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Abstract The control performance of reluctance ac-
tuator maglev system is seriously affected by inherent

nonlinearities (e.g., hysteresis, eddy current, flux leak-
age, etc.) and external disturbances. To this end, this
paper proposes an enhanced unknown system dynamics

estimator (USDE)-based sliding mode control (USDE-

SMC) method by a novel predictive-adaptive switching

(PAS) controller (USDE-SMC-PAS). First, a USDE is

incorporated into SMC to compensate for the uncer-

tainties; Second, an adaptive switching (AS) controller
is used to reduce chattering; Finally, the switching con-
troller is modified by PAS to enhance the dynamic re-

sponse ability and disturbance rejection ability with re-

duced chattering. In the PAS controller, the switching

gain comprises a filtered estimate error part and a resid-

ual part, which are obtained by a first-order filter and

an adaptive law, respectively. Consequently, the strong

disturbance compensation ability, high levitation accu-

racy, high dynamic response, and reduced chattering

property can be achieved simultaneously. The stabili-

ties of USDE-SMC, USDE-SMC with an AS controller

(USDE-SMC-AS), and USDE-SMC-PAS in the closed-

loop system are analyzed by the Lyapunov theorem.
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1 Introduction

Reluctance actuators (i.e., electromagnetic actuators)

have the advantages of large thrust and no contact,

so they are widely used in magnetic levitation systems

(MLSs)[1]. When the MLSs are used in semiconductor

equipment, high levitation accuracy and high dynamic

response are necessary for the control to satisfy the re-

quirements of the production quality and production

efficiency [2]. However, high performance control of re-

luctance actuators is challenging due to inherent nonlin-
earities [3] (e.g., hysteresis, eddy current, flux leakage,
etc.) and external disturbances.

There are many advanced methods in the control

of MLSs, including output feedback control [4],linear
active disturbance rejection control (LADRC) method
[5], adaptive backstepping control method [6], model

predictive control (MPC) method [7], disturbance ob-
server based control (DOBC) [8], adaptive fuzzy control
method [9], and sliding mode control (SMC) [10] and so

on. Among them, SMC is a method with simple struc-

ture but good control performance[11,12,13]. Recently,

many SMC methods have been used for the control of

MLSs, such as fractional-order SMC [14], PID-based

SMC[15],high-order SMC[16], super-twisting SMC [17],

and neural network adaptive SMC (NNASMC) [18],

and so on. To enhance control performance, many re-

searchers add additional disturbance compensation meth-

ods into SMC to deal with the uncertainties. Due to
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their strong generalization abilities, fuzzy logic systems

(FLSs) [19] and neural networks (NNs) [20] have been

embedded into SMC for uncertainty compensations, and

they were successfully applied in MLSs. In NNs and

FLSs, the weights need to be updated online, while

this will imposes a heavy computational burden and

cannot guarantee fast convergence of parameters [21].

On the other hand, the disturbance observer (DOB)
methods, which can estimate and compensate for the
uncertainties in the control synthesis, can also deal with

the problem[22]. In [23], DOB is embedded into SMC

to compensate for the nonlinear effects and model un-

certainties in nanopositioning stages. Besides, nonlin-

ear disturbance observer (NDOB) [24], adaptive dis-

turbance observer(DOB) [25], extended disturbance ob-

server (ESO) [26], generalized proportional integral ob-

server (GPIO) [27], and unknown system dynamics esti-

mator (USDE) [28] have also been developed for SMC

to deal with unknown dynamics and disturbances. In

the SMC methods with disturbance compensations, the

residual compensation error must be suppressed by switch-

ing controller. However, due to the difficulty of obtain-

ing accurate uncertainty bounds, excessive switching

gain is unavoidable to ensure robustness, which may

introduce obvious chattering and finally cause mechan-

ical and electronic damage to MLS.

Recently, adaptive SMC methods, which can update

the switching gain in a dynamic adaption way, are pop-

ular for balancing the chattering and the robustness. In

[29], a threshold-based adaptive law which is updated

by the distance of the system state to a discontinuity

surface was proposed. In [30], an adaptive SMC strat-

egy without under-estimation and over-estimation was

proposed, which stops increasing (resp. decreasing) the

control gain when the tracking error decreases (resp.

increases). In [31], the switching gain of SMC was up-

dated by an integral/exponential adaptation law for

chattering reduction. In [32], the upper bound of uncer-

tainty was designed by a NN, and the switching gain of

SMC was updated by the adaptive NN. In [33], a new

adaption law with arbitrarily small vicinity of the slid-

ing manifold was presented for the chattering reduction,

which is inversely proportional to the sliding variables.

In [34], the uncertainty upper bound was designed as

a first-order polynomial, and thus the switching gain

is adaptively updated by the polynomial with adap-
tive coefficients. However, although the existing adap-
tive SMC methods can ensure that the switching gain

converges to the vicinity of the actual boundary value

finally, there will be a significant difference between

the switching gain and the actual boundary value dur-

ing the dynamic process. The dynamic response perfor-

mance thus will be sacrificed.

Considering that the switching controller is mainly

used to deal with the compensation error, if the esti-
mate error of USDE can be embedded in the switching
gain, it may be possible to improve the dynamic re-

sponse performance. To this end, this paper proposes an

enhanced USDE-based SMC (USDE-SMC) method by

a predictive-adaptive switching (PAS) controller (USDE-

SMC-PAS). The switching gain of the PAS controller is

composed of a filtered estimate error part and an adap-

tive residual part to obtain higher dynamic response

and stronger robustness. The main contributions lie in:

1. A USDE-SMC-PAS method is designed for reluc-

tance actuator maglev system for robustness en-

hancement and chattering reducing synchronously,

where the PAS controller is updated by a filtered

estimate error and an adaption law.

2. A filtered estimate error of USDE is directly de-

duced, and an estimate error-based dynamic upper

bound about the uncertainty is designed.

3. A USDE-SMC-AS is also constructed for the maglev

system by embedding an adaptive switching (AS)

controller into the traditional USDE-SMC.

4. The stabilities about USDE-SMC, USDE-SMC-AS,

and USDE-SMC-PAS in the closed-loop system are

analyzed.

The rest of this paper is organized as follows: In

Section II, the mathematical model of an MLS is intro-

duced; The new control scheme is proposed in Section

III; The simulations are performed in Section IV; The

experiments are conduced in Section V; Finally, Section

VI concludes the paper.

2 Modeling of maglev system

The structure of the maglev plant is shown in Fig.1.

It is composed of a levitation reluctance actuator and

a disturbance injection reluctance actuator. The levi-

tation reluctance actuator contains a bottom E-mover

and an I-target, and the disturbance injection reluc-
tance actuator contains a top E-mover and an I-target.
The E-movers and the I-target are laminated by silicon-

iron materials. The excitation currents are i and id for

the levitation and disturbance injection actuators, re-

spectively. The parameters are set as Table 1.

Assume that the magnetic field in the reluctance
actuator is uniformly distributed, it can be obtained

according to the Maxwell equation

Ni = lFeH +
2x

µ0
B (1)

where lFe is the length of the flux linkage, H is the

magnetic field intensity, µ0 denotes the air permeability



Predictive-Adaptive Sliding Mode Control Method for Reluctance Actuator Maglev System 3

Fig. 1: Electromagnetic actuators with an EI-type

structure.

Table 1: Parameter values of the MLS

Physical quantity Value

Coil turns N 280
Air permeability µ0 4×10−7 N/A2

Mass m 3.233 kg
Gravitational acceleration g 9.8 m/s2

Cross sectional area A 2.88×10−4 m2

and x denotes the levitation position. If the effects of

hysteresis, eddy current and flux leakage are omitted,

we have H = B
µ0µr

. Therefore,

B =
µ0Ni

lFe

µr
+ 2x

+Bn (x) (2)

where µr is relative permeability in silicon-iron and

Bn (x) represents the flux caused by the nonlineari-

ties including hysteresis, eddy current and flux leak-

age. lFe

µr
≪ 2x, and thus it can be omitted. According

to Maxwell’s stress tensor, the relationship between the

output force F and the flux density B can be calculated

as

F =
B2A

2µ0
=

µ0AN
2i2

8x2
+

B2
n (x)A

2µ0
. (3)

Denoting K(x) = µ0AN2

8x2 , the actual dynamic model
of MLS can be given as

(m+ δm) ẍ = (m+ δm) g−K(x)i2−
B2

n (x)A

2µ0
+Fd. (4)

where δm is the deviations of the parameters m, and Fd

represents the external disturbances. A lumped uncer-

tainty can be defined as

Ld = −
1

m

(

−δmg + δmẍ+
B2

n (x)A

2µ0
− Fd

)

(5)

Linearizing the MLS by using i =
√

mu
K(x) (u > 0), the

dynamic of the MLS can be deduced as






ẋ1 = x2

ẋ2 = −u+ g − Ld

y = x1.

(6)

where [x1 x2]
T
= [x ẋ]

T
.

Assumption 1 [35] Assume Ld is bounded. It satis-
fies |Ld| < Lu

d where Lu
d is a positive constant, and the

derivative of Ld is bounded by supt≥0

∣

∣

∣
L̇d

∣

∣

∣
≤ ϑ where ϑ

is a positive constant.

3 Controller design

In an MLS control system, the tracking error and its

derivative with respect to time are given by
{

e = r − x1

ė = ṙ − ẋ1 = ṙ − x2
(7)

where r is a given trajectory. Based on the tracking

error e and the derivative ė, a sliding mode variable S

and its derivative with respect to time Ṡ are designed

as
{

S = ė+ λe

Ṡ = r̈ − ẋ2 + λė = u+ r̈ − g + Ld + λė
(8)

where λ is a positive control gain.

3.1 The design of USDE-SMC

To compensate for the lumped uncertainty Ld, a USDE

is used. Herein, the filter variables x2f and uf are de-
fined as
{

κẋ2f + x2f = x2, x2f (0) = 0

κu̇f + uf = u, uf (0) = 0
(9)

where κ is a positive constant which determines the

bandwidth of the low-pass filters. The following Lemma
can be obtained.

Lemma 1 [35] Considering system (6) and the filter

variables in (9), an invariant manifold for any positive
constant κ can be defined as

γ =
x2 − x2f

κ
+ uf − g + Ld. (10)

γ satisfies lim
κ→0

[

lim γ
t→∞

]

= 0.

Therefore, Ld can be estimated as

L̂d = −uf + g −
x2 − x2f

κ
. (11)
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Adding a filter 1
1+κs (s represents the laplace variable)

into (6), one obtains

1

1 + κs
[ẋ2] = −

1

1 + κs
[u] +

1

1 + κs
[g − Ld] . (12)

Defining Ldf = 1
1+κs [Ld] and considering ẋ2f =

x2−x2f

κ ,

one obtains

Ldf = −uf + g −
x2 − x2f

κ
. (13)

Comparing both (11) and (13), it can be deduced that

Ldf = L̂d. Therefore, the estimate error eL can be de-

duced as

eL = Ld − L̂d =
κs

1 + κs
[Ld] . (14)

Furthermore, one obtains [36]

ėL = −
1

κ
eL + L̇d. (15)

The estimation error eL is bounded by[36]

|eL| ≤
√

e2L(0)e
−t/κ + κ2ϑ2. (16)

The control law of the USDE-SMC is designed as

u = −λė− r̈ + g − ΛS − L̂d − ρsgn (S) (17)

where Λ is a positive gain and ρ is the switching gain.

−L̂d and −ρsgn (S) represent the USDE compensator

and the switching controller, respectively.

Theorem 1 The closed-loop trajectories in (6) with the

control law (17) are globally uniformly ultimately bounded

(GUUB), if ρ ≥ |eL|.

Proof A Lyapunov function is chosen as

V1 =
1

2
S2 +

1

2
e2L. (18)

The derivative of V1 with respect to time is expressed

as

V̇1 = SṠ + eLėL

= S (u+ r̈ − g + Ld + λė) + eL

(

−
1

κ
eL + L̇d

)

= −ΛS2 −
1

κ
e2L − (ρ |S| − eLS) + eLL̇d (19)

where eLL̇d ≤ 1
2κe

2
L+

κ
2 L̇

2
d ≤ 1

2κe
2
L+

κ
2ϑ

2 and ρ−|eL| >

0. Thus,

V̇1 ≤ −β1V2 +
1

2
κϑ2 (20)

where β1 = min
{

2Λ, 1
κ

}

. Using 0 < β2 < β1, (20) can

be further simplified as

V̇1 ≤ −β2V1 − (β1 − β2)V1 +
1

2
κϑ2 (21)

When V1 ≥ κϑ2

2(β1−β2)
, V̇1 ≤ 0. Thus,

V1 ≤ max

{

V1(0),
κϑ2

2 (β1 − β2)

}

, ∀t ≥ 0. (22)

According to (18), it can be seen that 1
2S

2 ≤ V1. There-

fore, |S| ≤
√

κϑ2

(β1−β2)
. It is concluded that closed-loop

system is GUUB.

3.2 The design of USDE-SMC-AS

DefiningK as the upper bound about the compensation

error eL, whereK ≥ |eL|. The control law of the USDE-

SMC-AS is designed as
{

u = −λė− r̈ + g − ΛS − L̂d + uas

uas = −K̂sgn(S)
(23)

where uas represents the adaptive switching controller.

K̂ is the estimate of K, updated by

˙̂
K = Γ

(

|S| − ΥK̂
)

(24)

where Γ and Υ are positive constants, and K̂(0) > 0.
It can be concluded that K̂ ≥ 0, due to

K̂(t) = exp (−Υt) K̂(0)

+

∫ t

0

exp (−Υ (t− τ)) (|S| |eLf |) dτ ≥ 0. (25)

Theorem 2 The closed-loop trajectories in (6) with the
control law (23), the adaptive law (24), and the estima-

tor (11) are GUUB.

Proof A Lyapunov function is chosen as

V2 =
1

2
S2 +

1

2
e2L +

1

2Γ
K̃ (26)

where K̃ = K̂ − K. The derivative of V2 with respect

to time is expressed as

V̇2 = SṠ + eLėL + ΓK̃
˙̂
K

= S (u+ r̈ − g + Ld + λė) + eL

(

−
1

κ
eL + L̇d

)

+
1

Γ
K̃

˙̂
K

≤ −ΛS2 −
1

κ
e2L −

(

K̂ − |eL|
)

|S|+ eLL̇d

+
1

Γ
K̃

˙̂
K (27)

where −
(

K̂ − eL

)

≤ K−K̂ = −K̃ and eLL̇d ≤ 1
2κe

2
L+

κ
2 L̇

2
d ≤ 1

2κe
2
L + κ

2ϑ
2. Therefore,

V̇2 ≤ −ΛS2 −
1

2κ
e2L +

1

2
κϑ2 + K̃

(

1

Γ

˙̂
K − |S|

)

. (28)
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Substituting (24) into (28), one obtains

V̇2 ≤ −ΛS2 −
1

2κ
e2L +

1

2
κϑ2 + ΥK̂K − ΥK̂2 (29)

where K̂K − K̂2 = − 1
2

(

K̂ −K
)2

+ 1
2K

2 − 1
2K̂

2 ≤

− 1
2K̃

2 + 1
2K

2. Thus,

V̇2 ≤ −ΛS2 −
1

2κ
e2L −

Υ

2
K̃2 +

1

2
κϑ2 +

Υ

2
K2. (30)

Defining β3 = min
{

2Λ, 1
κ , Υ

}

, V̇2 can be further con-

cluded as

V̇2 ≤ −β3V2 +
1

2
κϑ2 +

Υ

2
K2 (31)

Using 0 < β4 < β3, (31) can be further simplified as

V̇2 ≤ −β4V2 − (β3 − β4)V2 + Ξ (32)

where Ξ = 1
2κϑ

2+Υ
2K

2 > 0. When V2 ≥ Ξ
β3−β4

, V̇2 ≤ 0.
Thus,

V2 ≤ max

{

V2(0),
Ξ

β3 − β4

}

, ∀t ≥ 0. (33)

According to (26), it can be seen that 1
2S

2 ≤ V2. There-

fore, |S| ≤
√

2Ξ
β3−β4

. It is concluded that closed-loop

system is GUUB.

3.3 The design of USDE-SMC-PAS

Considering that the switching controller after USDE

compensation is mainly used to deal with the com-

pensation error, USDE-SMC-PAS (as shown in Fig. 2)

designs a filtered estimate error-based dynamic upper

bound about the uncertainty, to improve the dynamic

response performance.

Fig. 2: The structure of USDE-SMC-PAS.

Defining eLf as the filtered variable about eL, it can

be deduced that

κėLf + eLf = eL, eLf (0) = 0. (34)

Considering both (14) and (34), one obtains

κėLf + eLf =
κs

1 + κs
[Ld] . (35)

Therefore,

eLf =
κs

1 + κs
[Ldf ] . (36)

A filtered estimate error-based dynamic upper bound

about the compensation error eL can be defined as

eL ≤ |eLf |+ ϵ (37)

where |eLf | and ϵ (ϵ > 0) represent the filtered estimate

error part and the residual part, respectively. Based on
the dynamic bound, the control law of the USDE-SMC-
PAS is designed as














u = ue + uc + upas

ue = −λė− r̈ + g − ΛS

uc = −L̂d

upas = − (|eLf |+ ϵ̂) sgn(S)

(38)

where ue, uc, and upas represent the equivalent con-

troller, the USDE compensator, and the PAS controller.

ϵ̂ is the estimate of ϵ, updated by

˙̂ϵ = Γϵ (|S| − Υϵϵ̂) (39)

where Γϵ and Υϵ are positive constants, and ϵ̂(0) > 0.

It can concluded that ϵ̂ ≥ 0, due to

ϵ̂(t) = exp (−Υϵt) ϵ̂(0)

+

∫ t

0

exp (−Υϵ(t− τ)) (|S| |eLf |) dτ ≥ 0. (40)

Theorem 3 The closed-loop trajectories in (6) with the
control law (38), the adaptive law (39), the estimator

(11), and the filter (36) are GUUB.

Proof A Lyapunov function is chosen as

V3 =
1

2
S2 +

1

2
e2L +

1

2Γϵ
ϵ̃2 (41)

where ϵ̃ = ϵ̂ − ϵ. The derivative of V3 with respect to

time is expressed as

V̇3 = SṠ + eLėL +
1

Γϵ
ϵ̃ ˙̂ϵ

= S (−ΛS + eL − (|eLf |+ ϵ̂) sgn(S))

+eL

(

−
1

κ
eL + L̇d

)

+
1

Γϵ
ϵ̃ ˙̂ϵ. (42)



6 Yunlang Xu et al.

Considering (37), one obtains eL−(|eLf |+ ϵ̂) ≤ |eLf |+

ϵ − (|eLf |+ ϵ̂) ≤ −ϵ̃. Using eLL̇d ≤ 1
2κe

2
L + κ

2 L̇
2
d ≤

1
2κe

2
L + κ

2ϑ
2 and (39) , one obtains

V̇3 ≤ −ΛS2 −
1

2κ
e2L +

1

2
κϑ2 + Υϵϵ̂ϵ− Υϵϵ̂

2 (43)

where ϵ̂ϵ− ϵ̂2 ≤ − 1
2 ϵ̃

2 + 1
2ϵ

2. Therefore,

V̇3 ≤ −ΛS2 −
1

2κ
e2L −

Υϵ

2
ϵ̃2 +

1

2
κϑ2 +

Υϵ

2
ϵ2. (44)

Defining β5 = min
{

2Λ, 1
κ , Υϵ

}

, V̇3 can be concluded as

V̇3 ≤ −β5V3 +
1

2
κϑ2 +

Υϵ

2
ϵ2. (45)

Using 0 < β6 < β5, (45) can be further simplified as

V̇3 ≤ −β6V3 − (β5 − β6)V3 + Ξϵ (46)

where Ξϵ =
1
2κϑ

2 + Υϵ

2 ϵ2 > 0. When V3 ≥ Ξϵ

β5−β6

, V̇3 ≤

0. Therefore,

V3 ≤ max

{

V3(0),
Ξϵ

β5 − β6

}

, ∀t ≥ 0. (47)

According to (41), it can be seen that 1
2S

2 ≤ V3. There-

fore, |S| ≤
√

2Ξϵ

β5−β6

. It is concluded that closed-loop

system is GUUB.

4 Simulation

The MLS dynamic model introduced in Section II was

simulated. The simulations were conducted on a per-

sonal computer with the setup of Intel Core i7, 3.3 GHz

CPU, and 16 GB of RAM. The simulation code was

written by Matlab 2016a. Three simulations were per-

formed to evaluate the performance of the control al-

gorithms, including Case I: Sinusoidal trajectory track-
ing; Case II: Step trajectory tracking; Case III: Sinu-
soidal disturbance rejection. The uncertainties and its

derivations in all cases are bounded. The maximal er-

ror (MAE) and the root mean square error (RMSE) are

used to evaluate the control accuracy of the system, de-

fined as

MAE = max
k=1,2,··· ,nk

|r(tk)− x(tk)| , (48)

RMSE =

√

√

√

√

1

nk

nk
∑

k=1

(r(tk)− x(tk))
2
. (49)

where r(tk) and x(tk) are the desired position and the

actual position, respectively, and nk is the number of

the sampled data. tk = kTs where Ts denotes the sam-

pling interval. Ts is 3×10−4 s. All algorithms have same
parameters as follows

λ = 40, Λ = 150, κ = 0.015,

Γ = 8000, Υ = 0.1, Γϵ = 8000, Υϵ = 0.1. (50)
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Fig. 4: Simulation results in Case II

In Case I, the MLS is levitated to track a sinusoidal

trajectory. The tracking results of Case I are shown in

Fig. 3, including tracking position (position), control

current (current), and switching gain (SW gain). The

numerical results are recorded in Table 2. USDE-SMC-
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Fig. 5: Simulation results in Case III

Table 2: Numerical results of experiments

USDE-SMC USDE-SMC-AS USDE-SMC-PAS

I
MAE 7.89 µm 35.39 µm 5.36 µm
RMSE 3.47 µm 18.40 µm 2.15 µm
Chattering Obvious Slight Slight

II
Max time 0.31 s 0.73 s 0.20 s
Min time 0.23 s 0.26 s 0.15 s
Chattering Obvious Slight Slight

III
MAE 5.06 µm 4.73 µm 1.18 µm
RMSE 2.17 µm 2.61 µm 0.51 µm
Chattering Obvious Slight Slight

PAS achieves the best tracking accuracy with RMSE

and MAE of 5.36 µm and 2.15 µm, respectively, while
USDE-SMC-AS has the worst accuracy with RMSE

and MAE of 35.39 µm and 18.40 µm, respectively. In

Case II, the MLS is levitated to track a step trajec-

tory. The results of Case II are shown in Fig. 4 and

Table 2. USDE-SMC-PAS obtains the best dynamic re-

sponse with the maximum and minimum settling time

of 0.20 s and 0.15 s, respectively. In comparison, USDE-

SMC-AS has the worst dynamic response with the max-

imum and minimum settling time of 0.73 s and 0.26 s,

respectively. In addition, in Case I and Case II, both

USDE-SMC-AS and USDE-SMC-PAS have attenuated

chattering phenomenon, while chattering is very obvi-

ous in USDE-SMC. The tracking results of Case I and

Case II show that PAS can help USDE-SMC-PAS re-

duce chattering and obtain better tracking accuracy

and dynamic response performance than USDE-SMC
and USDE-SMC-AS.

In Case III, a sinusoidal disturbance is injected. The

results of Case III are shown in Figs. 5 and Table 2.
USDE-SMC-PAS has the best disturbance rejection abil-

ity. Its RMSE and MAE in Case III are 1.18 µm and
0.15 µm, respectively. In comparison, USDE-SMC and

USDE-SMC-AS are relatively worse. In Case III, both

USDE-SMC-AS and USDE-SMC-PAS show reduced chat-

tering phenomenon, while USDE-SMC shows very ob-

vious chattering. The disturbance rejection results of

Case III show that PAS can help USDE-SMC-PAS ob-

tain stronger disturbance rejection abilities than USDE-

SMC and USDE-SMC-AS, with reduced chattering,

5 Experiments and validation

Experiments were conducted on a one-dimensional MLS
as shown in Fig. 6. The MLS contains a maglev plant,
a Speedgoat (Performance), and two drives (TA115,

Trust Automation. Inc.). In the maglev plant, the re-

luctance actuator used to produce levitation force com-

prises the bottom E-mover and the I-target, while the

reluctance actuator used to generate disturbance force

contains the top E-mover and the I-target. The gap x

between the bottom E-mover and the I-target is mea-

sured by a gap sensor and fed back to Speedgoat. In

the MLS, the gap x can change from 7×10−4 m to

2×10−4 m, and the main work point is set at the posi-

tion r = 4×10−4 m. The computing time interval Ts is

3×10−4 s. Three experiments were performed to evalu-

ate the performance of the control algorithms. The un-
certainties and its derivations in all cases are bounded.
All algorithms have same parameters as follows

λ = 30, Λ = 100, κ = 0.0137,

Γ = 10000, Υ = 0.1, Γϵ = 10000, Υϵ = 0.1. (51)

To evaluate the ability of USDE-SMC-PAS for deal-

ing with the inherent nonlinearities in an MLS, sinu-
soidal trajectory tracking experiments and step trajec-
tory tracking experiments were carried out in Case I
and Case II, respectively. The motion process and the

numerical results of Case I are shown in Fig. 7 and
Table 3, respectively. It can be found that the MAE
and RMSE of USDE-SMC-PAS are 19.13 µm and 7.70

µm, respectively, and the chattering is slight. When

compared to USDE-SMC and USDE-SMC-AS, USDE-
SMC-PAS can smoothly track the sinusoidal trajec-

tory with higher accuracy. The tracking results indicate

that USDE-SMC-PAS has well-tracking accuracy when
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Fig. 6: Experimental setup.

the MLS is guided to a sinusoidal trajectory. The mo-

tion process and the numerical results of Case II are

shown in Fig. 8 and Table 3, respectively. It can be

found that the maximum and minimum settling time

of USDE-SMC-PAS are 0.20 s and 0.15 s, respectively,

and the chattering is slight. When compared to USDE-

SMC, USDE-SMC-PAS has significant advantages in

chattering suppression. This benefits from its adaptive

switching controller PAS. Compared to USDE-SMC-

AS, USDE-SMC-PAS has significant advantages in set-

tling time, which indicates that USDE-SMC-PAS has a

better dynamic response by incorporating the filtered

estimate error of USDE into the adaptive switching

gain.

Table 3: Numerical results of experiments

USDE-SMC USDE-SMC-AS USDE-SMC-PAS

I
MAE 79.04 µm 94.70 µm 19.13 µm
RMSE 38.03 µm 51.96 µm 7.70 µm
Chattering Slight Slight Slight

II
Max time 0.41 s 1.61 s 0.32 s
Min time 0.08 s 0.46 s 0.19 s
Chattering Obvious Slight Slight

III
MAE 19.87 µm 8.89 µm 1.75 µm
RMSE 8.46 µm 4.35 µm 0.83 µm
Chattering Obvious Slight Slight

To evaluate the ability of USDE-SMC-PAS for sup-

pressing the external disturbances in an MLS, distur-

bance rejection experiments were carried out in Case

III, where the sinusoidal disturbance is injected into

the MLS by the top reluctance actuator. The distur-

bance suppression process of Case III are shown in Fig.

9 and Table 3. It can be found that the system with
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Fig. 8: Experimental results in Case II

USDE-SMC-PAS can smoothly preserve high levitation

accuracy with the smallest MAE and the RMSE values

when dealing with the disturbance. However, USDE-

SMC has obviously chattering phenomena, and its levi-

tation accuracy is bad when the disturbance is injected.

USDE-SMC-AS can also reduce chattering, but its im-
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provement of disturbance suppression ability is worse

than USDE-SMC-PAS. The results reveal that PAS can

help USDE-SMC-PAS reduce the chattering and obtain

obvious improvements on the disturbance rejection abil-

ity.
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Fig. 9: Experimental results in Case III

The convergence trends of the switching gains ρ in

(17), K̂ in (23), and |eLf |+ ϵ̂ in (38) are also plotted in

the bottom parts of Figs. 7-9. USDE-SMC has a fixed

switching gain which is set larger than the upper bound

of the uncertainty to obtain sufficient robustness, and

thus significant chattering is inevitable. USDE-SMC-
AS can adaptively update the switching gain according
to the sliding variable, and thus its chattering can be

reduced. However, since it is difficult for traditional AS

methods to accurately estimate the uncertainty, the dis-

turbances rejection ability of USDE-SMC-AS is not sig-

nificantly improved. USDE-SMC-PAS embeds the fil-

tered estimate error of USDE into the adaptive switch-

ing gain, where the residual part is adaptively updated

according to the sliding surface as well. The switching

gain of USDE-SMC-PAS can fit the uncertainty more

accurately. Therefore, USDE-SMC-PAS has a better

dynamic response, higher trajectory tracking accuracy,

and stronger disturbance suppression than USDE-SMC

and USDE-SMC-AS.

6 Conclusion

This paper proposes a USDE-SMC-PAS to control the

MLS with the inherent nonlinearities and external dis-

turbances. The filtered estimate error of USDE and the

adaptive part comprise a PAS controller for improv-
ing the robustness and dynamic response of MLS. The
stabilities of the systems are analyzed by constructing

Lyapunov functions. Results of simulations and exper-

iments show that USDE-SMC-PAS can smoothly pre-

serve high levitation accuracy with high dynamic re-

sponses when tracking sinusoidal trajectory and step
trajectory. In addition, USDE-SMC-PAS behaves bet-
ter robustness with reduced chattering phenomenon than
USDE-SMC and USDE-SMC-AS when dealing with dis-

turbance. With the high control performance and suffi-

cient robustness, the USDE-SMC-PAS method is worth

to be recommended to other control applications where

inherent nonlinearities and external disturbances are

apparent. In addition, the main limitation of the method

is that the design of the sliding mode surface is too sim-

ple, which may limit the further improvement of the

control performance in USDE-SMC-PAS. In the future,
we will further optimize the maglev system controller
by combining the USDE and PAS with other advanced

sliding mode methods, such as terminal SMC, super-

twisting SMC, and higher-order SMC and so on.
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