D CT volumes, each 

volume slice is added to each other. This will be beneficial in 

facilitating the segmentation process by reducing the 

complexity of computation processing.  
 

Table 2 Characteristics of MICCAI-Sliver07, LiTS17, and 3Dircadb datasets. 

Dataset Format No. of Subjects No. of Slices per Subject No. of Pixels 

MICCAI-Sliver07 RAW 30 64 to 502 slices 512× 512 

LiTS17 RAW 200 42 to 1024 slices Vary through subjects 

3Dircadb DICOM 20 74 to 260 slices 512× 512 
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Produced 2D Image Quality Enhancement 

The main purpose of this stage is to enhance the quality of 

the produced 2D abdomen scans to improve the quality of the 

segmentation process and reduce false segmentation rates. 

This is because the ROI is relatively more differentiable in 

the enhanced image. The task of liver segmentation out of the 

rest of the abdomen organs may point out the significance of 

this stage. The liver intensities values have a high intersection 

with other abdomen organs, which results in under or over-

segmentation when applying segmentation methods. This 

stage also was beneficial in reducing the effect of noise 

sensitivity on segmentation quality.  

Quality enhancement tasks can be subdivided into three 

main tasks; color mapping, contrast enhancement, and noise 

reduction. Color mapping reduces input images' color range 

complexity by mapping the original color range of the input 

images into a new range with fewer colors. For the proposed 

CAD system, datasets with RAW CT scans (i.e., MICCAI-

Sliver07 and LiTS17 datasets) were color mapped to the 

range of 0 and 255, while those scans with DICOM format 

(i.e., 3Dircadb dataset) were color mapped to the range of 

−1000 to 4000 on Hounsfield scale [36]. The color-mapped 

abdomen scans are then contrast-enhanced using BPDFHE 

[37]. BPDFHE can reduce the computational processing 

complexity required for contrast enhancement tasks. It also 

has the advantage of preserving the brightness of the image. 

Contrast enhancement is expected to ease liver and tumor 

segmentation tasks by maximizing the differentiation 

between different image regions such as the liver and the rest 

of the abdomen organs, along with tumors and the rest of the 

liver region.  

The global histogram equalization (GHE) may result in 

undesired artifacts and changes in image brightness. This is 

mainly because it remaps the local maxima of the input image 

histogram. The BPDFHE method only redistributes the grey 

level values without any histogram remapping. The BPDFHE 

method exploits input images' fuzzy statistics to represent 

and process those images. Using the fuzzy domain is 

advantageous in handling the large variance of grey-level 

values through input images. This will result in reasonable 

performance accuracy with low execution time. BPDFHE 

algorithm work as follows: 

1) Computing fuzzy histogram: The fuzzy histogram 

denoted by h(i) computation starts by computing 

the fuzzy membership function 𝜇𝐼(𝑥,𝑦)𝑖  as follows: 𝜇𝐼(𝑥,𝑦) = 𝑚𝑎𝑥 [0,1 − |𝐼(𝑥, 𝑦) − ⅈ|4 ] 
(1) 

the fuzzy histogram is computed as follows: ℎ(ⅈ) ← ℎ(ⅈ) + ∑  𝑥 ∑  𝑦 𝜇𝐼(𝑥,𝑦)𝑖  
(2) 

where 𝐼(𝑥, 𝑦) represents the original intensities 

values of input images and 𝐼(𝑥, 𝑦) represents their 

fuzzy representations. 

2) Histogram partitioning: The fuzzy histogram is 

partitioned into sub-histograms using local 

maxima points. The actual dynamic histogram 

equalization is then applied upon those partitions 

to achieve higher contrast. The portioning process 

starts by identifying the local maxima using the 

1st and the 2nd fuzzy histogram derivatives as 

follows:  ℎ(ⅈ) = 𝑑ℎ(ⅈ)𝑑ⅈ ≜ ℎ(ⅈ + 1) − ℎ(ⅈ − 1)2  
(3) 

ℎ(ⅈ) = 𝑑2ℎ(ⅈ)𝑑ⅈ2        ≜ ℎ(ⅈ + 1) − 2ℎ(ⅈ) + ℎ(ⅈ − 1) 

(4) 

where zero-crossings correspond to the local 

maxima points in the 1st derivative and the 

negative values represent them in the 2nd 

derivative.  

3) Span sub-histogram values: Let m0, m1, ………, 
mn denote the local maxima detected for n+1 grey-

levels. The equalization of sub-histograms may 

result in low-quality enhancement. This is mainly 

because of their small ranges. Let the original 

histogram be [Imin, Imax], and sub-histograms are 

generated to be in the ranges of [Imin, m0], [m0+1, 

m1],……., [mn+1, Imax]. BPDHE spans sub-

histograms using the total number of grey-levels 

in each histogram to solve the problem of sub-

histograms having small ranges. 

4) Dynamic histogram equalization for each sub-

histogram: Each sub-histogram is mapped into a 

dynamic range  [starti, 𝑠topi] as follows:  
 start 𝑖= 

 ∑  𝑖−1
𝑘=1   (𝐿 − 1) × [(ℎⅈ𝑔ℎ𝑘 − 𝑙𝑜𝑤𝑘) × 𝑙𝑜𝑔10 𝑀𝑘]∑  𝑛+1𝑘=1   [(ℎⅈ𝑔ℎ𝑘 − 𝑙𝑜𝑤𝑘) × 𝑙𝑜𝑔10 𝑀𝑘] + 1 

 

 

 

(5) 

 stop 𝑖 = 

∑  𝑖−1
𝑘=1   (𝐿 − 1) × [(ℎⅈ𝑔ℎ𝑘 − 𝑙𝑜𝑤𝑘) × 𝑙𝑜𝑔10 𝑀𝑘]∑  𝑛+1𝑘=1   [(ℎⅈ𝑔ℎ𝑘 − 𝑙𝑜𝑤𝑘) × 𝑙𝑜𝑔10 𝑀𝑘]  

 

 

(6) 

where ℎⅈ𝑔ℎ𝑘 and 𝑙𝑜𝑤𝑘is the highest and the lowest 

intensity values of sub-histogram k, Mk is the 

count of pixels with sub-histogram k, and L is the 

count of grey-levels. Each sub-histogram is 

equalized similarly to the GHE according to the 

total number of intensities values within each 

partition.  

5) Image brightness normalization: The process of 

dynamic equalization results in brightness 

variance between the sub-histogram portions and 

the input image. To deal with such a problem, the 

normalization stage is required. Normalization is 

obtained using the following equation:  𝑔(𝑥, 𝑦) = 𝑚𝑖𝑚𝑜 𝑓(𝑥, 𝑦) (7) 

where 𝑔(𝑥, 𝑦) represents the output contrast-

enhanced image, mi represents the mean of the 
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brightness of the dynamic histogram equalized 

image 𝑓(𝑥, 𝑦), and mo is the mean brightness of 

the original input image.  

The contrast-enhanced CT images are then passed to AMF 

to remove impulse noise imposed by the CT scanner [38]. 

AMF uses the adaptive window to detect the noisy pixels by 

comparing intensities values within the used window range. 

Pixels that are not structurally aligned with their neighboring 

pixels with large intensities variance are replaced with the 

median of their neighbor intensities. The AMF algorithm has 

the advantage of being able to maintain edges and preserves 

details information about the image. Using AMF and 

BPDFHE is very beneficial in enhancing the quality of 

segmentation and classification stages.  

The Liver and Tumors Segmentations 

The segmentation task can be subdivided into two stages; 

segmenting the liver out of abdomen organs and tumors 

segmentation out of the liver region. The proposed CAD 

system uses modified FCM methods named MSFCM, 

GKFCM, and FGFCM. The liver is segmented using the 

MSFCM method, while tumors are segmented using the 

intersection of two FCM methods; GKFCM and FGFCM.  

FCM [39] is a generalization of the standard crisp C-means 

scheme in which all input data points are allowed to belong 

to all classes but with different degrees of membership. The 

FCM method works as follows. First, it generates C fuzzy 

classes or partitions and assigns n input points to them. Then, 

it assigns a center to each class. Those centers are considered 

clustering centers and are used by the FCM algorithm to 

maximize the similarity index between data points within the 

same class. Finally, each input point is assigned a value in the 

range of [0,1] to specify its degree of membership in different 

fuzzy classes. FCM has two main limitations. First, it 

eliminates the spatial dependency between input and process 

images as separate pixels. Second, the accuracy of its 

membership function is highly dependent on the similarity 

between pixel intensities and clustering centers. Let X 

indicates n input points X= X0, X1…., Xn, and V represents c 

centroids V= V0, V1……., Vc, the FCM method minimalizes the 

Euclidean distance between  X points and V centroids to 

classify data points into C cluster by using Eq. (8). 𝐽 = ∑ ∑(𝑢𝑖,𝑗)𝑚   ∥ 𝑥𝑗𝑐
𝑖=1

𝑛
𝑗=1 − 𝑣𝑖 ∥2 

 

(8) 

where 1 ≤ m ≤∞ is the fuzzifier, vi is the centroid 

corresponding to cluster Ci and 𝑢𝑖,𝑗 is the membership of the 

pattern xj to cluster Ci. To further reduce the implementation 

complexity of FCM, FCM-S1 and FCM-S2 were introduced. 

FCM_S1 and FCM_S2 replaced the Euclidean distance with 

Gaussian kernel-induced distance as follows:  𝐽 = ∑ ∑(𝑢𝑖,𝑗)𝑚 ∗ 1 − 𝐾(𝑥𝑗 , 𝑣𝑖) 𝑐
𝑖=1

𝑛
𝑗=1  

 

(9) 

𝐾(𝑥𝑗 , 𝑣𝑖) = exp (−∥∥𝑥𝑗 − 𝑣𝑖∥∥2/𝜎2) (10) 

When there is no-prior knowledge about noise, the original 

FCM and its two versions, FCM-S1 and FCM-S2 [40], have 

high noise and outliers sensitivity. To achieve a tradeoff 

between sensitivity to noise and detail preserving, a new 

parameter α was introduced to equation (10) as follows: 𝐾(𝑥𝑗 , 𝑣𝑖) = exp (−∥∥𝑥𝑗 − 𝑣𝑖∥∥α/𝜎2) (11) 

Selecting the optimal value of α is considered a complicated 

and time-consuming task. The computation complexity for 

segmentation using FCM-S1 and FCM-S2 is directly 

proportional to input image size (i.e., the larger the image, the 

higher the computations needed for segmentation). 

When the original FCM version is used to segment noisy 

and in-homogenous ROI (i.e., segmenting the liver from 

abdomen CT scans), it may result in improper low-quality 

segmentation. MSFCM, GKFCM, and FGFCM methods 

were proposed to solve FCM problems in terms of noise 

sensitivity [41-43].  

MSFCM method is used to segment the liver. The method 

starts by generating multiple scales (i.e., resolution) versions 

of the abdomen CT image. Then, it implements coarsest-fine 

clustering by which the clustering result of the coarser level 𝑛 + 1 is used for clustering's initialization at a higher scale 

level 𝑛. During the clustering at level 𝑛 + 1, the pixels with 

high membership values above a pre-defined threshold are 

identified and assigned to the corresponding cluster. These 

pixels are used to initialize the clustering at level 𝑛. The liver 

segmentation output results from clustering at the scale level 0. The objective function of the MSFCM at level 𝑛 is given 

by: 𝐽 = ∑ ∑(𝑢𝑖,𝑗)𝑚   ∥ 𝑥𝑗𝑐
𝑖=1

𝑛
𝑗=1 − 𝑣𝑖 ∥2 

+ 𝛼n ∑  𝑐
𝑖=1  ∑  𝑛

j=1   (𝑢𝑖,𝑗)𝑚 ( ∑  𝑦𝑟∈𝑁𝑗   ∥∥𝑦𝑟 − 𝑣𝑖∥∥2) 

+𝛽 ∑  𝑐
𝑖=1  ∑  𝑛

j=1  ((𝑢𝑖,𝑗) − (𝑢𝑖,𝑗)′)𝑚 ∥∥𝑥𝑗 − 𝑣𝑖∥∥2
 

 

 

 

 

 

(12) 

where 𝛼 and 𝛽 are scaling factors, (𝑢𝑖,𝑗)′ is the previous 

level's membership value resulting from clustering and is 

determined as follows:  (𝑢𝑖,𝑗)′ = {(𝑢𝑖,𝑗)′,  if m  (𝑢𝑖,𝑗)′ > 𝑡ℎ0,  otherwise 
 

(13) 

where 𝑡ℎ is the clustering threshold used to indicate pixels 

with the highest membership values, the value of 𝑡ℎ is usually 

set to 0.85.  

MSFCM method enhance the quality of the liver 

segmentation process in terms of computational complexity 

and noise robustness. This is mainly because it segments ROI 

(i.e., the liver) using coarse to refined multi-scale clustering. 

The convergence of the clustering is much enhanced when 
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the coarser image clusters centroids are used for the next 

scale clustering. This is mainly because when a pixel is 

assigned to one cluster with a high membership value, it is 

expected to belong to the same cluster in the next scale and 

the finer image. The threshold 𝑡ℎ is used to limit the 

clustering in the next  

scale by selecting pixels with the highest membership value. 

The selection of 𝑡ℎ is highly dependable on the noise level, 

and reliability required. A small 𝑡ℎ value is expected to be 

used with an image of high quality, which means more 

reliability when clustering the coarser image.  

The proposed CAD system tumor segmentation method is 

considered an indirect method. This is because it requires the 

liver to be first segmented from the abdomen organs. Then, 

the segmented liver is passed to another segmentation 

method in order to segment existing tumors within the liver 

area. Segmenting tumor areas out of the liver region is 

advantageous in reducing false rates imposed by other 

abdomen organs segmented as tumors. The proposed CAD 

system uses GKFCM and FGFCM methods to segment 

tumors from the liver region. The tumors are first segmented 

using GKFCM and then using FGFCM. The intersection 

between GKFCM and FGFCM segmented tumor intensities 

values are used as the final segmentation result. Combing 

GKFCM and FGFCM improved the quality of tumor 

segmentation. This is mainly because GKFCM and FGFCM 

have high noise and outlier robustness. The preprocessing 

stage and using FCM that has noise robustness will be 

advantageous in solving the problem of low-quality 

segmentation resulting from high noise sensitivity.  

GKFCM is the first stage in tumors segmentation and is 

built on the top of FCM- S1 and FCM- S2 by modifying the 

objective function in Eq. (9) to make it independent from the 

parameter α as follows: 𝐽 =  ∑  𝑐
𝑖=1  ∑  𝑛

j=1   (𝑢𝑖,𝑗)𝑚 ∗ 1 − 𝐾(𝑥𝑗 , 𝑣𝑖) 
+ ∑  𝑐

𝑖=1  ∑  𝑛
𝑗=1   𝜂𝑖(𝑢𝑖,𝑗)𝑚 ∗ (1 − 𝐾(𝑥‾𝑗 , 𝑣𝑖)) 

 

 

(14) 

where 𝐾(𝑥𝑗 , 𝑣𝑖) indicated the Gaussian kernel used, and its 

value is given by Eq.  (10), the values of 𝑥‾ , 𝜂𝑖 are as follows:  𝑥‾ = ∑𝑗=1𝑁  (𝑥𝑘/𝑁) (15) 𝜂𝑖 = min𝑖′≠𝑖  (1 − 𝐾(𝑣𝑖′, 𝑣𝑖))/max𝑗  (1 − 𝐾(𝑣𝑗 , 𝑥‾))  (16) 

GKFCM has the advantage of being able to learn about 

clustering centroid automatically using a prototype-driven 

learning scheme. The membership function (𝑢𝑖,𝑗) and cluster 

prototype (i.e., centroid) 𝑣𝑖  are updated as follows: 

(𝑢𝑖,𝑗) = ∑  𝑛i=1 ((1 − 𝐾(𝑥𝑗 , 𝑣𝑖)) + 𝜂𝑖(1 − 𝐾(𝑥‾, 𝑣𝑖)))−1/(m−1)
∑  𝑐𝑗=1  ((1 − 𝐾(𝑥𝑗 , 𝑣𝑗)) + 𝜂𝑖 (1 − 𝐾(𝑥‾, 𝑣𝑗)))−1/(m−1) 

 

(17) 

𝑣𝑖 = ∑  𝑛i=1   (𝑢𝑖,𝑗)𝑚(𝐾(𝑥𝑖 , 𝑣𝑖)𝑥𝑘 + 𝜂𝑖𝐾(𝑥‾𝑖 , 𝑣𝑖)�̃�𝑖)∑  𝑛i=1   (𝑢𝑖,𝑗)𝑚(𝐾(𝑥𝑖 , 𝑣𝑖) + 𝜂𝑖𝐾(𝑥‾𝑖 , 𝑣𝑖))  
 

(18) 

FGFCM was first proposed as a solution to fix some FCM 

problems. It can consider the local spatial correlation 

between pixels during segmentation. This was achieved by 

changing FCM parameter α with parameter Skj. This 

parameter integrates two parameters Ss,kj and Sg,kj, which 

denote local spatial and grey level correlation, respectively, 

and are defined as follows:  s𝑘𝑗 = {𝑠𝑠,𝑘𝑗 × 𝑠𝑔,𝑘𝑗 ,         𝑗 ≠ 𝑘0,                           𝑗 = 𝑘  
(19) 

S𝑠,𝑘𝑗 = 𝑒𝑥𝑝 ( −max (|𝑝𝑗 − 𝑝𝑘|, |𝑞𝑗 − 𝑞𝑘|)𝜆𝑠 ) 
(20) 

Sg,kj = 𝑒𝑥𝑝 (− ‖𝑥𝑘 − 𝑥𝑗‖2𝜆𝑔𝜎𝑔,𝑘2 ) 
(21) 

FGFCM uses a window with the size of m*m, where 𝑥𝑘 

represents the intensity value of the window's center pixel, 𝑥𝑗 

is the jth pixel intensity value within the same window and 𝜆𝑔 represents the global spread scale factor of 𝑆𝑔,𝑘𝑗  . The 

parameter  𝜎𝑔,𝑘 indicates pixels' homogeneity within the local 

window. Small 𝜎𝑔,𝑘 value indicates a homogenous local 

window. FGFCM objective function is defined by the 

following equation:  

J = ∑ ∑  γ 𝜇𝑖𝑘𝑝 (𝜉𝑘 − 𝑣𝑖)2𝑞
𝑘=1

𝐶

𝑖=1
 

 

 

(22) 

where vi represents the membership degree for pixel k to class 

i, 𝛾𝑘 is the count of pixels with the same intensity as pixel k, 

and q indicates the count of grey levels in the input image. 
By incorporating spatial and grey-level correlation into the 

objective function, FGFCM could preserve image details 

with a high degree of noise robustness. FGFCM method has 

the advantage of being less complex and faster segmentation 

when compared to FCM due to its dependency on the count 

of grey levels rather than the total size of the input image. 

Fig. 2 illustrates the experimental results of the proposed 

system stages. As illustrated in Fig. 2, the proposed CAD 

system was able to segment tumors in the case of single 

tumors and multiple tumors.  

Features Extractions 

Feature extraction is considered the most important stage 

for any classification task. The quality of extracted features 

determines the reliability and accuracy of the classification 

process. The proposed system implements the feature 

extraction stage as an intermediate stage between tumor 

segmentation and classification. Extracted features can be 

classified into three main categories which are intensity-

based, texture-based, or shape-based features [44].  
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Figure 2 The proposed CAD system experimental results; (a) the produced 2D abdomen CT scan before color mapping, (b) color-mapped 

quality enhanced image, (c) liver segmentation using MSFCM, (d) multiple tumors segmentation using GKFCM and FGFCM, (e) single 

tumor segmentation using GKFCM and FGFCM. 

Intensity-based tumor features are the statistical features of 

pixel intensities within tumor areas such as mean, variance, 

entropy, kurtosis, skewness, histogram, and energy of tumor 

areas. Textural-based features indicate the texture of the 

tumor areas and their homogeneities, such as Gabor-Energy 

and Gray-Level Difference Matrix (GLDM). GLDM matrix 

feature indicates different homogeneity metrics such as 

homogeneity-level, contrast, energy, and pixel correlation 

within tumor areas. Shape-based features mainly characterize 

different tumor shapes and include tumor area, smoothness, 

solidity, compactness, and sphericity. 

Detected hepatic tumors can be classified using a single 

category of features or features from different categories to 

achieve more sophisticated classification, such as classifying 

a tumor into benign tumors first and then labeling it using its 

medical term, such as cyst tumor. Sophisticated classification 

is dependable on tumor growth patterns, patient history, and 

pathological features such as the presence of calcifications, 

fat, blood pressure, and cystic or fibrotic components [45]. 

The proposed CAD system uses intensity-based, shape-

based, and texture-based features to cluster tumors into 

benign or malignant tumors. The intensity-based features are 

mean, variance, and skewness, GLDM as textural features, 

and sphericity as shape features. The mean (µ) of a tumor 

area indicates the statistical average of all pixels' intensities 

within the tumor area and is calculated as follows:  𝜇 = 1𝑁 ∑ 𝐿(𝑖,𝑗)(𝑖,𝑗)  
(23) 

where N represents the count of tumor area pixels and 𝐿(𝑖,𝑗) is 

the intensity value of the tumor's pixel (i,j). The variance (σ) 
indicates intensities dispersion as follows: 𝜎 = √∑ (ℎ − ℎ̅)2𝐿=1ℎ=0 ⋅ 𝑃(ℎ) 

(24) 

where h is the tumor area intensities histogram. A histogram 

indicates the count of pixels with the same intensity value 

(i.e., grey level) within ROI. The number of grey levels 

within the tumor area is in the range of [0,255]. This is mainly 

because the input CT scans were color mapped into a grey-

level image. Skewness is related to the variance as it indicates 

the symmetry of the image histogram and is defined by Eq. 

(25).  𝛾1 = 1𝜎3 ∑ (ℎ − ℎ̅)3𝐿−1ℎ=0 ⋅ 𝑃(ℎ) 
 

(25) 

GLDM [45] define the existence of two intensities values 

regarding displacement victor 𝛿. GLDM starts by calculating 

tumor area probability density function (PDF) with respect to 𝛿 = (𝛥𝑥, 𝛥𝑦) as following: 
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𝐷(ⅈ, 𝛿) = 𝑃𝑟𝑜𝑏[𝑠𝛿(𝑥, 𝑦) = ⅈ] (26) 𝑠𝛿(𝑥, 𝑦) = |𝑠(𝑥, 𝑦) − 𝑠(𝑥 + 𝛥𝑥, 𝑦 + 𝛥𝑦)| (27) 

where 𝐷(ⅈ, 𝛿)  is the PDF of the tumor area. The calculated 

PDF is further used to calculate five homogeneity-related 

textural features such as entropy, contrast, energy, 

homogeneity, and correlation as follows: 

Contrast= ∑ ∑ (𝑥 − 𝑦)2𝑃(𝑥, 𝑦)𝑦𝑥  (28) 

Total Energy= ∑ (𝑃(𝑥, 𝑦))2𝑥,𝑦  (29) 

Entropy= ∑ 𝑝(𝑥, 𝑦) 𝑙𝑜𝑔𝑃(𝑥, 𝑦)𝑥,𝑦  (30) 

𝜎 = ∑ ∑(𝑥 − 𝜇)2𝑃(𝑥, 𝑦)𝑦𝑥
 

 

(31) 

Correlation = 
∑ ∑ (𝑥−𝜇1)(𝑦−𝜇2)𝑃(𝑥,𝑦)𝑦𝑥 𝜎1𝜎2  

(32) 

where 𝑃(𝑥, 𝑦) is pixels x and y GLDM-PDF. The 

homogeneity of the tumor area is defined by the variance. 

After the first and second derivatives, the mean and the 

variance of GLDM are represented by 𝜇1, 𝜇2, 𝜎1, , 𝜎2 respectively. Sphericity is one of the morphologic 

features to measure the tumor's shape. Sphericity measure is 

very advantageous in differentiating cysts. After completing 

the features extraction stage, the extracted features are used 

as input to SVM to label segmented tumors into either 

malignant or benign tumors.  

Tumors Classification 

Liver tumors can be defined as any abnormal growth in the 

liver tissues. Liver tumors are usually classified into two 

main categories; benign and malignant tumors. Benign liver 

tumors are the most common type and they are less dangerous 

when compared to malignant ones. Malignant tumors are the 

primary reason for liver cancers. Benign tumors include liver 

cysts, liver haemangioma and focal nodular hyperplasia. 

Malignant or cancerous tumors include hepatocellular 

carcinoma (HCC) and metastatic tumors [46]. Fig. 3 

illustrates different hepatic tumors on CT scans. 

Below is a brief overview of different liver tumors and 

their radiological characteristics.  

 Cyst: Liver cysts are mainly characterized by 

structures containing fluids and thin walls. Tumors 

are ovoid or round in shape and have well-defined 

margins with water attenuation. Tumor quality 

doesn't enhance even after the contrast enhancement 

process.  

 Liver haemangioma: Liver haemangioma is made of 

abnormal blood vessels and is the most common 

type of benign hepatic tumor. They appear in over 

5% of adults around the world. They can be 

radiologically characterized by being iso-dense or 

hypo-dense to liver parenchyma. 

 Focal nodular hyperplasia: Focal nodular 

hyperplasia tumors have the appearance of a scar 

and often appear in females more than males. They 

can be radiologically characterized by being the 

homogenous density of iso-dense or hypo-dense 

masses with a central scar. 

 Metastatic tumors: Metastatic tumors appear when 

tumors of other parts of the body spread and reach 

the liver. The majority of these kinds of tumors are 

hypo-dense. However, they can have variable 

densities regarding their size and vascularity. 

 HCC: HCC is the most common cancerous tumor 

and it mainly developed in adults with sever liver 

damage due to viral hepatitis. The majority of HCC 

tumors are iso-dense or hypo-dense.  

One of the main objectives of this paper is to predict the 

class label for each segmented liver tumors as malignant or 

benign. The labelling or classification was achieved by 

passing the extracted features along with the segmented 

tumors to SVM. SVM is a binary classifier that constructs an 

N-dimensional hyper separation plane in order to divide the 

input points into two classes [47]. If the input points are not 

linearly separable, the current dimension must be 

transformed into a higher dimension. This can be 

accomplished using Eq. (33). 𝑇𝑋 = 𝜙(𝑥) (33) 

For the classification process, a hyperplane with the largest 

margins separates malignant and benign classes. This is 

mainly because the larger the margin, the lower the 

classification error. SVM achieves lower processing 

complexity by using kernel functions such as polynomial 

kernel functions, radial basis function (RBF), and sigmoid 

and linear kernel functions [48]. Kernel functions ensure that 

input vectors' dot product can be computed in terms of 

original space variables. The proposed CAD system uses 

SVM with RBF as the kernel function. RBF kernel can be 

computed in terms of two input space's features vectors 𝑓 and 𝑓 as follows:  𝑅𝐵𝐹(𝑓, 𝑓)̅ = 𝑒𝑥𝑝 (− ‖𝑓 − 𝑓‖̅22𝜎2 ) 
 

(34) 

where ‖𝑓 − 𝑓‖̅ denotes the Euclidian distance between 𝑓 

and 𝑓. As RBF is highly dependable on the distance between 

two vectors, the value of 𝑅𝐵𝐹(𝑓, 𝑓)̅ is in the range of [0,1]. 

The value of 0 indicates the large difference between the two 

vectors, and as the value goes close to 1, then the two vectors 

are quite similar. RBF features space have high dimensions. 

Working with such dimensions is a very complex task, 

requiring dimension reduction.   Dimensionality reduction is 

achieved by replacing 𝜎 in Eq. (34) with 1 as follows: 

 



Y Al-Saeed et.al. 

 
(a) (b) (c) 

 

 
(d) (e) 

Figure 3 Hepatic tumors; (a) cyst tumors which round shape, (b) metastatic tumors, (c) focal nodular hyperplasia tumors have the appearance 

of a scar, (d)HCC caused by severe liver damage, and (e) haemangioma. 

𝑅𝐵𝐹(𝑓, 𝑓)̅ = 𝑒𝑥𝑝 (− ‖𝑓 − 𝑓̅‖22(1)2 ) 

 

                   = 𝑒𝑥𝑝 (− 12 ‖𝑓 − 𝑓‖̅2)= ∑ (𝑓𝑇𝑓′)𝑗𝑗! 𝑒𝑥𝑝 (− 12 ‖𝑓‖2)∞
𝑗=0 𝑒𝑥𝑝 (− 12 ‖𝑓‖̅2) 

 

(35) 

Results 

The proposed CAD system was implemented using 

MATLAB R2017a with windows 10 under a processing 

environment of Intel Core I7 and 12 Gigabytes of RAM. The 

applicability of the proposed system was evaluated using 250 

CT volumes from three publicly available benchmark 

datasets, MICCAI-Sliver07, LiTS17, and 3Dircadb datasets. 

The main characteristics of those datasets can be summarized 

as follows:  

 MICCAI-Sliver07 is a RAW dataset that is mainly 

used for liver segmentation and has no tumors in the 

presented scans. It has 30 CT volumes with 64 to 

502 slices per volume.  

 3Dircadb is a DICOM dataset of 20 CT volumes 

with 74 to 260 slices per volume. Tumors coexist in 

75% of all volumes.    

 LiTS17 is a RAW dataset with 200 CT volumes 

with 42 to 1026 slices per volume.   This dataset has 

tumors presented in CT volumes.  

Different metrics were calculated to evaluate the proposed 

CAD system's performance efficiency. The used 

performance measures include accuracy (ACC), sensitivity 

(SEN), specificity (SPE), Area under Curve (AUC), and the 

Dice similarity coefficient (DSC).   

Segmentation ACC indicates the system's ability to 

precisely differentiate ROI (i.e., liver or tumors) out of 

abdomen CT scan. Classification ACC measures the system's 
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ability to identify malignant and benign tumors accurately. In 

other words, accuracy is a rate of the true results in a 

population and is defined as follows: 

ACC = (TP+TN) / (TP+TN+FP+FN) (36) 

The terms TP, TN, FP, and FN, have different meanings 

when used to indicate the accuracy of segmentation and 

classification processes. To explain their meanings with the 

segmentation process well, let W be a set of input CT scan 

pixels. S is a set of segmented ROI pixels. G is a set of ground 

truth pixels, where S, G ∈ W.  

 True positive (TP) is the number of correctly 

segmented ROI pixels and is defined as 𝑇𝑃 = S ∩ 
G.  

 True negative (TN) is the count of pixels rather than 

ROI that were accurately marked as out of interest 

area and is defined as 𝑇𝑁 = S' ∩ G'.  

 False positive (FP) is the count of input CT scans 

pixels that were incorrectly labeled as ROI and is 

identified by 𝐹𝑃 = S ∩ G'.  

 False negative (FN) is the count of ROI pixels that 

were falsely marked as out of interest pixels and 

defined as 𝐹𝑁 = G ∩ S'. 

For the classification process: 

 TP is the count of accurately labeled malignant 

tumors. 

 TN is the count of accurately labeled benign tumors. 

 FP is the count of benign tumors that were 

incorrectly labeled as malignant.  

 FN is the count of malignant tumors that were 

incorrectly labeled as benign.  

SEN and SPE can be mathematically identified as follows: 

SEN= TP/ (TP+FN) (37) 

SPE = TN/ (TN+ FP) (38) 

SEN is identified as a ratio of (TP) and is used as an 

indication for systems performance quality measurement in 

terms of correctly segmenting or labeling ROI areas.  

SPE is the opposite of SEN and is identified as a ratio of 

(TN), and it indicates the system's ability to differentiate 

regions rather than ROI area correctly. The method can be 

precise without being sensitive, or it can be susceptible 

without being specific.  

AUC measure is added to evaluate the classification stage. 

AUC indicates the quality of the experiment whenever the 

receiver operating characteristic curve (ROC) values tend to 

the upper left corner. ROC indicates the quality of the 

classifier by varying its discrimination threshold.  
DSC is a similarity measure indicating the distance 

between segmented ROI or labeled ROI and the GT 

provided. DSC takes values in a range of 0 and 1. The value 

of 0 indicates low similarity, and the similarity increases as 

the value tend to 1. DSC is defined mathematically as 

follows: 

DSC = 2×TP / (2×TP + (FP+FN)) (39) 

 

Liver and Tumors Segmentation Evaluation  

The liver was segmented out of abdomen organs using the 

MSFCM method. Table 3 demonstrates the experimental 

results of liver segmentation MSFCM. Table 4 shows 

experimental results for the liver segmentation when 

MSFCM was replaced with the original FCM. From the 

results presented in Table 3 and Table 4, MSFCM achieves 

reliable segmentation with reasonable accuracy compared to 

the original FCM. This enhancement results from coarse to 

fine classification used by MSFCM since pixels with a high 

membership degree to one class (i.e., ROI or other than ROI) 

in a coarse-scale image will have a high probability of 

belonging to the same class at the fine-scale image. It also 

achieved fast segmentation results because the initial classes' 

centroids used for segmentation at the coarser scale improve 

the convergence of the MSFCM classification method.  

Table 3 Experimental results for liver segmentation using MSFCM for 

MICCAI-Sliver07, LiTS17 and 3Dircadb datasets. 

Dataset ACC SEN SPE DSC 

MICCAI 97.08% 96.73% 95.53% 95.88% 

LiTS17 96.52% 96.01% 94.39% 94.84% 

3Dircadb 94.49% 93.50% 91.67% 93.02% 

Table 4 Experimental results for liver segmentation using original 

FCM for MICCAI-Sliver07, LiTS17, and 3Dircadb datasets. 

Dataset ACC SEN SPE DSC 

MICCAI 87.00% 79.03% 81.73% 80.31% 

LiTS17 85.26% 82.44% 80.09% 83.64% 

3Dircadb 74.49% 79.00% 80.99% 79.05% 

 

 
Figure 4 The mean of experimental results for MSFCM and FCM 

shows a huge improvement in the liver segmentation quality.  
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Unlike FCM, MSFCM doesn't need any user interaction to 

declare a tradeoff threshold between noise robustness and 

efficiency. This proves the reliability and automation of the 

liver segmentation stage using MSFCM.  Figure 4 illustrates 

the average results for the liver segmentation using MSFCM 

and FCM with MICCAI-Sliver07, LiTS17, and 3Dircadb 

datasets. The huge improvements can be noticed regarding 

ACC, SEN, SPE, and DSC when MSFCM was the 

segmentation method in use rather than FCM.   

Tumors Segmentation Evaluation  

 The proposed CAD system uses GKFCM along with 

FGFCM to segment hepatic tumors. The segmented liver area 

is first passed to GKFCM and then to FGFCM to produce two 

segmentation results. Tumors are then segmented as an 

intersection between the segmentation results of GKFCM 

and FGFCM. Tumor segmentation using GKFCM and 

FGFCM was evaluated using CT scans from LiTS17 and 

3Dircadb datasets only. This is mainly because MICCAI-

Sliver07 is a liver segmentation dataset. Table 5 presents the 

experimental results for the tumor segmentation stage. As 

illustrated by Table 5 results, the proposed tumor 

segmentation method resulted in reliable and reasonable 

outcomes.   

Table 5 Experimental results for tumors segmentation using GKFCM 

and FGFCM for LiTS17 and 3Dircadb datasets. 

Dataset ACC SEN SPE DSC 

LiTS17 96.64% 95.72% 93.67% 93.82% 

3Dircadb 97.00% 96.20% 94.35% 95.87% 

Tumors Classification Evaluation  

The performance of the tumor classification stage was 

evaluated with respect to the used features. Segmented 

tumors classification was first evaluated using SVM with 

statistical features only, and then it was re-evaluated when a 

set of statistical, textural, and shape features was--used. The 

used features are mean, variance, and skewness as intensity 

features, GLDM as texture-based features, and sphericity as 

shape features.The experimental results for the classification 

stage with only intensity-based statistical features and with 

statistical texture and shape features are presented in Tables 

6 and 7, respectively.  

Table 6 Experimental results for tumor classification using intensity-

based statistical features only.  

Dataset ACC SEN SPE AUC 

LiTS17 76.20% 74.34% 70.99% 76.54% 

3Dircadb 79.46% 75.22% 71.73% 76.31% 

Table 7 Experimental results for tumor classification using SVM using 

intensity-based, textural and shape features. 

Dataset ACC SEN SPE AUC 

LiTS17 96.87% 95.53% 94.63% 96.44% 

3Dircadb 97.18% 94.62% 94.85% 95.99% 

 
Figure 5 The mean of experimental results for the classification 
stage using statistical features only and statistical features along 
with textural and shape features.  

 

 
Figure 6 The ROC curves for liver tumors classification stage 
using statistical and combination of statistical, textural, and shape 
features. ROC curves indicate poor classification quality with 
statistical features only and reasonable quality when features from 
different categories are used. This is mainly because the 
classification with combined features tends to the upper left corner 
while the curve of classification with statistical features only is not.  

Tables 6 and 7 illustrate that intensity-based statistical 

features fail to differentiate liver tumors adequately. 

However, when used with textural and shape features, liver 

tumors were well characterized and labeled as either 

malignant or benign. Figure 5 illustrates the mean of the 

experimental results for classification using intensity-based 
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features versus a set of intensity, textural and shape features. 

Fig. 6 illustrates the superiority of the proposed method in 

terms of tumors classification using ROC curves for different 

different combinations of features. As the ROC curve temds 

to the left upper corner, it indicates the higher quality of the 

system.   

The Proposed CAD System Evaluation 

The proposed CAD system performance evaluation as a 

complete system was achieved by comparing our results to 

other related studies which used publicly available datasets; 

MICCAI-Sliver07, 3Dircadb or LiTS17 datasets to evaluate 

their work.  

For LiTS17, the proposed method reached an average ACC 

of 96.52%, average SEN of 96.01%, average SPE of 94.39%, 

and average DSC of 94.84% for the liver segmentation 

process. It also reached an average ACC of 96.64%, average 

SEN of 95.72%, average SPE of 93.67%, and average DSC 

of 93.82% for tumor segmentation with the same dataset. The 

proposed method achieved reasonable segmentation quality 

compared to other methods using the LiTS17 dataset, such as 

Pandey et al.'s [49] and Bellver et al.'s [50]. Those methods 

achieved an average DSC for tumor segmentation of 58.7 % 

and 59%, respectively. The performance evaluation results of 

the proposed method against other methods with the LiTS17 

dataset are listed in Table 8.   

Research studies implemented with the 3Dircad dataset 

mainly focused on the liver segmentation and less on tumor 

segmentation. Table 9 presents the experimental results of the 

proposed method against some related studies for the liver 

segmentation stage using 3Dircad. The proposed liver 

segmentation method using MSFCM and 3Dircad datasets 

have an average ACC of 94.49%, average SEN of 93.50%, 

average SPE of 91.67%, and average DSC of 93.02%. It also 

segment hepatic tumors using the same dataset with GKFCM 

and FGFCM. The tumor segmentation stage using 3Dircad 

reached an average ACC of 97.00%, average SEN of 96.20%, 

average SPE of 94.35%, and average DSC of 95.87%. From 

the experimental results in Tables 8 and 9, we can notice the 

superiority of the proposed method in tumor segmentation. 

The proposed CAD system performance as a complete 

system versus other CAD systems is illustrated in Table 10. 

Fig. 7 illustrates a visual representation of the DSC for the 

proposed method against other methods from Tables 8 and 9. 

Fig. 8 illustrates the superiority of the proposed method in 

terms of both the liver and tumor segmentation stages.  

Table 8 Experimental results in terms of DSC for the proposed 

method using LITS17 against other methods. 

Method Liver Seg. Tumors Seg.  Mean 

Kaluva et al. 
[51] 

92.30% 62.55% 77.40% 

Bi et al. [52] 95.92% 50.00% 72.95% 

Li et al. [53] 96.10% 72.21% 84.15% 

Yuan [54] 96.30% 65.73% 81.00% 

Our Method 94.84% 93.82% 94.33% 

Table 9 Experimental results in terms of DSC for the proposed 

method using 3Dircad against other methods. 

Method Liver Seg. Tumors Seg.  Mean 

Chirst et al.  
[55] 

94.3% 56.0% 75.15% 

Li et al. [56] 94.5% - - 

Moghbel et 
al. [57] 

91.1% - - 

Y Al-Saeed 
et al. [58] 

92.40% 95.34% 93.87% 

The 
proposed 
Method 

93.02% 95.87% 94.44% 

Table 10 Experimental results for the proposed CAD system against 

related CAD systems.  

Dataset ACC SEN SPE DSC 

Li et al. [53] 86.12% 87.67% 87.90% 88.85% 

Doron et al. 
[59] 

91.72% 91.00% 92.61% 90.50% 

Vorontsov et 
al. [60] 

87.62% 89.99% 85.66% 86.76% 

Chlebus et al. 
[61] 

88.13% 85.43% 87.33% 87.52% 

Zhang et al. 
[62] 

89.92% 90.25% 88.63% 89.42% 

Foruzan et al. 
[63] 

80.00% 79.61% 81.90% 82.00% 

Our Method 96.62% 95.48% 94.20% 95.21% 

 

 

Figure 7 The proposed method DSC against other related studies. 
The proposed method achieved the highest average DSC in terms 
of liver and tumor segmentation.  
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Figure 8 The proposed CAD system performance against other 
related CAD systems. The proposed method achieved the highest 
results among all presented systems in terms of ACC, SEN, SPE 
and DSC. 

 

Discussion  

Segmenting the liver out of the rest of the abdomen organs 

is an extremely tricky, challenging, and complex task. This is 

mainly attributable to several reasons, some are related to the 

nature of the liver, and some are related to the imaging 

modality used. The first reason is related to the liver's nature 

and is the huge intensities' intersection between the liver and 

liver-neighboring organs. This will make the process of 

differentiating the liver a very complicated task unless the 

right preprocessing is applied. The second reason is related 

to CT scanner noises which may result in poor segmentation 

quality as a result of segmentation methods' sensitivity to 

noise. Poor segmentation means failing to contour ROI 

correctly, over-segmentation or under-segmentation. The 

noise may also increase the processing time. 

The proposed CAD system solved these problems by color 

mapping CT scans and enhancing their quality using AMF 

and BPDFHE. These pre-segmentation and quality 

enhancement stages were beneficial in reducing the CT noise 

effect. Hence, improving the segmentation quality. Besides, 

MSFCM is used as an actual liver segmentation method 

along with GKFCM and FGFCM to segment hepatic tumors. 

The used FCM methods have high noise robustness and detail 

preserving abilities while maintaining fewer complex 

computations. The proposed method reduced the processing 

complexity by combining CT slices within the same volume 

to produce 2D CT images for each volume. 

Zhou et al. [18] segmentation method suffered from being 

highly dependent on the user interaction with under or over-

segmentation. Luo et al. [64] used Discrete Wavelet 

Transform (DWT) to segment the liver. Their method 

achieved reasonable results with an SEN of 94.1%. However, 

their proposed method had high computational complexity 

due to DWT coefficients computations operations.   
Hameed et al. [65] proposed a CAD system to differentiate 

malignant and benign liver tumors. Their system failed to 

handle high-order complex features and achieved an SEN of 

84%. Chen et al. [66] proposed a CAD system to differentiate 

specific liver tumors called cirrhosis. This system could 

diagnose cirrhosis tumors only when small datasets were 

used and resulted in an accuracy of 90%. Edwin et al. [67] 

proposed a thresholding-based technique for tumor 

segmentation. Their method resulted in an SEN of 93%. 

However, selecting the optimal threshold value was very 

challenging and resulted in over and under-segmentation. 

Das et al. [68] proposed a CAD system based on adaptive 

thresholding. Their system resulted in an accuracy of 

89.15%. 

The proposed CAD system achieved an average ACC of 

96.62%, an average SEN of 95.48%, an average SPE of 

94.20%, and an average DSC of 95.21%. It also had the 

advantage of being fully automatic with high noise 

robustness. It also achieved low processing complexity by 

creating 2D CT images out of 3D CT volumes and using 

FCM methods with low complex operations. The proposed 

CAD system was able to deal with large datasets, and it 

achieved reliable and efficient outcomes. The proposed 

system applicability was verified using 250 CT volumes from 

three benchmark datasets.  

Conclusions 

This paper proposed an efficient CAD system to diagnose 

hepatic tumors based on FCM method variations. The 

proposed system was able to differentiate benign and 

malignant tumors with reasonable accuracy. The imaging 

modality used in this paper is CT. Hence, the proposed 

system was validated using CT volumes from three liver CT 

datasets; MICCAI-Sliver07, LiTS17, and 3Dircad, with a 

total of 250 subjects.  

The proposed system started by reading 3D CT volumes 

and constructing a 2D CT image for each volume. This was 

achieved by exploiting the fact that each volume is composed 

of a number of slices. The proposed system constructs 2D CT 

images by adding each volume slice to each other. This step 

reduced the processing complexity that may be needed for 

3D image processing. Then, the proposed system enhanced 

the quality of the constructed 2D abdomen CT images by 

making them go through the preprocessing stage. The 

preprocessing stage had many operations that enhanced the 

quality of CT scans. Those operations included color 

mapping, filtering, and contrast enhancement. Next, the 

preprocessed CT images were segmented using MSFCM into 
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the liver region and other abdomen regions. Afterward, the 

segmented liver is used to segment hepatic tumors using 

GKFCM and FGFCM. Using the segmented liver instead of 

the whole abdomen image was beneficial in reducing false 

rates and improving the quality of tumor detection. Finally, 

the segmented tumors were diagnosed as malignant or benign 

liver tumors by extracting some statistical, textural and shape 

features from tumor regions and then passing them along 

with the segmented tumors to SVM. Performance evaluation 

was achieved by calculating different performance metrics. 

The proposed CAD system achieved an average accuracy of 

96.62%, an average sensitivity of 95.48%, an average 

specificity of 94.20%, and an average dice similarity score of 

95.21%. 

For our future work, we plan to integrate some artificial 

intelligence techniques into our framework. We are also 

planning to upgrade the classification problem to the next 

level by labeling segmented tumors as benign or malignant 

and then labeling them with their medical terms, such as 

HCC. This classification problem will need more efficient 

features that can best differentiate different liver tumors 

while preserving low computational time. So, the feature 

selection stage may be added to the next framework.  
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