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Abstract
Background: Pancreatic Ductal Adenocarcinoma (PDAC) lacks effective treatment options beyond
chemotherapy. Although molecular subtypes such as classical and QM (quasi-mesenchymal)/basal-like
with transcriptome-based distinct signatures have been identified, deduced therapeutic strategies and
targets remain elusive. Gene expression data show enrichment of glycolytic genes in the more aggressive
and therapy resistant QM subtype. However, whether the glycolytic transcripts are translated into
functional glycolysis that could further be explored for metabolic targeting in QM subtype is still not
known.

Methods: We used different patient-derived PDAC model systems (conventional and primary patient
derived cells, patient derived xenografts (PDX) and patient FFPE samples) and performed transcriptional
and functional metabolic analysis. These included: RNAseq and Illumina HT12 bead array, in vitro
Seahorse metabolic flux assays and metabolic drug targeting, and in vivo hyperpolarized  [1-
13C]pyruvate and [1-13C]lactate magnetic resonance spectroscopy (HP-MRS) in PDAC xenografts.

Results: We found that glycolytic metabolic dependencies are not unambiguously functionally exposed in
all QM PDACs. Metabolic analysis demonstrated functional metabolic heterogeneity in patient-derived
primary cells and less so in conventional cell lines independent of molecular subtype. Importantly, we
observed that the glycolytic product lactate is actively imported in the PDAC cells and used in
mitochondrial oxidation in both classical and QM PDAC cells, although more actively in the QM cell lines.
By using hyperpolarized 13C-magnetic resonance spectroscopy (HP-MRS), we were able to non-invasively
identify highly glycolytic PDAC xenografts by detecting the last glycolytic enzymatic step and prominent
intra-tumoral [1‑13C]pyruvate and [1-13C]lactate interconversion in vivo.

Conclusion: Our study adds functional metabolic phenotyping to transcriptome-based analysis and
proposes a functional approach to identify highly glycolytic PDACs as candidates for anti-metabolic
therapeutic avenues.

Background
Despite enormous research efforts, pancreatic ductal adenocarcinoma (PDAC) remains a fatal disease
with marginal clinical advancement (1). Although genomic and transcriptional profiles of PDAC have
been studied in great detail (2–4), effective targeting strategies remain scarce. Sequencing efforts in
large patient cohorts have identified distinct molecular PDAC subtypes in several independent studies
with two dominant subgroups. Those are termed classical or pancreatic progenitor with more epithelial
differentiated tumor and quasi-mesenchymal (QM; term used hereafter) or squamous or basal-like (1, 5–
7) with more mesenchymal differentiated tumor respectively. Especially QM PDACs demonstrate very
aggressive phenotypes with shorter median survival and resistance to first-line chemotherapy with
FOLFIRINOX (1). Which cancer cell features contribute to the aggressive and therapy-resistant QM
phenotype remains unknown.
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Metabolic rewiring, i.e. an individual cell’s ability to use different metabolic pathways depending on
alternating growth conditions including oxygen and nutrient availability, has been implicated as a major
cause of therapy resistance in cancers and aggravates clinically successful targeting (8). This allows
cells not only to adapt but to thrive on particularly scarce conditions of hypoxia and nutrient limitations
typically observed in PDAC (9). Glycolysis is the most prominent cancer associated metabolic pathway.
Although high cancer dependency on glucose was described nearly 100 years ago by Otto Warburg (10),
glycolytic targeting is still not widely therapeutically exploited. Recently, expression of glycolytic
metabolic transcripts has been associated with the resistant QM PDAC subtype in patients (11). Work in
PDAC mouse models demonstrated that glycolysis is the major metabolic effector of oncogenic KRAS,
the leading PDAC driver, and that co-targeting of RAS-RAF-MEK-MAPK cascade and glycolysis may be an
effective approach in PDAC (12). However, functional evidence that glycolysis is indeed significantly
operable in human QM PDACs is missing.

Here, we addressed this missing link and analyzed functional exposure of glycolysis in different clinically
relevant PDAC samples ranging from long-term cultured PDAC cell lines to patient-derived primary cells,
patient derived xenografts and bulk PDAC probes. We found considerable heterogeneity in the glycolytic
behavior especially among patient-derived PDAC cells. However, individual representatives of the QM
subtype were indeed functionally highly glycolytic what was preserved even in the in vivo xenograft
setting. By using a non-invasive hyperpolarized 13C-magnetic resonance spectroscopy, we were able to
detect the final glycolytic step in vivo, namely intratumoral conversion of [1-13C]pyruvate to [1-13C]lactate.
Importantly, QM PDAC cells actively consumed the final glycolytic product, lactate, in mitochondrial
oxidative phosphorylation in vitro, what was further in vivo translated and detected as [1-13C]lactate to [1-
13C]pyruvate conversion in QM PDAC xenografts. This suggested that glycolytic QM cells not only
actively produce lactate but also metabolically use it. Our work opens a perspective for a non-invasive
detection of glycolytic PDACs and monitoring of individualized anti-glycolytic targeting approaches.

Methods

PDAC cell lines
All PDAC cell lines have been obtained from the ATCC and regularly externally authenticated (at least
once a year). PDAC cell lines (Psn1 (RRID: CVCL_1644); Kp4 (RRID: CVCL_1338), PaTu8988T
(CVCL_1847); MiaPaca2 (RRID: CVCL_0428), PaTu8988S (RRID: CVCL_1846), HPAC (RRID: CVCL_3517),
HPAFII (RRID: CVCL_0313), and HupT4 (RRID: CVCL_1300) were grown in Dulbecco’s Modified Eagle
Medium (1:1 mix of DMEM #11966025 and DMEM #A1443001, Thermo Fisher Scientific, Waltham, USA)
adapted to final concentrations of 5 mM D-glucose (Thermo Fisher Scientific, Waltham, USA), 2 mM
Lglutamine, 5% v/v fetal bovine serum (FBS, Thermo Fisher Scientific, Waltham, USA), and 1% v/v
penicillin/streptomycin (P/S, Thermo Fisher Scientific, Waltham, USA) if not stated otherwise.

Patient Derived Cells (PDCs)
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For all metabolic analysis, PDC cell lines were cultivated in a 1:1 mixture of Keratinocyte-SF medium
(#17005075, Thermo Fisher Scientific, Waltham, USA) and RPMI 1640 ( #11879020, Thermo Fisher
Scientific, Waltham, USA) adapted to final concentrations of 5mM D-glucose, 4.5mM L-glutamine,
0.26mM sodium pyruvate, 6%v/vFBS and 1% v/v final mixture of penicillin/streptomycin (Thermo Fisher
Scientific, Waltham, USA) and Antimycotic/Antibiotic (cat. nu. 15240-062, Thermo Fisher Scientific) if not
stated otherwise.

PDX samples preparation
Establishment of the PDX mouse model was performed using surgically resected PDAC tissues collected
from patients.

Seahorse metabolic flux assays
All assays were performed following the manufacturer’s instructions (Agilent Technologies).

Immunohistochemistry and immunofluorescence
Immunohistochemistry was performed according to standard laboratory procedures on PFA fixed, FFPE
tissue samples. Antibodies used in this study: MCT4, Atlas Antibodies (Sigma Aldrich, Cat#HPA021451,
RRID:AB_1853663); HIF1a, BD Transduction laboratories #610959 (RRID:AB_398272); MCT1, Abcam,
#ab85021(RRID: AB_10674945); KRT81, Santa Cruz, #sc-100929 (RRID: AB_2132772); panCytokeratin,
Abcam #ab6401(RRID: AB_305450);

Hyperpolarized Magnetic Resonance Spectroscopy (HP-
MRS)

Animal handling
All experiments were carried out in adherence to pertinent laws and regulations.

Detailed explanations of all experiments can be found in supplementary material and methods section.

Results

Glycolytic metabolic gene transcripts are present in QM
PDAC subtype
To evaluate whether glycolytic transcripts are omnipresent in the QM PDAC subtype (11), we first
performed gene expression analysis in multiple preclinical and clinical samples (Fig. 1a). RNA-seq or
Illumina HT12 gene expression analysis was performed for conventional PDAC cell lines (n = 8), patient
derived xenografts (PDX, n = 34) and primary patient derived cells (PDC, n = 11). Transcriptomes from
bulk tissue of 204 PDAC samples from previously published resource was utilized (E-MTAB-1791). All of
the samples were then subtyped to QM or classical group. For tumor subtype determination, negative
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matrix factorization (NMF) (13) was used, after median centering of the data. ConcensusClusterPlus (14)
was used to validate class assignment from NMF. In a first benchmarking step, we used publicly
available transcriptionally subtyped PDAC cohorts (PDAC cell lines (GSE21654 (15)); PDAC xenograft (E-
MTAB-4029 (16)); and bulk PDAC tissue (GSE16515 and GSE15471 (17, 18)) to verify the robustness of
our classification pipeline. With this approach, we were able to reproduce more than 90% of the reported
subtypes in our test datasets.

After establishing the pipeline, the same parameters were used for subtyping of patient PDAC samples,
PDX cohort and PDC samples to QM and classical group and gene set enrichment analysis (GSEA)
comparing the QM and classical groups was performed. By using our subtyping platform, in the PDAC
patient sample cohort (204 samples) 88 classified as classical and 116 as QM subtype. Samples
clustering to the QM subtype presented significant enrichment of selected QM and squamous subtype
assigner gene sets previously described (5, 6) (Fig. 1b and supplementary table 1) supporting correct
subtype assignment.

In the PDX cohort, 22 classical and 12 QM tumors were identified. Among PDCs 6 classical (PDC44, 58,
59, 62, 70, 89) and 5 QM (PDC 34, 57, 69, 78, 80) were identified. The 8 PDAC cell lines used in this study
were previously classified as QM (KP4, PSN1, MIAPaca2, PaTu8988T) and classical (PaTu8988S, HUPT4,
HPAFII, HPAC) (19). We analyzed gene expression of Vimentin (VIM) and E-cadherin (CDH1) as markers
of mesenchymal and epithelial status respectively. As expected, general trend towards higher VIM
expression in QM and CDH1 expression in classical PDAC cells was observed (supplementary Fig. 1a).

After classification, QM and classical groups were compared by GSEA for HALLMARK, REACTOME and
KEGG collections in all datasets. A full list of all enriched gene sets with respective Normalized
Enrichment Score (NES) and False Discovery Rate (FDR) values is given in supplementary table 2. As
expected for the mesenchymal phenotype, enrichment of the epithelial-to-mesenchymal transition (EMT)
gene set was observed in the QM group in PDX, PDC and patient PDAC samples (Fig. 1c) supporting
correct assignment of the subtypes. In the QM samples, transcripts for glycolysis, hypoxia and MYC-
target genes were well preserved throughout different sample collections (Fig. 1c). The hypoxia gene set
was enriched in QM bulk PDAC tissue, PDX and PDC data sets, even though PDC cells were cultured
under common laboratory normoxic conditions. Concordantly with the well described correlation of
hypoxia and glycolysis (20), glycolysis/glucose metabolism transcripts were also enriched in the QM
patient PDAC samples, PDX and PDAC cell line datasets, MYC target gene sets as well. Interestingly, in
the QM PDCs the glycolysis gene set was not enriched, possibly due to low sample numbers but also
suggesting no unambiguous assignment of glycolytic genes to the QM subtype at least in PDCs. In
summary, we observed strong transcriptional association of QM subtype with glycolysis in different
preclinical and clinical samples.

Glycolytic pathway activity is high in individual QM PDAC
cells
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To investigate whether glycolysis is indeed functionally active in QM PDAC cells, we performed Seahorse
metabolic flux assays and evaluated the Extracellular Acidification Rate (ECAR) and Oxygen
Consumption Rate (OCR) as readouts of two major energy supplying processes, glycolysis and oxidative
phosphorylation respectively. ECAR and OCR levels were measured in cell lines and PDCs in media with
physiological concentrations of 5mM glucose with addition of 2mM glutamine. Under these conditions,
PSN1 and PDC69, both QM, presented the highest ECAR/OCR ratios and glycolytic energy phenotype
among cell lines and PDCs respectively (Fig. 2a and supplementary table 3). However, energetic
phenotype of other cell lines and PDCs was rather heterogeneous and independent of their transcriptional
subtype, being QM or classical.

Notably, qPCR analysis revealed that the relative gene expression of the last glycolytic enzyme lactate
dehydrogenase A (LDHA), lactate exporter MCT4 (SLC16A3) and importer MCT1(SLC16A1) is high in
PSN1 and PDC69 cells in comparison to other cells. The same was true for HIF1a, a central cellular
regulator of hypoxia and glycolysis (Fig. 2b). Moreover, hierarchical clustering of transcriptome data
showed generally higher expression of several glycolytic genes (e.g. HK1, HK2, ENO1, ENO2, PGK1) in QM
cell lines and PDCs, especially in PSN1 and PDC69 (Fig. 2c). Taken together, active glycolysis was
observed in some QM PDAC cells what correlated well with the high expression of glycolytic genes but
was not unambiguously connected to QM subtype.

Lactate exporter MCT4 has previously been suggested to be a good marker of glycolytic PDACs (21). In
publicly available TCGA RNA expression datasets, high expression of both lactate transporters MCT4 and
MCT1 correlated with worse survival in PDAC patients associating with the resistant QM subtype
(Fig. 3a). Immunohistochemical analysis of MCT1 and MCT4 in FFPE samples of 30 human PDACs
suggested that both MCT4 and MCT1 were expressed on cancer and stromal cells with MCT4 being more
prominently expressed on cancer cells while MCT1 was often prominently expressed in the surrounding
stroma as well (Fig. 3b). In our cohorts, we observed that MCT4 (SLC16A3) gene expression levels were
higher than MCT1 (SLC16A1) in both bulk PDAC and PDX tissue samples (Fig. 3c and supplementary
Fig. 2a), suggesting a lead role of MCT4 as lactate transporter in tissue context. Furthermore, multiplex
immunofluorescence for PanCytokeratin (PanCK), MCT4 and KRT81, an established QM marker (16), in 6
PDAC FFPE specimens, showed that the proportion of MCT4 positive cells was higher among KRT81
positive (30–50%) than KRT81 negative cancer cells (< 20%) (Fig. 3d). Our data support the use of MCT4
as a surrogate marker of QM PDACs with activated glycolysis.

PDAC cells actively use lactate as oxidative fuel
Intrigued by high expression of lactate transporters detected in some of the QM PDAC cells, we aimed to
investigate lactate metabolism in PDAC. It is now well accepted that lactate is not only the end waste
product of glycolysis but is also actively used in metabolic processes in cancer as well. Lactate
conversion to pyruvate and subsequent oxidation in the mitochondria has been suggested in murine
PDAC (22). However, whether this effect is especially attributable to lactate producing high glycolytic QM
PDAC cells is still not known. To investigate this, we cultivated PDAC cells were cultivated for 7 hours in i)
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“basal” DMEM or RPMI media without glucose or glutamine supplementation or in ii) “basal” media
supplemented with lactate (basal + 10mM L-lactate). Consequently, Seahorse metabolic flux
measurement was performed and OCR values measured in media with and without lactate were
compared. In basal media, classical PDAC cell lines (HPAC, HPAFII and HupT4) presented generally
higher basal OCR levels than the QM cell lines, indicating that Oxidative Phosphorylation (OxPhos) is well
supplied by alternative fuels other than glucose or glutamine in the classical cell lines (supplementary
Fig. 2b). Interestingly, lactate supplementation to the medium led to OCR boost in all cells of both QM and
classical subtypes with however more pronounced OCR increase in the QM PDAC cell lines (Fig. 4a). In
PDCs, lactate treatment led to an OCR increase in all cells, without pronounced subtype specific effect
(Fig. 4a and supplementary Fig. 2b).

To substantiate this finding, we cultivated PSN1 (QM), PaTu8988T (QM) and PaTu8988S (classical) cells
in DMEM medium with 5mM glucose and 2mM glutamine without media change for 24-48-72-96 hours.
Glucose and lactate concentrations in the media were measured at given time points. With time, glucose
concentration in the media decreased and lactate increased (0–72 hours), as expected due to glucose
consumption and lactate production and accumulation. Once the glucose was consumed from the
medium (approx. after 72 hours in PaTu8988T/PSN1 cells), lactate concentration in the media decreased,
indicating that in absence of other resources, PDAC cells start consuming self-produced lactate
(supplementary Fig. 2c).

We also challenged the detected changes in glycolysis and lactate metabolism with the inhibitor of
lactate dehydrogenase GNE-140 and followed the concentration dependent inhibition of metabolic
activity in cells via cell titer glo assay (Fig. 4b). GNE-140 treatment indeed induced a decrease in cell
viability especially in the QM cell lines, being most effective in PSN1, MIAPaca2 and PaTu8988T cells.
PDCs were in general less sensitive to GNE-140 and the observed inhibitory effects were, as expected
from Seahorse lactate supplementations assays, not subtype-dependent.

In conclusion, PDAC cells, regardless of subtype, not only actively produce and excrete glycolytically
produced lactate but also actively use it potentially as an oxidative fuel. This phenomenon is more
pronounced in QM than in classical PDAC cell lines and is exposed to specific metabolic targeting with
lactate dehydrogenase inhibitors.

Hyperpolarized magnetic resonance spectroscopy of [1-
13C]pyruvate and [1-13C] lactate identifies highly glycolytic
tumors
Pharmacological inhibition suggested efficacy of GNE-140 in glycolytic cells arguing for the need of
unequivocal identification of highly glycolytic PDACs for successful metabolic targeting. However,
detection of dominant metabolic pathways driving tumor phenotypes remains a highly challenging task.
Fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) is clinically established method for
tumor detection based on high glucose uptake into the cancer. However, 18F-FDG-PET detects only the
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very first step of glycolysis since 18F-FDG gets phosphorylated by the first glycolytic enzyme hexokinase
or glucokinase and does not enter the further metabolic processing. Thus FDG-PET rather detects the
glucose trapping in the cell, rather than the real glycolytic activity of the tumor. We sought to evaluate the
last step of glycolysis, pyruvate to lactate conversion, and explored hyperpolarized magnetic resonance
spectroscopy (HP-MRS) with hyperpolarized (HP) [1-13C]pyruvate and [1-13C]lactate in PDAC in an in vivo
approach. For this purpose, rats were subcutaneously implanted with glycolytic QM PSN1 or classical
HPAC PDAC cell lines. Consistent with the respective molecular subtype, PSN1 tumors presented an
undifferentiated mesenchymal histology, while HPAC tumors showed a more differentiated epithelial
tumor (supplementary Fig. 3a). Once the tumors reached a minimal size of 5x5 mm, metabolic
spectroscopy was performed. HP-[1-13C]pyruvate was i.v. injected into the tail vein and intratumoral
accumulation of HP-[1-13C]lactate was followed in real-time. Using MRS, significantly more HP-[1-
13C]lactate was detected in PSN1 compared to HPAC tumors, supporting higher 13C label exchange
between pyruvate and lactate specifically in PSN1 tumors (Fig. 5a and 5b).

To evaluate whether lactate is used by tumors in vivo as observed in vitro in seahorse experiments, we
performed the reverse experiment and intravenously injected HP-[1-13C]lactate in PSN1 and HPAC tumor
rats in vivo. Intratumoral HP-[1-13C]pyruvate was detected in PSN1 but not HPAC xenografts (Fig. 5c).
Accordingly, significantly higher peak area (PA) PApyr/PAlac ratios were measured for PSN1 than HPAC
tumors (Fig. 5d).

Taken together, highly glycolytic PSN1 xenografts could readily be discriminated based on high HP-[1-
13C]pyruvate to HP-[1-13C]lactate interconversion observed in HP-MRS.

Lactate dehydrogenase (LDH) enzymatic activity measured ex vivo after the spectroscopy experiment in
snap frozen tissues was also higher in PSN1 compared to HPAC tumors (Fig. 5e) consistent with the in
vivo finding. We further confirmed the highly glycolytic nature of rat PSN1 xenografts by
immunohistochemical analysis of glycolytic markers HIF1A and MCT4. MCT4 showed the typical
membrane-associated expression in cancer cells in both xenografts, with only slightly stronger staining
intensity in PSN1 than in HPAC tumors (Fig. 5f) but not prominently different. Intriguingly, staining for
HIF1A, a major glycolytic regulator in cancers, was found exclusively in the PSN1 tumors with typical
nuclear expression pattern in the cancer cells (Fig. 5f). We next analyzed HIF1A and MCT4 expression in
murine xenografts of human PDAC cell lines (supplementary Fig. 3b). Indeed, MCT4 staining intensity
was also only lightly stronger in the QM xenografts. However, specific nuclear HIF1A expression was
limited to QM tumors only (PSN1, KP4, MIAPaCa2, PaTu8988T), and not detected in classical tumors
(HPAFII, PaTu8988S, HUPT4, HPAC) (supplementary Fig. 3b).

Discussion
The challenge in PDAC is its enormous therapy resistance due to the evolution of aggressive cancer cells
driven by oncogenic KRAS and loss of key tumor suppressors in a complex adapting microenvironment
with various signaling effectors and biophysical and hypoxic restraints. Despite considerable genetic
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homogeneity with regard to oncogenic KRAS as lead driver, many studies support the existence of several
molecular PDAC subtypes, including classical/progenitor, QM/squamous/basal-like and hybrid states
with more or less pronounced subtype specific transcriptional programs (3–5). Though indisputably
present, functional aspects and phenotypic cues of the defined transcriptional subtypes are less
described. One key feature of PDAC is the metabolic rewiring that may lead to phenotypic features not
entirely captured by transcriptomic signatures. PDACs identified as transcriptionally glycolytic show
amplification of KRAS and MYC genes and are associated with the worse prognosis both in resectable
and metastatic setting (11). In patients, targeting of KRAS-MEK-MAPK pathway in a monotherapy
approach only is not successful potentially due to activation of escape routes such as PI3K-AKT.
However, blocking glycolysis with 2-Deoxyglucose in combination with MAPK inhibitor is at least in mice
effective and leads to apoptosis induction and reduction in tumor volume, suggesting high potential of
this co-targeting (12). Functional identification of patients with highly glycolytic PDACs can lead clinical
decision making and introduction of anti-glycolytic drugs in the clinic. In this work, we pursued two aims:
i) to evaluate whether presence of glycolytic transcripts is indeed translated into operable glycolysis in
PDAC QM subtype and ii) offer a non-invasive imaging-based approach for detection of highly glycolytic
tumors. We focused this analysis on patient-derived model systems including PDX and PDCs to value the
molecular and metabolic heterogeneity in primary PDAC model systems. Furthermore, all our metabolic
assays are performed under supplementation with physiological levels of glucose (5mM), thus omitting
the metabolic artefacts that can be caused by the usage of typical high glucose media.

Gene expression analysis in four different model systems (cell lines, PDC, PDX and bulk tissue samples)
indeed identified glucose metabolism/glycolysis/hypoxia/MYC targets as dominating metabolic
transcripts of the QM subtype. This is in line with the previously observed “glycolytic” subtype in
mesenchymal PDAC cell lines (19) and the recently reported “glycolytic” transcriptional PDAC subtypes in
patients (11). However, glycolysis was not unambiguously functionally dominant in all cells of QM
subtype, being cell lines or primary. In functional assays, we observed notable heterogeneity in metabolic
behavior especially in patient-derived cells. We found active functional glycolysis in single representatives
of the QM subtype, such as PSN1 and PDC69 cells. In seahorse assays, these cells demonstrated high
ECAR to OCR ratios, suggesting that cell intrinsic energy metabolism relies rather on glycolysis than on
OxPhos. It should however be noted that Seahorse assays evaluate ECAR and OCR values in in vitro
conditions and are highly dependent on cell culture features such as current cellular density, growth
pattern, cell cycle and current mitochondrial number (23) and should be interpreted only as indication of
the cellular energetic status. Glycolytic energetic status of PSN1 and PD69 correlated well with high gene
expression of the lactate producer and transporters LDHA and MCT1/4 respectively, supporting the
translation of transcripts in active glucose metabolism. Interestingly, HIF1A, a major transcriptional
regulator of glycolysis and cellular response to hypoxia (20), was also well expressed in the identified
glycolytic cells here grown in typical in vitro normoxic conditions, supporting intrinsic gene expression
programs well preserved in QM cells. Furthermore, by using multiplex immunofluorescence approach, we
observed MCT4 expression in KRT81 positive cells in human PDAC samples, further suggesting
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correlation of QM subtype and glycolytic phenotype. In line with our observations, MCT4 has already
been suggested as marker of glycolytic PDACs with poor prognosis (21).

The heterogeneity observed in our results suggests that rigid transcriptome-based classification of PDAC
subtypes may not be sufficient as the basis for clinical decisions regarding metabolic targeting
approaches. Rather, individual PDACs may often present a continuum of different metabolic states that
are more or less phenotypically presented depending on various cell-autonomous and non-cell-
autonomous cues. Hybrid PDAC subtypes with transcriptomic signatures in between the classical and
QM/basal-like states have been highlighted recently (4, 11). Similar to our study, a correlation of
molecular cues and functional oxidative phosphorylation was very recently reported for PDAC cells (24).
The authors emphasize on metabolic heterogeneity and flexibility and shifts from OxPhos or glycolysis
when necessary, supporting the existence of plastic metabolic states dependent on the environmental
challenges. It is reasonable to assume that among PDAC cells a whole spectrum of weakly to highly
mesenchymal and glycolytic QM PDAC cells exists. The exclusive dependency on the one or the other
metabolic pathway is an unlikely scenario. However, individual tumors with high activity of specific
metabolic pathway may exist and their identification will be the key to successful targeting. We show
here that glycolytic PSN1 tumors were readily detectable with HP-MRS due to higher 13C-label exchange
among pyruvate and lactate, indicating high activity of the last glycolytic enzyme LDH and high
intratumoral pyruvate to lactate conversion. Similarly, in breast cancer patients, high HP-[1-13C]pyruvate
to HP-[1-13C]lactate conversion rates identified strongly glycolytic aggressive triple negative breast cancer
with high HIF1a and MCT1 tissue expression (25). This approach is already being used in personalized
therapy monitoring in prostate and brain cancer (26, 27).

We were also able to confirm in vivo the active import and conversion of HP-[1-13C]lactate into HP-[1-
13C]pyruvate in PSN1 QM-type but not in HPAC classical-type xenografts. Lactate has recently been
considered as one of the important actors in tumor metabolism (28). Tumors use the advantage of
lactate being the second most abundant metabolite in the systemic circulation and readily feed the TCA
cycle with pyruvate generated from lactate (22, 29). Indeed, we also observed OxPhos activation with
lactate in PDAC cells, especially in the QM cell lines.

We speculate that the hypoxic microenvironment of the tumor favors the epithelial to mesenchymal
transformation (EMT) of the cancer cells and appearance of the glycolytic QM tumors. These tumors
potentially adapt their oxidative metabolism to fuels which are then locally produced, either by
themselves or by neighboring cancer, stromal or immune cells.

Our HP-MRS experiments provide evidence for the concept that PDACs with high reliance on glycolysis
are potentially detectable via HP-[1-13C]pyruvate/lactate spectroscopy in clinical practice. Thus,
identification of highly glycolytic, aggressive PDACs by HP-[1-13C]pyruvate and HP-[1-13C]lactate
spectroscopy may be used to guide and monitor tumor treatment with anti-glycolytic therapies. In
contrast to biopsy-based tumor characterization, metabolic imaging allows dynamic evaluation of the
whole tumor limiting sampling bias and addressing tumor heterogeneity (30). Although likely not all QM
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tumors are potentially extremely glycolytic, non-invasive detection of highly glycolytic PDACs by HP-[1-
13C]pyruvate/lactate MRS is one of the first methods for successful individual metabolic approaches.

Abbreviations
PDAC-Pancreatic Ductal Adenocarcinoma
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HP-MRS- hyperpolarized magnetic resonance spectroscopy 
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MCT4-monocarboxylate transporter 4
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Ethics approvals: All  relevant ethic approvals concerning use of patient material or mouse studies are
appropriately mentioned in the supplementary methods section. Establishment of the PDX mouse model
was performed using surgically resected PDAC tissues collected from patients at the Ruhr-University
Bochum Comprehensive Cancer Center. Informed and written consent was obtained from all patients. The
study was approved by the ethics committee of the Ruhr University Bochum (permission no. 3534-9,
3841-10, 16-5792). Patient tumor tissues were xenografted in both flanks of nude mice and expanded,
isolated and re-implanted for at least three generations. All animal experiments were performed according
to the guidelines of the local Animal Use and Care Committees at the Ruhr University Bochum (8.87-
50.10.32.09.018, 84-02.04.2012.A328  and 81-02.04.2017.A423). 

For immunohistochemistry and multiplex immunofluorescence on human PDAC samples, a cohort of 31
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Figure 1

Gene set enrichment analysis (GSEA) in different PDAC cohorts and models. a) Models used in this study.
b) Enrichment plots for the selected “Collisson QM” and “Bailey squamous GP2” assigner gene sets in our
patient cohort. Both gene sets are enriched in here defined QM PDAC samples. FDR (false discovery rate)
and NES (normalized enrichment score) presented in the figure. c) GSEA analysis for QM vs classical
groups was performed for cell lines (n=8; 4QM, 4 classical), Patient Derived Cells (PDC; n=11, 5 QM and 6
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classical) Patient Derived Xenografts (PDX; n=34, 12 QM and 22 classical), and patient PDAC samples
(red frame; n=204; 116 QM, 88 classical; enrichment graph for glycolysis presented). Presented are NES
values for selection of metabolic gene sets identified as enriched (NES>1.3, FDR q value <0.07) in QM
subtype. The gene set databases HALLMARK, REACTOME and KEGG were used for analysis. Epithelial-to-
mesenchymal transition (EMT), glycolysis/glucose metabolism, hypoxia and MYC targets gene sets are
commonly enriched in QM datasets. Red dots emphasize the metabolic pathways that are commonly
enriched in the models presented here. Glycolysis enrichment plot for patient cohort (n=204) presented.
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Figure 2

Functional glycolysis evaluation in PDAC cells.

a) ECAR to OCR ratios (ECAR/OCR) and energy maps as measured by seahorse metabolic flux assay for
PDAC cell lines (upper) and PDCs (lower) in medium supplemented with 5mM glucose (physiological
concentration) and 2mM glutamine. Higher ECAR/OCR ratio indicates higher glycolysis in PSN1 and
PDC69 cells under these conditions. Presented are mean+SD values calculated from 2 independent
experiments, with at least 5 technical replicates per cell line per experiment. Energy maps (OCR vs ECAR
plots) show glycolytic energetic positioning of PSN1 and PDC69 cells. Representative energy maps from
one experiment, at least 5 technical replicates per cell line. At least 2 independent experiments performed.
OCR and ECAR values were normalized to 10.000 post-experimentally counted, viable cells. Dotted lines
present arbitrary cut-off levels used for separation of different energy phenotypes (glycolytic, oxidative,
energetic or less metabolic). b) Relative gene expression (qPCR) data for LDHA, MCT1 (SLC16A1), MCT4
(SLC16A3) and HIF1a in cell lines and PDCs. High gene expression levels were observed for PSN1 and
PDC69 (both QM subtype). Beta-glucuronidase (GUSB) expression was used as house-keeper control. c)
Hierarchical clustering analysis for glycolytic genes using gene expression data for cell lines (RNA-seq)
and PDCs (HT12 Illumina gene expression array). Z-score: red color-high expression, blue color-low
expression. PSN1 and PDC69 show higher expression of all investigated glycolytic genes.
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Figure 3

Functional glycolysis evaluation in PDAC cells.

a) Survival analysis of PDAC patients according to SLC16A3 (MCT4) and SLC16A1 (MCT1) gene
expression. Data from www.proteinatlas.org; Patients with higher MCT4 and MCT1 expression present
worse survival. b) Immunohistochemistry for MCT1 and MCT4 on patient FFPE PDAC samples

http://www.proteinatlas.org/
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emphasizing MCT4 and MCT1 expression on cancer and stromal cells with prominent MCT4 expression
in cancer and MCT1 expression in stroma cells. Scale bar 100µm. c) SLC16A1(MCT1) and SLC16A3
(SLC16A3) gene expression in patient bulk PDAC samples (n=204; 116 QM, 88 classical) emphasizing
higher expression of SLC16A3 than of SLC16A1. SLC16A3 is also significantly more highly expressed in
QM than in classical human PDAC bulk samples. P value calculated by Student’s T-Test (unpaired, two
sided). d) Multiplexed immunofluorescence staining of MCT4 (green), cytokeratin 81(KRT81, QM marker-
yellow) and pan-cytokeratin (cancer cell marker-red) on n=6 patient PDAC FFPE samples. White arrows
indicate overlapping MCT4 and KRT81 signals. Scale bar: 10µm. Lower graph: quantification of
respective populations in 6 PDAC samples by Halo. 30-50% of KRT81+ cancer cells are also MCT4
positive; among KRT81- cancer cells, less than 20% are also positive for MCT4. Populations are
determined in the same sample; one line indicates one patient.

Figure 4

Lactate is used as oxidative fuel in PDAC cells

a) Schematic representation of the performed seahorse assay. Cells were cultivated in “basal” medium
(no glucose, no glutamine) or in “basal” media supplemented with 10mM Sodium-L-Lactate
(“basal+lactate”) for 7 hours in total and OCR levels are measured. Ratios among OCR values measured
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for “basal+lactate” and “basal” only media are calculated and presented. Ratio above 1 indicates
increase in OCR after lactate application. Presented are mean ratios+ SD values of minimum 2
independent experiments, at least 3 technical replicates per cell line/per concentration/per experiment. P
values calculated by the Mann-Whitney test. b) Dose response curves of cell lines and PDCs to LDH
inhibitor GNE-140. Presented are mean dose response curves and IC50 values of two independent
experiments, 3 technical replicates per concentration/cell line/experiment performed. Stronger response
observed in QM than in classical cell lines. No differences in response rate among QM and classical
PDCs.

Figure 5

Magnetic resonance spectroscopy (MRS) of HP-[1-13C]pyruvate and HP-[1-13C]lactate inter-conversions in
PSN1 (QM) and HPAC (classical) PDAC xenografts in rats.
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a) Left to right: schematic presentation of HP-[1-13C]pyruvate i.v. injection into rats with xenotransplanted
PSN1 and HPAC tumors, T2-weighted sagittal anatomical image (scale bar=1cm) of a rat bearing a
subcutaneous tumor and graphs demonstrating signal intensity time courses of HP-[1-13C]pyruvate and
HP-[1-13C]lactate measured intratumorally in PSN1 (left) and HPAC (right) rat xenografts. The HP-[1-
13C]lactate curve (orange) is higher in PSN1 than HPAC xenografts. b) Calculated relative AUC ratios of
HP-[1-13C]lactate to perfused HP-[1-13C]pyruvate showing higher conversion rate in PSN1 (n=4; 1.325 ±
0.418) than in HPAC tumors (n=5; 0.5349 ± 0.175). c) Left to right: schematic presentation of HP-[1-
13C]lactate injected into rats with xenotransplanted PSN1 and HPAC tumors, signal Intensity (SI) spectra
of perfused HP-[1-13C]lactate (top) and detected HP-[1-13C]pyruvate (bottom) for PSN1 (n=4) and HPAC
(n=3) tumors. The spectra have been summed over 10 time points covering maximum tumor
enhancement and normalized to the lactate signal. Higher peak to background ratios (P/B 3.7-9.2) were
observed in PSN1 tumors in comparison to P/B ratios in HPAC tumors (P/B 1.6- 3.0). d) Signal intensity
quantification: PApyr/PAlac ratios are significantly higher in PSN1 (1.49 ± 0.30, n=4) than in HPAC tumors
(0.51± 0.51, n=3). PA-peak area. All P-values in this figure calculated by Student’s T-test (unpaired, two-
sided). e) Ex vivo measurements of lactate dehydrogenase activity in imaged tumor sample. Higher
activity in PSN1 (n=5; 501794 ± 341920 U/L) than in HPAC tumors (n=5; 62796 ± 24641 U/L) detected. f)
Representative immunohistochemistry for HIF1a and MCT4 in rat PSN1 (n=4) and HPAC (n=2)
xenografted tumors. HIF1A specific nuclear staining was detected exclusively in PSN1 (QM) tumor. MCT4
staining intensity only lightly stronger in PSN1 than in HPAC tumor. Scale bar=100µM.
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