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Abstract

BACKGROUND
This work aimed to �nd MRI-based markers for Alzheimer's disease (AD) and mild cognitive impairment (MCI) to
improve diagnosis.

METHODS
The multinomial logistic regression was used to predict diagnosis status: AD, MCI, and normal control (NC)
combined with the Bayesian information criterion for model selection. Several T1-weighted MRI-based radiomic
features were considered as explanatory variables in the prediction model.

RESULTS
The best radiomic predictor was the relative brain volume de�ned as the ratio between the volume of the brain
without cerebrospinal �uid and the volume of the whole brain multiplied by 100%. The model was trained on the
ADNI dataset and tested on the independent EDSD dataset. The proposed method con�rmed its quality by achieving
a balanced accuracy of 95.18%, AUC of 93.25%, NPV of 97.93%, and PPV of 90.48% for classifying AD vs NC for the
EDSD. The comparison of two models: with the MMSE score only as an independent variable, and corrected for the
relative brain value and age, shows that the addition of an MRI-based biomarker improves the quality of MCI
detection (AUC: 67.04% vs 71.08%) while maintaining quality for AD (AUC: 93.35% vs 93.25%). Additionally, among
MCI patients predicted as AD inconsistently with original diagnosis, 56.25% from ADNI and 54.17% from EDSD were
re-diagnosed as AD within a 48-month follow-up. It shows that our model can detect AD patients a few years earlier
than a standard medical diagnosis.

CONCLUSIONS
The created method is non-invasive, inexpensive, clinically accessible, and e�ciently supports the AD/MCI
diagnosis.

1. Background
Alzheimer's disease (AD) is a progressive, neurodegenerative brain disease that causes memory loss, changes in
behaviour, and problems with everyday tasks. Alzheimer's is the most common form of dementia, and it is
responsible for 60–80% of dementia cases [1, 2]. The intermediate stage from normal cognition to dementia is a
mild cognitive impairment (MCI). People suffering from MCI have a high rate of progression to dementia over a
relatively short period, but not everyone will develop Alzheimer's disease [3]. Within a 3-year follow-up period, about
35% of patients with MCI status progress to AD or dementia [4]. A yearly conversion rate equals 5%-10% [4].

The main aim of this work is to �nd easily-accessible biomarkers for Alzheimer's disease (AD) and a mild cognitive
impairment (MCI) to improve the diagnosis process. An additional challenge is to predict the diagnosis of
Alzheimer's while a patient is still mildly cognitively impaired.
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Many different methods to predict the diagnosis have been proposed in recent years. These methods are based on
machine learning algorithms [5–13], regression models [4, 14–18], and other methods [19–24]. Many different
biomarkers are used to classify AD and MCI. The �rst group of biomarkers is based on structural brain atrophy
obtained from MRI imaging [7–9, 13]. The second group of biomarkers uses the evaluation of brain metabolic
changes, which are measured by �uorodeoxyglucose positron emission tomography (FDG-PET) imaging [25, 26].
Fluid biomarkers are the third group, and this is connected with amyloid and tau obtained from cerebrospinal �uid
(CSF) [6, 10, 27]. Moreover, diffusion tensor imaging (DTI) and functional MRI (fMRI) are also applied for the
detection of AD and MCI [5, 6, 28, 29]. Most studies use multiple biomarkers in the early diagnosis of AD and MCI
and are based on a combination of two or more following biomarkers: MRI-based biomarkers, �uid biomarkers or
PET-based markers [5, 30, 6, 10, 24]. The availability of all three biomarkers (PET and CSF and MRI or DTI or fMRI) is
limited due to the cost, time and invasiveness of the methods (PET and CSF) [31, 24].

This article presents a method that improves an MCI and AD's diagnosis process based on easily-accessible clinical
biomarkers like age and Mini-Mental State Examination score (MMSE) [32], available in medical history for almost
every patient with suspicion of dementia. We suggest using, in addition to those clinical predictors, the MRI-based
disease progression radiological biomarkers to support the diagnosis. In patients suffering from Alzheimer's disease,
the brain shrinks, and therefore the space �lled with cerebrospinal �uid increases [33, 34]. Moreover, this brain
shrinkage causes the brain to be more wrinkled. Because of that, we consider the relative brain volume and global
measure of brain wrinkling as the imaging biomarkers.

2. Methods
2.1 MATERIALS

Data used in the study were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database
(adni.loni.usc.edu) and The European DTI Study on Dementia (EDSD). The ADNI was launched in 2003 as a public-
private partnership led by Principal Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to test
whether serial magnetic resonance imaging (MRI), positron emission tomography (PET), other biological markers,
and clinical and neuropsychological assessment can be combined to measure the progression of mild cognitive
impairment (MCI) and early Alzheimer's disease (AD). For up-to-date information, see www.adni-info.org. The
European DTI Study on Dementia (EDSD) is a multicenter framework created to study the diagnostic accuracy and
inter-site variability of DTI-derived markers in patients with manifest and prodromal Alzheimer's disease [35].

The standard analysis dataset of the ADNI-1 project was used (collection name: ADNI1: Complete 1Yr 1.5T; subjects
who have both 6- and 12-month scans available) to build a statistical model for predicting AD or MCI status [36].
This dataset was randomly split into and �ve subsets to conduct internal testing and 5-Fold Cross-Validation [37]. In
the second stage, the �nal statistical model was built on the whole dataset, and that model was tested on the
independent dataset from the EDSD database. The dataset of the ADNI-1 project includes MPRAGE T1- weighted 3D
scans (1.5 T) and several clinical and neuropsychological measures acquired from healthy controls (NC), mild
cognitive impaired (MCI) subjects and Alzheimer's disease (AD). 

The second dataset used in the analysis comes from The European DTI Study on Dementia (EDSD) database [35].
The EDSD was started in 2010. The coordinator of this database is the German Center for Neurodegenerative
Diseases (DZNE) in Rostock, Germany. Since 2013, the EDSD has also collected the data of subjects with MCI.
Dataset used in the preparation of this article includes data of subjects who were marked as "not dropout". Our
analysis was based on T1-weighted MRI.
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ADNI dataset (dataset 1) is a reference dataset, and the EDSD dataset (dataset 2) is an independent validation
dataset. Additionally, the EDSD dataset was divided into two subsets related to MRI scanning options: 1.5T and 3T. 

ADNI provided intensity normalized and gradient un-warped TI image volumes [36]. The EDSD native data were used,
and N4 bias �eld correction in N4ITK framework was applied [38]. For both datasets: ADNI and EDSD, skull stripping
was achieved in the SPM 12 software package (https://www.�l.ion.ucl.ac.uk/spm/) [39].

2.2 STATISTICAL METHODS

The clinical characteristics of subjects from the ADNI and EDSD datasets were summarized by the diagnostic group
(NC, MCI, AD) and presented in table 1. The following variables were considered at baseline: age, sex, mini-mental
state exam (MMSE) and years of education. For quantitative measures, values of mean and SD were calculated, and
for categorical variables, the percentage was presented. The comparisons between groups were conducted using the
nonparametric Kruskal-Wallis test for quantitative measures (the Conover test was used in the post-hoc analysis),
and the chi2 test to compare proportions and P-value is presented in table 1. Additionally, table 1 contains effect
size h2 (eta-squared) with 95% con�dence interval [40, 41].

Table 1. Clinical characteristics of the ANDI and EDSD dataset.
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Characteristic NC MCI AD Unadjusted 
P value

Effect size h2   
 [95%CI]

ADNI, n 194 311 133 - -

Age, mean (SD) [years] 75.9 (5.08) 74.9 (7.06) 74.7 (7.59) .4643 * 0.0053 
 [0; 0.0199]

Education, mean (SD)
[years]

16.0 (2.79) 15.7 (3.00) 14.7 (3.11)  

.0003 *

.0004 †

< .0001 ‡
 

0.0253 
 [0.0057; 0.0523]

MMSE score, mean
(SD)

29.1 (1.03) 27.0 (1.78) 23.5 (1.91) < .0001 *

< .0001 † ‡ §

0.6023 
 [0.5581; 0.6387]

Female [%] 47.9 35.4 48.1 .0053 -

EDSD, n 194 152 136 - -

Age, mean (SD), [years] 68.7 (5.90) 71.2 (6.76) 72.4 (8.28) < .0001 *

.0001 ‡
 < .0001 §

0.0497 
 [0.0170; 0.0900]

Education, mean (SD),
[years]

13.1 (3.67)
n=173

12.4 (3.35)
n=132

10.3 (3.33)
n=134

 

< .0001 *

< .0001 † ‡

 

0.1036 
 [0.0538; 0.1572]

MMSE score, mean
(SD)

27.4 (6.49) 26.3 (3.14) 20.8 (5.36) < .0001 *
 < .0001 † ‡
§

0.2198 
 [0.1569; 0.2793]

Female [%] 51.0 43.4 56.6 .07854 -

* Kruskal-Wallis rank sum test; † Conover test: AD vs MCI; ‡ Conover test: AD vs NC;   § Conover test: MCI vs NC

Segmentation of cerebrospinal �uid (CSF) was conducted for each subject separately using the adjusted MiMSeg
algorithm [42]. This procedure was based on the Gaussian mixture model and allowed us to separate CSF from the
brain by �nding the threshold on the greyscale.

Two additional descriptors were de�ned based on MRI scans to numerically represent the changes in the brain
structure. The �rst variable (called 'relative brain volume' (RBV) and shown as a percentage) was de�ned as the
volume of the brain without CSF (V-CSF) divided by the volume of the whole brain (V) multiplied by 100%: 

RBV=V-CSF/V·100%, (1)
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The second variable is a 'shrinkage factor' (SF). The shrinkage factor was de�ned as the surface of the brain without
CSF (S-CSF) with reference to a volume of the brain without CSF (V-CSF) and multiplied by 100%:

SF=S-CSF/V-CSF·100%, (2)

The additional descriptor is the volume of lateral ventricles. The Automatic Lateral Ventricle delineatioN (ALVIN)
algorithm was used to obtain the volume of lateral ventricles. ALVIN is a fully automated algorithm to segment the
lateral ventricles from MRI images (ALVIN works within SPM8) [43].

The multinomial logistic regression was used to predict diagnosis status. The following independent variables were
considered: age, sex, years of education, MMSE score, relative brain volume, shrinkage factor, and volume of lateral
ventricles. The dependent variable was diagnosis status: Alzheimer's disease (AD), mild cognitive impairment (MCI)
and normal control (NC) (reference status). Models with two-way interaction terms were also analyzed. A 5-fold
cross-validation was executed. The Bayesian information criterion (BIC) was used to select the best model [44]. The
comparison between two nested models was conducted using ANOVA, additionally the Bayes factor (exp(DBIC))
was calculated for two compared models. The parameters of a multinomial logistic regression (polytomous) model
were estimated by a maximum likelihood estimation procedure. For values of coe�cient, the adjusted odds ratio
was calculated with its 95% con�dence interval according to the method proposed by Woolf [45]. The receiver
operating characteristic curve (ROC) together with the area under the curve (AUC) for the classi�cation problem were
estimated for both datasets [46]. 

The scheme of key steps conducted during data analysis is presented in Figure 1 (Figure S1 shows detailed
information).

3. Results
The tests on ADNI clinical characteristics indicate that the differences between at least two medians are statistically
signi�cant for the following variables: years of education and MMSE score. For the independent EDSD dataset, the
differences between at least two medians are statistically signi�cant for all variables: age, years of education, and
MMSE score. The effect size of age is very small for both datasets, ADNI and EDSD. The effect size of education is
small for ADNI and medium for EDSD, and the effect size of the MMSE score is large for ADNI and very large for
EDSD. Results of the chi2 test inform that the null hypothesis "the proportion of the female is the same in NC, MCI
and AD" should be rejected for ANDI but not for the independent EDSD dataset. 

For all cross-validation analyses, the �nal model has the same structure. Diagnosis status was best predicted by the
synergy of relative brain volume, MMSE score and age, where age has a corrective function. A comparison between
the model without relative brain volume and age as a predictors (only MMSE was taken into account) and the model
with the relative brain volume  and age added showed the statistical signi�cance of the differences (p<0.00001; BIC=
785.54 for the model with versus BIC= 809.68 for the model without relative brain volume and age). The value of
Bayes factor for compared models is 132646731.7, which indicates very strong evidence for model.  No interaction
increases the model performance quality.

Table S1 presents average values of coe�cients (with a 95% con�dence interval) obtained in 5-fold cross-validation.
Healthy controls (NC) is a reference group. 
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For each predictor, the adjusted odds ratio was calculated (see table S2). For each one percentage point decrease in
relative brain volume, the odds of Alzheimer's disease increase by a factor of 1.35 (95% CI [1.27; 1.44]) and the odds
of MCI disease increase by a factor of 1.19 (95% CI [1.15; 1.24]) in reference to healthy controls. Among subjects
with mild cognitive impairment, for each one percentage point decrease in relative brain volume, the odds of
Alzheimer's disease increase by a factor of 1.13 (95% CI [1.10; 1.16]). The decrease of 1 point in MMSE score
multiplies the odds of Alzheimer's disease by 8.15 (95% [7.53; 8.81]) in reference to healthy controls. The odds of
MCI disease are predicted to grow about 2.65 times larger (95%CI [2.52; 2.79]) for each reduction of point in MMSE
score among healthy controls. For each 1 point decrease in MMSE, the odds of Alzheimer's disease increase by 3.07
(95% CI [2.99; 3.16]) for subjects with MCI.

Table 2 contains average values of statistics of prediction (with a 95% con�dence interval) obtained in a 5-fold
cross-validation for ADNI.

Table 2. Quality performance indices of prediction system (with 95% con�dence interval).
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Statistics AD vs others NC vs others AD vs NC MCI vs NC AD vs MCI

ADNI (Model: Status of disease ~ Relative brain value + MMSE + Age)

Sensitivity [%] 63.99 

[48.61; 79.37]

70.08

[61.92; 78.24]

100 80.67 
 [75.63;
85.72]

63.99 
 [48.61;
79.37]

Speci�city [%] 94.06 
 [90.93;
97.19]

87.84 
 [85.17;
90.51]

100 70.08 
 [61.92;
78.24]

88.22 
 [81.53; 94.9]

Positive Predictive Value
[%]

74.41 
 [65.56;
83.26]

71.66 
 [67.12;
76.20]

100 79.84 
 [76.71;
82.96]

74.41 
 [65.56;
83.26]

Negative Predictive Value
[%]

90.91 
 [87.34;
94.47]

87.13 
 [84.19;
90.07]

100 71.66 
 [67.12;
76.20]

82.71 
 [76.16;
89.26]

Prevalence [%] 20.84 
 [20.42;
21.26]

30.41 
 [30.05;
30.77]

38.51 
 [34.3; 42.73]

59.13 
 [57.50;
60.76]

34.11 
 [32.94;
35.29]

Balanced 
 Accuracy [%]

79.02 
 [71.65; 86.4]

78.96 
 [75.23;
82.69]

100 75.38 
 [72.10;
78.65]

76.1 
 [68.52;
83.69]

AUC [%] 94.18 
 [92.09;
96.28]

90.01 
 [87.03;
92.99]

99.65

[99.18;100.00]

79.30 
 [74.35;
84.24]

90.78 
 [87.45;
94.11]

Cutoff point 0.16 
 [0.05; 0.26]

0.30 
 [0.20; 0.40]

8.38 
 [3.88; 12.87]

47.24 
 [35.28;
59.21]

30.13 
 [10.32;
49.95]

EDSD (Model: Status of disease ~ Relative brain value + MMSE + Age)

Sensitivity [%] 69.85 73.20 96.94 75.78 71.43

Speci�city [%] 90.17 88.19 93.42 77.17 80.17

Positive Predictive Value
[%]

73.64 80.68 90.48 69.78 79.83

Negative Predictive Value
[%]

88.39 83.01 97.93 82.08 71.85

Prevalence [%] 28.22 40.25 39.20 41.03 52.36

Balanced 
 Accuracy [%]

80.01 80.70 95.18     76.48     75.80    

AUC [%] 89.95 85.36 93.25 71.08 85.74

EDSD (Model: Status of disease ~ MMSE)

Sensitivity [%] 71.32 69.59 97.98 77.78 72.39

Speci�city [%] 89.6 89.58 93.10 73.37 79.03

Positive Predictive Value
[%]

72.93 81.82 90.65 66.67 78.86

Negative Predictive Value 88.83 81.39 98.54 82.82 72.59
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g
[%]

Prevalence [%] 28.22 40.25 40.57 40.65 51.94

Balanced 
 Accuracy [%]

80.46 79.59 95.54 75.57 75.71

AUC [%] 90.19 85.87 93.35 67.04 86.14

Abbreviations: AUC, the area under the ROC curve.

Values of areas under the ROC curve (AUC) were very high for classes AD vs others and NC vs others, and 5-fold
cross-validation for ADNI resulted in 94.18% and 90.01%, respectively. The value of three classes (AD vs others, NC
vs others, MCI vs others) of balanced accuracy is 76.10%. Speci�city of 94.06% was gained for AD vs others, and it
is the highest value; the sensitivity for this class is 63.99%. The value of Negative Predictive Value [%] (NPV) is
90.91% for AD vs others, while the value of Positive Predictive Value [%] (PPV) is 74.41%. The values of speci�city,
sensitivity, NPV and PPV for NC vs others are 87.84%, 70.08%, 87.13% and 71.66%, respectively. The pairwise
analysis gave a very large value of AUC for the classi�cation of AD versus NC (99.65%). The value of speci�city,
sensitivity, NPV and PPV for AD vs NC is 100%.

The multinomial logistic regression model was also trained on the whole ADNI dataset and tested on the
independent EDSD dataset. Values of model coe�cients are presented in table S3.

As before, for each predictor, the adjusted odds ratio was calculated (see table S4). One can notice that for each one
percentage point decrease in relative brain volume, the odds of Alzheimer's disease increase by 1.35 (95% CI [1.25;
1.46]) in reference to healthy controls and the odds of MCI disease increase by a factor of 1.19 (95% CI [1.13; 1.26])
which is very similar to the estimates obtained in the �rst stage. Among subjects with mild cognitive impairment, for
each one percentage point decrease in relative brain volume, the odds of Alzheimer's disease increase by a factor of
1.13 (95% CI [1.10; 1.16]). For each reduction of point in MMSE score, the odds are predicted to grow about 8.06
times larger (95%CI [6.48; 10.04]) for Alzheimer's disease and 2.64 (95% [2.27; 3.08]) for mild cognitive impairment in
reference to healthy controls. The decrease of 1 point in MMSE score multiplies the odds of Alzheimer's disease by
3.05 (95% [2.85; 2.36]) among subjects with MCI status.

The obtained model was tested on the independent validation EDSD dataset, and table 2 presents the results.
Additionally, Table S5 contains results for two subsets of EDSD: 1.5T and 3T.

The results of validation for the independent dataset (EDSD) have shown that values of areas under the ROC curve
(AUC) for classes: AD versus others and NC vs others are 89.95% and 85.36%, respectively. The value of three
classes (AD vs others, NC vs others, MCI vs others) of balanced accuracy is 76.83%. Speci�city of 90.17%, sensitivity
of 69.85%, NPV of 88.39%, and PPV of 73.64% were gained for AD vs others. The values of speci�city, sensitivity,
NPV and PPV for NC vs others are 88.19%, 73.20%, 83.01%, and 80.68%, respectively. The pairwise analysis
con�rmed the very large value of AUC for the classi�cation of AD versus NC (93.25%). Speci�city of 93.42% was
gained for AD vs NC, and it is the highest value, the sensitivity for this class is 96.94%. The value of NPV is 97.93%
for AD vs NC, while the value of PPV is 90.48%. Additionally, table 2 contains the results of validation for the
independent EDSD dataset for the model built on the whole ADNI dataset with only independent variable MMSE
score. Results con�rm that adding the relative brain volume and age as a corrective function for natural brain aging
improves the model. The value of AUC for MCI vs NC increases from 67.04% (for model with MMSE score only) to
71.08% (for model with the relative brain volume and age added).
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The ROC curve was used to summarize the prediction of the model for ADNI and ESDS datasets (Figure 2).

During the follow-up, some subjects have converted from MCI status to AD. Table 3 contains the number and
percentage of subjects with changes in diagnosis during 12 months of the follow-up in association with the
prediction (ADNI datasets) and 48 months of follow-up (ADNI and the independent EDSD datasets). The prediction
of the multinomial logistic regression model in 5-fold cross-validation of the ADNI dataset indicates that 32 subjects,
who have MCI screening diagnosis, are predicted as AD status. Among these subjects, predictions are in line with 12
months of the follow-up diagnosis in 10 subjects (31.25%). A similar calculation was conducted for 48 months of
follow-up. Table 3 contains the number and percentage of subjects with changes in diagnosis from MCI to AD during
48 months of the follow-up in association with the prediction (ADNI datasets). 

Table 3. Compliance of the prediction with the change in diagnosis from MCI to AD.

Change
from MCI to
AD
 Number of
subjects (%)

Compliance of AD prediction
with the follow-up diagnosis

No change in diagnosis from MCI to AD
among AD predicted patients*

AD prediction
among subjects 
 with MCI
screen 
 diagnosis

ADNI – 12
months

10 (31.25%)  22 (68.75%) 32 (100%)

ADNI – 48
months

18 (56.25%)  14 (43.75%) 32 (100%)

EDSD – 48
months

13 (54.17%) 11 (45.83%) 24 (100%)

* Not for all subjects, follow-up diagnosis after 48 months is available, so “no change” or “missing information about
change” occurs. This means that the outcome could improve if information about the change in diagnosis was
available.

The prediction was consistent within 48 months of the follow-up diagnosis for 18 subjects (56.25%) among 32
subjects with MCI screening diagnosis and model prediction of Alzheimer's disease. One subject changed the
diagnosis from AD to MCI during follow-up, and this diagnosis is compliant with the prediction. Three subjects
developed MCI among NC subjects; the diagnosis is compliant with the prediction for one subject. 

Prediction of the multinomial logistic regression model on the independent EDSD dataset shows similar results.
Table 3 contains the number and percentage of subjects with changes in diagnosis from MCI to AD during four
years of follow-up in association with the prediction (EDSD dataset). The multinomial logistic regression model on
the independent EDSD dataset predicts Alzheimer's disease in 24 subjects with MCI screening diagnosis. Among
these 24 subjects, 13 (54.17%) patients transited from MCI to AD status, and they con�rmed the model prediction.
The percentage may be even improved as some patients haven't follow-up on their diagnosis.

4. Discussion And Conclusions
Our aim was to improve classical diagnosis process based on MMSE score. We focused on �nding the common
available biomarker, which improves diagnostics. We obtained that the multinomial logistic regression model was of
the same structure for all cross-validation analyses and based on the complete ADNI dataset. Diagnosis status was
best predicted by the relative brain volume, MMSE score, and age. The results of comparison models with MMSE
score only and the relative brain volume and age added shows that adding the relative brain volume (and age as an
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adjustive factor for natural brain aging) improves model. The value of Bayes factor indicates strong evidence and
we can notice that the quality of MCI detection increases (AUC: 67.04% vs 71.08%) while maintaining the quality for
AD (AUC: 93.35% vs 93.25%).   The average values of coe�cients of the multinomial logistic regression models for
5-fold cross-validation and results for the whole ADNI dataset are very similar, which con�rms the homogeneity of
the training dataset and consistency of the diagnosis process. Average values of statistics of prediction obtained in
5-fold cross-validation for ADNI show that we have the outstanding results of classi�cation AD vs NC and AD vs
others, with AUC equaling 99.65% and 94.18%, respectively. Additionally, the values of AUC for AD vs MCI and for NC
vs others are also very high (90.78% and 90.01%, respectively). The moderate value of AUC we have for MCI vs NC
(79.30%) is still a very good result if we take into account that the MCI group is heterogeneous and some patients
from this group develop AD, and some patients have stable MCI status. The average value of balanced accuracy for
three classes (AD vs others, NC vs others, and MCI vs others) is 76.10% for 5-fold cross-validation. As we aim to
develop a supporting diagnostic test, detecting patients with the disease is the most important, so Positive Predictive
Value (PPV) and Negative Predictive Value (NPV) are the most important. 

We have compared our classi�cation results with results reported in the literature based on the ADNI dataset (11
studies used the ADNI dataset as a training dataset, one study used the internal locally dataset as a training dataset
and ADNI dataset as an independent validation dataset; 6 studies among 12 used additionally independent
validation dataset) (table 4). 

Table 4. Overview of previous studies based on the ADNI dataset.
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Studies Sample
size

Method Input Validation Groups Parameters Results

Agostinho
et al.,
2022 [6]

The
internal
locally
dataset
(n=41):
AD
(n=20),
NC
(n=21).

SVM MRI, PiB-
PET and
DTI

Internal
locally
dataset and
external
dataset
(ADNI
(n=330): AD
(n=166), NC
(n = 164))

AD, NC AUC, ACC,
SEN, SPEC,
BACC

Dependent
validation: AD
vs NC: MRI:
AUC=96%,
ACC=92.05%,
SEN=86.78%,
SPEC=86.78%,
BACC=92.05%;
PiB PET:
AUC=93%,
ACC=90.53%,
SEN=92%,
SPEC=82,
BACC=79.84%;
DTI: AUC=86%,
ACC=76.84%,
SEN=76.17%,
SPEC=82.09%,
BACC=79.84%. 
 Independent
validation: AD
vs NC: MRI:
AUC=81%,
ACC=78.02%,
SEN=74.12%,
SPEC=82.29,
BACC=78.20%;
PiB PET:
AUC=81%,
ACC=76.87%,
SEN=87.9%,
SPEC=68.33%,
BACC=78.12%;
DTI: AUC=69%,
ACC=62.79%,
SEN=54.31%,
SPEC=71.98%,
BACC=63.15%.

Gao et al.,
2022 [7]

1134
subjects:
AD
(n=454),
NC
(n=680).

3DMgNet
(multigrid
and
convolutional
neural
network)

MRI 10-fold
cross-
validation
and external
in-house
dataset (AD
(n=75), NC
(n=59))

AD, NC AUC, ACC,
SEN, SPEC

Dependent
validation:
ACC=92.13%,
AUC=94.43%,
SEN=88.42%,
SPEC=95%. 
 Independent
validation:
ACC=87.91%,
AUC=95.74%,
SEN=79.73%,
SPEC=98.31%.

Goenka et
al., 2022
[8]

769
subjects:
AD
(n=70),
MCI
(n=224),
NC (475)

CNN MRI 633 scans
from ADNI
dataset

AD,
MCI,
NC

AUC, ACC Dependent
validation: AD
vs NC: ACC=
97.83%, AD vs
MCI:
ACC=98.68%,
NC vs MCI:
ACC=99.10%,
NC vs MCI vs
AD:
ACC=98.26%.
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 AD vs NC:
AUC=94%, AD
vs MCI:
AUC=97%, NC
vs MCI:
AUC=99%, NC
vs MCI vs AD:
AUC=98%.

Tang et
al., 2021
[9]

560
subjects:
AD
(n=80),
EMCI
(n=230),
LMCI
(n=110),
NC
(n=140)

SVM, RF, DT MRI 10-fold
cross-
validation

AD,
EMCI,
LMCI,
NC

AUC, ACC,
SEN, SPEC

RF: NC vs AD:
ACC=96.14%,
SEN=88.14,
SPE=92.81%,
AUC=92%.
 NC vs EMCI:
ACC=77.45%,
SEN=79.51%,
SPE=33.54%,
AUC=59%.
 NC vs LMCI:
ACC=87.56%,
SEN=64.71%,
SPE=83.94%,
AUC=81%.
 EMCI vs AD:
ACC=90.15%,
SEN=93.51%,
SPE=92.43%,
AUC=85%.
 LMCI va AD:
ACC=84.54%,
SEN=67.91,
SPE=72.46%,
AUC=89%.

Dyrba et
al., 2021
[10]

633
subjects:
AD
(n=189),
MCI
(n=220),
NC
(n=254)

CNN MRI and
PET

1-fold cross-
validation
and three
independent
datasets:
ADNI-3
(n=575),
AIBL
(n=606),
DELCODE
(n=474).

AD,
MCI,
NC

AUC, ACC,
SEN, SPEC,
BACC, PPV,
NPV

Dependent
validation: 
 AD vs NC:
BACC=88.9%,
SEN=94.2%,
SPE=83.6%,
PPV=81.5%,
NPV=95.2%
AUC=94.9%.
 MCI vs NC:
BACC=74.5%,
SEN=65.5%,
SPE=83.6%,
PPV=78.1%,
NPV=74.1%,
AUC=78.5%.
 amyloid-
positive AD vs
amyloid-
negative NC:
BACC=94.9%,
SEN=95.6%,
SPE=94.3%,
PPV=92.7%,
NPV=96.6%,
AUC=98.5%.
 amyloid-
positive MCI vs
amyloid-
negative NC:
BACC=86.7%,
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SEN=79%,
SPE=94.3%,
PPV=91.6%,
NPV= 96.6%,
AUC=92.5%.
 Independent
validation
DELCODE:
 AD vs NC:
BACC=85.5%,
SEN=94.2%,
SPE=76.7%,
PPV=66.2%,
NPV=96.5%
AUC=95.3%.
 MCI vs NC:
BACC=71%,
SEN=65.2%,
SPE=76.7%,
PPV=66.9%,
NPV=75.3%,
AUC=77.5%.
 amyloid-
positive AD vs
amyloid-
negative NC:
BACC=83.3%,
SEN=95.9%,
SPE=70.7%,
PPV=73.4%,
NPV=95.3%,
AUC=96.8%.
 amyloid-
positive MCI vs
amyloid-
negative NC:
BACC=72.2%,
SEN=73.7%,
SPE=70.7%,
PPV=71.2%,
NPV= 73.2%,
AUC=84%.

Marzban
et al.,
2020 [5]

406
subjects:
NC
(n=185),
MCI
(n=106),
AD (n =
115) 

CNN MRI and
DTI

10-fold
cross-
validation

AD,NC,
MCI

AUC, ACC,
SEN, SPEC

AD vs NC:
AUC=94%,
ACC=93.5%,
SEN=92.5%,
SPEC=93.9. 
 MCI vs NC:
AUC=84%,
ACC=79.6%,
SEN=62.7%,
SPEC=89% 

Li et al.,
2020 [11]

404
subjects:
NC
(n=268),
AD
(n=136)

SVM MRI 10-fold
cross-
validation
and
independent
validation
dataset (AD
(n=41), NC
(n=25))

AD, NC ACC, SEN,
SPEC

Dependent
validation
dataset: AD vs
NC:
ACC=93.07%,
SEN=94.12%,
SPEC=98.51. 
 Independent
validation
dataset: AD vs
NC:
ACC=84.85%,
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SEN=85.36%,
SPEC=84%

Bae et al.,
2020 [12]

390
subjects:
AD
(n=195),
NC
(n=195)

CNN MRI 5-fold cross-
validation
and
independent
validation
dataset (AD
(n=195), NC
(n=195))

AD, NC AUC, ACC,
SEN, SPEC

Dependent
validation
dataset: AD vs
NC: AUC=94%,
ACC= 89%,
SEN= 88%,
SPEC=91%. 
 Independent
validation
dataset: AD vs
NC: AUC=88%,
ACC= 83%,
SEN= 76%,
SPEC= 89%

Liu et al.,
2020 [13]

449
subjects:
AD
(n=97),
MCI
(n=233),
NC
(n=119)

CNN MRI 5-fold

cross-
validation
and
independent
dataset (AD
(n=45),

MCI (n=46),
and NC
subjects
(n=44)).

AD,
MCI,
NC

AUC, ACC,
SEN, SPEC

Dependent
validation:

AD vs NC:
ACC=88.9%,
SEN=86.6%,
SPE=90.8%,
AUC=92.5%.

MCI vs NC:
ACC=76.2%,
SEN=79.5%,
SPE=69.8%,
AUC=77.5%.

Independent
validation:

AD vs NC:
AUC=89.8%

MCI vs NC:
AUC=72.2%

Zhang et
al., 2019
[24]

857
subjects:
NC
(n=322),
MCI
(n=322),
AD (n =
213) 

Graph
Analysis

MRI Data are
 randomly
partitioned
into 80%
and 20% for
training and
testing.

AD,
MCI,
NC

AUC AD vs MCI +
NC: AUC=73%, 
 NC vs AD +
MCI:
AUC=72%, 
 MCI vs AD +
NC: AUC= 69%.

Westman
et al.,
2012 [24]

369
subjects:
AD
(n=96),
MCI
(n=162)
and NC
(n=111).

Orthogonal
Partial Least-
Squares
(OPLS) 

MRI, PET,
CSF

7-fold cross-
validation

AD,
MCI,
NC

AUC, ACC,
SEN, SPEC,
PPV, NPV

AD vs NC: MRI
with CSF:
ACC= 91.8%,
SEN=88.5%,
SPEC=94.6%,
PPV=93.4%,
NPV=90.5%
and
AUC=95.8%.
 MRI only:
ACC=87%,
SEN=83.3%,
SPEC=90.1%,
PPV=87.9%,
NPV=86.2%
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and AUC=93%
 CSF only:
ACC=81.6%,
SEN=84.4%,
SPEC=79.3%,
PPV=77.9%,
NPV=85.4%
and
AUC=86.1%.
 MCI vs NC:
MRI with CSF:
ACC=77.6%,
SEN=72.8%,
SPEC=84.7%,
PPV=87.4%,
NPV=68.1%
and
AUC=87.6%.
 MRI only:
ACC=71.8%,
SEN=66.7%,
SPEC=79.3%,
 PPV=82.4%,
NPV=62.0%
and
AUC=81.5%.
 CSF only:
ACC=70.3%,
SEN=66.7%,
SPEC=75.7%,
PPV=80.0%,
NPV=60.9%
and
AUC=74.9%.

Eskildsen
et al.,
2012 [47]

808
subjects:
AD
(n=194),
NC
(n=226),
pMCI
(n=161),
sMCI
(n=227)

LDA MRI
(cortical
thickness
and age)

leave-one-
out (LOO)
validation

AD, NC,
pMCI,
sMCI

AUC, ACC,
SEN, SPEC

Independent
feature sets:
AD vs NC:
ACC=85.5%,
SEN=80.4%,
SPEC=89.8%,
AUC=92%.
pMCI vs sMCI:
ACC=67.8%,
SEN=64.6%,
SPEC=70%,
AUC=68.2%.
 Dependent
feature sets:
AD vs NC:
ACC=87.4%,
SEN=82.5%,
SPEC=91.6%,
AUC=93.1%.
pMCI vs sMCI:
ACC=68.3%,
SEN=67.7%,
SPEC=68.7%,
AUC=74.7%.

Abbreviations: AIBL, Australian Imaging, Biomarker & Lifestyle Flagship Study of Ageing; DELCODE, DZNE
multicenter observational study on Longitudinal Cognitive Impairment and Dementia; EMCI, early mild cognitive
impairment; LMCI, late mild cognitive impairment; pMCI, progressive MCI; sMCI, stable MCI; CNN, convolutional
neural network; LDA, linear discriminant analysis; SVM, support vector machine; RF, random forest; DT, decision tree;
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AUC, area under receiver operating characteristic curve; ACC, accuracy; SEN, sensitivity; SPEC, speci�city; BAAC,
balanced accuracy; PPV, positive predictive value; NPV, negative predictive value.

Table 4.

Our results for the independent validation dataset are not worse and, in many cases, even better than the results
from previously published studies. Our model achieved the best balanced accuracy of 95.18% (balanced ACC) for
the independent validation dataset when the highest value of balanced accuracy for AD vs NC from reported studies
is 85.5% [10]. Although the highest reported value of AUC is 96.8, in this study, the decision is supported by the
concentration of amyloid in CSF [10]. The second top reported AUC value is 95.74%, but this study focuses on only
two categories: AD and NC, while we consider MCI as a third one [7]. The third value of AUC is 95.3%. This value is
slightly bigger than ours, but other performance indicators like balanced accuracy, sensitivity, speci�city, PPV, and
NPV for AD vs NC are better in our approach [10]. The lowest value of AUC for AD vs NC among publications
presented in table 4 is 69% [6]. The highest sensitivity value for AD vs NC is 95.6% for analysis based on the
concentration of amyloid in CSF and 94.2% for analysis without amyloid data, while our estimated sensitivity is
better and equal to 96.94% [10]. For the prediction speci�city, the highest value observed is 98.31%, but this study
focuses only on two categories: AD and NC, which means that it is easier to achieve better results than for three
categories [7]. The second highest reported value of speci�city is 89.8%, which is lower than ours (93.42%) [47]. The
lowest value of speci�city among publications is 68.33% [6]. Only one study from table 4 contains the results of NPV
and PPV for AD vs NC, values of these indicators are 95.3% and 73.4% for analysis based additionally on amyloid
data, and 96.5% and 66.2% for analysis without amyloid data, respectively [10]. Our results are again better; the
value of NPV is 97.93% for AD vs NC, while PPV is 90.48%. The comparison of results for 5-fold cross-validation
shows that our model achieves better results than all reported studies for the classi�cation task of AD versus NC
(table 4) [5, 6-13, 23, 24, 47]. The prediction results of AD vs NC from reported studies show that the highest AUC is
98.5% [10], when our result is 99.65%, the highest accuracy for AD vs NC is 97.83% [8], when our result is 100% (we
have the balanced ACC). The highest values of sensitivity and speci�city are 95.6% [10] and 98.51% [11],
respectively, when our model achieved 100% for both parameters.

Additionally, among MCI patients predicted as AD inconsistently with original diagnosis, 56.25% from ADNI and
54.17% from EDSD were re-diagnosed as AD within a 48-month follow-up.

5. Conclusions
Our work shows that the proposed MRI-based biomarker, combined with MMSE score and adjusted for age, gives
excellent AD status predictions. Moreover, our method, as based on MRI, doesn't require invasive and expensive
laboratory tests and, as being a classical statistical learning model, doesn't require large calculation power.

In this paper, we proved that incorporating the radiological MRI-based biomarker into the standard clinical AD
predictors leads to a handy model for daily clinical routine and improves the diagnosis process. Additionally, we
demonstrated that our model detects some patients transitioning from MCI to AD as AD patients a few years earlier
before regular medical diagnosis. 

6. List Of Abbreviations
ACC - accuracy; 
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AD - Alzheimer's disease;

ADNI – Alzheimer's Disease Neuroimaging Initiative;

AIBL - Australian Imaging, Biomarker & Lifestyle Flagship Study of Ageing;

ALVIN - Automatic Lateral Ventricle delineatioN;

AUC – area under the curve;

BAAC - balanced accuracy; 

BIC - Bayesian information criterion;

CI – con�dence interval;

CNN - convolutional neural network; 

CSF - cerebrospinal �uid;

DELCODE - DZNE multicenter observational study on Longitudinal Cognitive Impairment and Dementia; 

DT - decision tree; 

DTI - diffusion tensor imaging;

EDSD – European DTI Study on Dementia;

EMCI - early mild cognitive impairment; 

FDG-PET - �uorodeoxyglucose positron emission tomography imaging;

fMRI - functional MRI;

LDA - linear discriminant analysis; 

LMCI - late mild cognitive impairment; 

MCI - Mild Cognitive Impairment;

MMSE – Mini-Mental State Examination score;

MRI - magnetic resonance imaging;

NC – Normal Control;

NPV – negative predictive value;

PET - positron emission tomography;

pMCI - progressive MCI; 

PPV – positive predictive value;
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RBV - relative brain volume;

RF - random forest; 

ROC - receiver operating characteristic curve;

SEN - sensitivity; 

SF - shrinkage factor;

sMCI - stable MCI; 

SPEC - speci�city; 

SVM - support vector machine;
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Figures

Figure 1

The scheme of key steps of data preprocessing and data analysis.



Page 24/24

Figure 2

The ROC curve for classi�cation between AD, MCI and NC: (a) The ROC curve for classi�cation with average values
of 5-fold cross-validation (ADNI data): AD vs others, NC vs others; (b) The ROC curve for classi�cation with average
values of 5-fold cross-validation (ADNI data): Ad vs NC, MCI vs NC, AD vs MCI; (c) The ROC curve for classi�cation
using ADNI data as training data and EDSD data (whole dataset) as test data: AD vs others, NC vs others; (d) The
ROC curve for classi�cation using ADNI data as training data and EDSD data (whole dataset) as test data: AD vs NC,
MCI vs NC, AD vs MCI.
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