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Abstract

Background
Pancreatic adenocarcinoma is one of the highly invasive and the seventh most common cause of death among cancers worldwide. To identify key genes and
the involved mechanisms in pancreatic adenocarcinoma, we used bioinformatics analyzes in our study to introduce potential biomarkers in pancreatic cancer
management.

Methods
In this study, gene expression profiles of pancreatic adenocarcinoma patients and normal adjacent tissues were screened and downloaded from The Cancer
Genom Atlas (TCGA) bioinformatics database. Differentially expressed genes (DEGs) were identified between normal and pancreatic cancer gene expression
signatures using R software. Then, Enrichment analysis of DEGs [including Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway analysis] was performed by an enrichr (interactive and collaborative HTML5 gene list enrichment analysis) web-based tool. The protein-
protein interaction (PPI) network was also constructed using STRING (Search Tool for the Retrieval of Interacting Genes) and Cytoscape software to identify
the hub genes according to the top 100 DEGs in pancreatic adenocarcinoma.

Results
In our study, more than 2000 DEGs with variable log2 fold (LFC) were identified among 34,706 genes. Principal component analysis showed that the top 20
DEGs, including H1-4, H1-5, H4C3, H4C2, RN7SL2, RN7SL3, RN7SL4P, RN7SKP80, SCARNA12, SCARNA10, SCARNA5, SCARNA7, SCARNA6, SCARNA21,
SCARNA9, SCARNA13, SNORA73B, SNORA53, SNORA54 with 99.91% probability might distinguish pancreatic adenocarcinoma from normal tissue. GO
analysis of these 20 top DEGs showed that they have more enriched in negative regulation of gene silencing, negative regulation of chromatin organization,
negative regulation of chromatin silencing, nucleosome positioning, regulation of chromatin silencing and nucleosomal DNA binding. KEGG analysis identified
an association between pancreatic adenocarcinoma and systemic lupus erythematosus, alcoholism, neutrophil extracellular trap formation, and viral
carcinogenesis. In protein-protein interaction (PPI) network analysis, we found that different types of histone-encoding genes are involved as hub genes in the
carcinogenesis of pancreatic adenocarcinoma.

Conclusions
Our bioinformatics analysis showed that the DEGs and hub genes as key genes identified in this study may serve as new biomarkers in the near future for
better management of pancreatic cancer. Although, H1.3 is currently one of the prognostic biomarkers in pancreatic cancer.

Background
Pancreatic cancer is a highly invasive and immunosuppressive cancer of the digestive system and the seventh most common cause of death among cancers
worldwide (1, 2). The incidence rate of this cancer is increasing annually in the world. So, it is estimated to become the second leading cause of cancer death
in 2030 (1, 3). For various reasons such as the placement of the pancreas deep in the abdomen, late-onset of clinical manifestations, high invasiveness, and
early metastasis, pancreatic cancer is diagnosed in the advanced stages in more than 75% of patients (4, 5). The prognosis of this cancer is very poor and
only 7% of patients have a 5-year overall survival. Hence, most patients die six months after being diagnosed with pancreatic cancer (4). Pancreatic
adenocarcinoma is one of the most common subtypes of pancreatic cancer, accounting for approximately 90% of cases. Therefore, in many studies,
pancreatic adenocarcinoma is used as an equal to pancreatic cancer (6, 7). Many risk factors including smoking, obesity, pancreatitis, family history, specific
genetic polymorphisms, and diabetes are known in pancreatic cancer (8). Surgery, immunotherapy, radiotherapy, and chemotherapy are standard therapy in
the treatment of pancreatic cancer, which unfortunately has unsatisfactory outcomes and their side effects reduce the patient’s quality of life (4, 9, 10). Also,
current diagnostic methods such as biomarkers, imaging examination, etc. have many limitations in diagnosing pancreatic cancer, especially early diagnosis
(11).

Gene expression signature includes the expression data of a set of genes in a disease, characterized by high-throughput sequencing methods. Examining the
signature in certain diseases such as cancers and comparing it with the normal cell pattern can indicate differentially expressed genes (DEGs). Analysis of
recognized DEGs by bioinformatics methods can lead to the identification of pathogenic mechanisms in the disease, helping diagnosis, management and
prognosis. Bioinformatics analysis, a powerful and preferred method, investigates gene expression raw data obtained from high-throughput methods and
identifies differences between normal and disease. High-throughput sequencing technologies are modern, cost-effective and high-speed approaches that
allow the measurement of a very large number of gene transcripts in parallel at the same time (12–14).

In this study, we selected pancreatic adenocarcinoma gene expression profiles from The Cancer Genome Atlas (TCGA) database and used bioinformatics
tools to screen the DEGs in this cancer. Also, the enrichment analysis including Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathways analysis was performed based on enrichr. Then, we used the STRING database and Cytoscape software to construct a protein-protein
interaction (PPI) network to identify the hub genes in pancreatic adenocarcinoma. Finally, we found a set of key genes involved in the biological processes and
underlying diseases of pancreatic adenocarcinoma that we hope will serve as novel biomarkers shortly to better manage of this cancer.
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Methods

Screening database
We extracted gene expression profiles of 30 pancreatic adenocarcinoma and 52 normal adjacent tissue obtained by RNA-sequencing methods from The TCGA
bioinformatics database in the htseq.counts file format. Each gene expression profile belonged to a patient. The cases were selected based on the following
criteria: First, patients were clustered into two groups with pancreatic adenocarcinoma (as a cancer group) and normal group. The search was screened for the
following criteria in the cancer group: i) primary site was the pancreas. ii) disease type was adenomas and adenocarcinomas. iii) sample type was a primary
tumor. iv) gender was female (13 cases) and male (17 cases) in two separate searches. and v) race was white. Also, the search criteria included the following
items for the normal group: i) primary site was the pancreas. ii) sample type was solid normal tissue. iii) gender was female (20 cases) and male (32 cases) in
two separate searches. and iv) race was white.

Because of the low number of non-white patients recorded in the TCGA database, the cases were selected from the white race only. Also, to prevent the effect
of other malignant diseases on gene expression, patients with a history of malignancy other than pancreatic adenocarcinoma were removed using data
filtering in the TCGA database.

Data collection and preprocessing
After applying the above filtering, there were about 797 pancreatic adenocarcinoma cases in the TCGA database. But only the expression data for 30 cases
were available. Each patient's gene expression profile was downloaded separately and converted into a single data set using R programming language version
3.6.3. Preliminary data included more than 60,000 genes in 82 tissue samples. In the downloaded gene expression data file, the expression index of each gene
was the ensemble gene ID. In this step, the gene index was converted to a gene symbol using the R language and the BioMart package. Of course, some gene
IDs were removed from the genes groups because the equivalent gene symbol has not been defined yet. Then, a data set including the expression data of
34706 different genes in 82 tissue samples was obtained. This data set was analyzed in R software in the following order.

Normalization of gene expression profile data
The expression levels of the same mRNAs in the same cells should be in the same range. But different laboratory methods, as well as the variable length of
genes, falsely affect the measured level of mRNA. Therefore, raw data need to be normalized before comparison. For this purpose, the DESeq2 package, one
of the most reliable software packages for finding genes with distinct expressions was used. This package normalizes the data according to the depth of
sequencing and RNA structure (15, 16).

In the next step, the mean expression of housekeeping genes was compared between normal and adenocarcinoma tissue samples. This comparison is made
to ensure the quality of gene expression profile data. Housekeeping genes are used as a standard in gene expression studies. The expression of housekeeping
genes in each living cell is expected to remain unchanged. To perform this step, the mean expression of these genes in both normal and adenocarcinoma
groups was obtained and plotted on a point graph. The bisector was plotted and considered as a criterion for comparing gene expression in the two groups.
The closer the points are to the bisector, the more similar the expression in the two groups (17).

Univariate analysis using an independent t-test to find DEGs
Gene expression differentiation can be interpreted in the form of over-expression or down-expression from normal to cancer. In order to specify the DEGs, gene
expression differentiation in normal and adenocarcinoma groups has been evaluated and compared by an independent t-test. The independent t-test answers
whether there is a statistically significant difference between the means of the two independent groups (18).

P-value adjustment with false discovery rate
P-value adjustment was performed using a false discovery rate according to Benjamini- Hochberg method. When the number of variables is much larger than
the number of cases, we deal with large data and the number of tested statistical assumptions is high. When the number of assumptions rises, the chance of
observing rare phenomena also increases and enhances the probability of rejecting the null hypothesis or the first type (α) error, while the null hypothesis is
true (19, 20).

Data Visualization based on DEGs
The resulting data were shown as heatmap diagrams and clustered with dendrogram diagrams. A heatmap is a type of data visualization in which different
colors and intensities in diverse cells represent the value of each cell in the map or matrix. The dendrogram is a tree-like diagram drawn for clustering samples
at the edge of the heatmap. The main package used to draw diagrams and data Visualization was ggplot2 (21, 22).

Principal component analysis
In principal component analysis, linear combinations of variables (here DEGs) are constructed to explain the greatest dispersion between normal and
cancerous data. It also reduces the dimensionality of big data. In this way, according to the coefficients of variables in these linear combinations, the role of
them in the data dispersion can also be understood (23, 24).

In the present study, this analysis was performed to answer the question of the extent to which all the DEGs than all the gene profiles can justify the
differentiation between cancer and normal. To ensure no interference in dimensional reduction, principal component analysis was performed between a set of
20 random genes and the top 20 DEGs.

Enrichment analysis of DEGs
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In this step, while a list of DEGs has been obtained, it is necessary to determine which cell processes and functions are significantly affected. For this purpose,
enrichr web-based tool was used for the evaluation of the top 20 DEGs. enrichr is an enrichment analysis tool that provides interpretable output from input
DEGs function by interacting with other databases related to gene function, such as the KEGG and GO. DEGs clustering in enrichr was performed based on
cellular components (CC), biological processes (BP), molecular function (MF) and diseases. We selected enriched functional clusters with a cutoff of p < 0.05
in this study (25, 26).

Establishment of the PPI network
In this part of study, we utilized the online tool STRING (Search Tool for the Retrieval of Interacting Genes) version 11.5 to map the PPI network of the first
found DEGs. Then, Cytoscape software version 3.8.2 was used to visualize and analyze the PPIs network. The maximum number of interactors = 0 and
confidence score ≥ 0.4 were selected. PPI network analysis methods are an important tool or for obtaining a comprehensive view of biological processes and
describing physical interactions between proteins (27–29).

Results
In this study, a data set including the expression data of 34,706 different genes in 82 tissue samples (30 samples of pancreatic adenocarcinoma and 52
normal adjacent tissue samples) was analyzed.

Normalization of gene expression profile data
For this purpose, EIF1B, ATF1, PABPN1, ATF2, ATF4, ATF6, EIF1 and EIF6 genes were selected from 2176 existing housekeeping genes in the dataset and their
mean expression between normal and adenocarcinoma groups was calculated. As expected and shown in the upper part of Fig. 1, the expression of these
genes, did not differ significantly between both groups and all of them are located close to the bisector.

Comparison of gene expression pattern between normal and adenocarcinoma tissue
samples
Considering a significance level of less than 0.05 for the p-value adjusted by the Benjamini- Hochberg method among 34706 genes studied, more than 2000
DEGs were found in the adenocarcinoma group compared to normal. All DEGs are downregulated in adenocarcinoma than in normal tissue. As well, no
association was found between DEGs and gender. The top 100 DEGs are shown in Table 1, in order of the highest to the lowest p-value. It should be noted that
to visualize the genes better, their mean expression at the log base 2 scale has been used. Figure 2 demonstrates the clustering of adenocarcinoma and
normal samples based on DEGs in the heatmap and dendrogram diagrams. As seen in this figure, the adenocarcinoma group has formed clusters on the right
side of the image.
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Table 1
the top 100 DEGs most significantly downregulated in this study with highest to lowest p-value.

No. DEGs log2 fold
change (LFC)

No. DEGs log2 fold
change (LFC)

No. DEGs LFC log2 fold
change (LFC)

No. DEGs log2 fold
change (LFC)

1 SCARNA7 -9.872191923 21 STARD13-
AS

− 
6.586138982

41 CHORDC1P4 -6.138641061 61 SNORA49 -9.875984788

2 SCARNA6 -9.136192135 22 H4C5 -7.003969725 42 PRKCA-AS1 -7.192091768 62 MAPK6P3 -6.312623969

3 RN7SL2 -8.483314601 23 ZBTB20 -5.575275315 43 CYP2U1-AS1 -5.936144925 63 KLF7-IT1 -4.772020331

4 RN7SL3 -9.588784426 24 SNORA2C -7.362649511 44 H2AC14 -8.335678769 64 DIAPH1-
AS1

-7.242754254

5 SCARNA21 -9.034023563 25 SNORD94 -5.905646794 45 SNHG22 -4.906674691 65 H4C8 -4.283608225

6 RN7SKP80 -8.067611544 26 H4C4 -7.400316925 46 H2BC13 -6.700252189 66 RPL3P6 -5.407536123

7 SNORA73B -8.539411443 27 KCNJ13 -6.707619781 47 H2AC17 -6.293731146 67 ATP1A3 5.128644134

8 H4C3 -9.376120494 28 SNORA71A -5.845018752 48 MMADHCP2 -6.548399417 68 TAS2R30 -7.975290336

9 SCARNA5 -10.24679653 29 H2AC20 -5.667385694 49 FOXP1-IT1 -6.595447618 69 TATDN1P1 -6.019952411

10 RN7SL4P -8.546085682 30 RN7SL5P -8.826507055 50 BMP2KL -8.580881172 70 SNORA12 -7.258979178

11 SNORA53 -7.979723615 31 KRT18P31 -6.625644209 51 RNY1 -9.808546291 71 RNU5B-1 -10.34663995

12 H1-4 -7.276132193 32 MRTFA-AS1 -5.704040111 52 H2BC3 -9.708488287 72 KRT18P57 -6.261010722

13 SCARNA9 -7.107154892 33 POU5F2 -6.643217509 53 H1-3 -6.851746017 73 SNORA23 -7.520624732

14 SCARNA13 -7.073519738 34 MIR3609 -9.828421275 54 H2AC12 -8.239600629 74 H2BC6 -5.604485706

15 SNORA54 -9.297686808 35 MALAT1 -5.106068934 55 SYT5 5.789893437 75 PHBP2 -5.492474884

16 H4C2 -8.971268737 36 ZNF460 -5.153904002 56 H2AC21 -7.111029988 76 MARK2P8 -6.28853337

17 SNORD17 -8.439895562 37 RN7SL648P -8.058409434 57 H2BC17 -6.1974086 77 RBMS3-
AS2

-6.51653129

18 SCARNA12 -6.924204908 38 RNU5A-1 -9.872167322 58 UHRF2P1 -8.035063773 78 H3C7 -8.457592556

19 SCARNA10 -9.544811817 39 LCMT1-AS2 -5.755003979 59 H2AC4 -8.486362848 79 H3C11 -7.976305302

20 H1-5 -8.570333537 40 RLIMP1 -7.241890326 60 MIR181A1HG -6.495394522 80 ADAM20 -5.086396233

Principal component analysis results
In this study, when all the DEGs were used in the principal component analysis, they were able to distinguish alone 38.29% of the adenocarcinoma sample
from the normal sample than all gene profiles (Fig. 3). Thus, the use of all DEGs cannot differentiate between cancerous and normal samples. But in contrast,
the principal component analysis of the top 20 DEGs was able to separate both groups by 99.91% probability (Fig. 4).

Enrichment analysis of DEGs
As mentioned in the previous section, the top 20 DEGs are more likely to distinguish between the two groups of normal and adenocarcinoma. Hence, we used
the enrichr web-based software to analyze the 20 top DEGs to obtain the GO and KEGG pathways. As shown earlier, all DEGs were downregulated in this study.
By analyzing GO enrichment, we found that the DEGs in BP were more enriched in negative regulation of gene silencing, negative regulation of chromatin
organization, negative regulation of chromatin silencing, nucleosome positioning and regulation of chromatin silencing (Fig. 5, Table 2). As for MF, the DEGs
were just enriched in nucleosomal DNA binding (Fig. 5, Table 2). Enrichment analysis of the top 20 genes in the CC category had no significant results (p value 
> 0.05). The KEGG pathway analysis results showed that the DEGs were significantly enriched in systemic lupus erythematosus, alcoholism, neutrophil
extracellular trap formation and viral carcinogenesis (Fig. 6, Table 2).
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Table 2
Enrichment analysis of DEGs

Expression analysis Category Term P value Involved
genes

Down
regulated

GO
analysis

Biological process
(BP)

negative regulation of gene silencing (GO:0060969) 0.0000736129304247206 H1-5;H1-4

negative regulation of chromatin organization
(GO:1905268)

0.0000736129304247206 H1-5;H1-4

negative regulation of chromatin silencing
(GO:0031936)

0.0000736129304247206 H1-5;H1-4

nucleosome positioning (GO:0016584) 0.0000989757503698103 H1-5;H1-4

regulation of chromatin silencing (GO:0031935) 0.000678284581571347 H1-5;H1-4

DNA packaging (GO:0006323) 0.001293831 H1-5;H1-4

negative regulation of DNA metabolic process
(GO:0051053)

0.002513274 H1-5;H1-4

regulation of DNA recombination (GO:0000018) 0.002994673 H1-5;H1-4

chromosome condensation (GO:0030261) 0.003055262 H1-5;H1-4

negative regulation of DNA recombination
(GO:0045910)

0.004001058 H1-5;H1-4

positive regulation of gene expression, epigenetic
(GO:0045815)

0.004001058 H1-5;H1-4

chromatin assembly (GO:0031497) 0.005981624 H1-5;H1-4

nucleosome organization (GO:0034728) 0.009068935 H1-5;H1-4

positive regulation of histone H3-K9 methylation
(GO:0051574)

0.014957134 H1-5

establishment of protein localization to chromatin
(GO:0071169)

0.015946713 H1-5

regulation of histone H3-K9 methylation (GO:0051570) 0.02238257 H1-5

establishment of protein localization to chromosome
(GO:0070199)

0.022810625 H1-5

protein localization to chromatin (GO:0071168) 0.034669113 H1-5

positive regulation of histone methylation
(GO:0031062)

0.040568327 H1-5

Molecular function
(MF)

nucleosomal DNA binding (GO:0031492) 0.000492368756376955 H1-5;H1-4

Cellular Compartment
(CC)

no significant results

KEGG analysis Systemic lupus erythematosus 0.00793534776758775 H4C2;H4C3

Alcoholism 0.014642007150812 H4C2;H4C3

Neutrophil extracellular trap formation 0.0150924344910985 H4C2;H4C3

Viral carcinogenesis 0.0172729137884516 H4C2;H4C3

PPI network analysis of the DEGs

Analysis of the top 20 DEGs in the string database showed a network of 3 nodes containing HIST1H1B, HIST1H1E and HIST1H4F genes (Fig. 7). This network
could not be analyzed in Cytoscape due to its small size. Therefore, the top 100 DEGs were selected and placed in the string database for PPI network
analysis. Investigation of the resulting network in the Cytoscape showed 14 nodes and 178 edges (Fig. 8A). The degree of connectivity for each genes is
specified in Fig. 7B. The genes with the highest degree of connectivity in this study were considered hub genes. Hub genes in the PPI network have the most
connection with other nodes and can play a vital role in gene expression. Hub genes in this study included HIST1H1B, HIST1H1D, HIST1H4F, HIST1H2AE,
HIST1H1E, HIST1H2AJ, HIST1H2BL, HIST2H2AB, HIST1H3J, HIST1H2AI and HIST2H2AC (Fig. 8B).

Discussion
Pancreatic adenocarcinoma is one of the most invasive human cancers that has become increasingly prevalent in recent years. As mentioned, it is estimated
that by 2030, this cancer will be the second leading cause of death among cancers. Therefore, the identification of sensitive and specific biomarkers for the
early diagnosis and treatment of pancreatic adenocarcinoma, as well as predicting its survival and prognosis is crucial. High-throughput studies can find
genes expression differences and important molecular pathways in both normal and cancerous cases, leading to the development of biomarkers for better
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management of pancreatic adenocarcinoma. In this study, a data set including the expression data of 34,706 different genes in 82 samples of pancreatic
adenocarcinoma and normal was analyzed in the TCGA database. Meanwhile, considering the significance level less than 0.05, 2000 DEGs were found in
cancer samples compared to normal. All of these DEGs are down-expressed in pancreatic adenocarcinoma than in normal tissue. To have a deep
understanding of the function of these DEGs, we performed enrichment analysis and PPI network analysis to screen the genes and pathways associated with
pancreatic adenocarcinoma that are more important in the development and progression of pancreatic cancer.

In this study, the results of the principal component analysis showed that the top 20 DEGs including 4 genes encoding histone protein called H1-4, H1-5, H4C3
and H4C2 and 16 genes encoding non-coding RNA named RN7SL2, RN7SL3, RN7SL4P, RN7SKP80, SCARNA12, SCARNA10, SCARNA5, SCARNA7, SCARNA6,
SCARNA21, SCARNA9, SCARNA13, SNORA73B, SNORA53, SNORA54 and SNORD17 with 99.91% probability diagnose pancreatic adenocarcinoma cases from
normal (Table 1). Other studies have revealed that histones, as chromatin-regenerating proteins, are important in cancer biology. They undergo severe changes
during cancer and may involve in causing the disease. Among the four genes encoding histone, histone H1 is both a cancer promoter and a potential
diagnostic biomarker in different malignancies (30–32). About the majority of non-coding RNAs found in the present study, their exact molecular function was
unclear and there were few articles about them. Several studies have shown that long-noncoding RNAs such as RN7SL2 and RN7SL4P are overexpressed in
patients with multiple myeloma(33). RN7SL2 is also abundant in the cancer patient’s plasma (34). In contrast, another report presented that the RN7SL3 is
downregulated in hepatocellular carcinoma (35). SNORA73 is known as a chromatin-associated snoRNA and is effective in genome stability (36, 37).
SNORA54 has been studied in many human cancers such as breast, melanoma, lymphoma and myeloma. This snoRNA has upregulated in most cancer
patients, but down-expressed in patients with melanoma (38, 39). According to the literature, SNORD17 is also overexpressed in cases of hepatocellular
carcinoma and its upregulation is usually associated with poor clinical outcomes (40, 41).

Unfortunately, no pancreatic cancer study was performed on the found non-coding RNAs expression and function in the paper. However, one study
demonstrated that SCARNA6 is overexpressed in patients with autism spectrum disorders (42). This finding can be important due to the close relationship
between gene expression in the pancreas and nerve tissues. SCARNA7 has also been shown to be correlated with many cancers such as breast, prostate and
non-small cell lung cancer. This SCARNA is usually upregulated in breast cancer and associated with poor prognosis (43–45). One other study revealed that
SCARNA9 was significantly overexpressed in colon cancer. In contrast, another article suggested that downregulation of SCARNA9 are negatively associated
with endometrial cancer (46, 47). Numerous studies have investigated the expression of SCARNA10 in liver fibrosis and hepatocellular carcinoma. They
showed that the expression of SCARNA10 increased in these two disorders and is usually associated with the physio-pathological features of the diseases.
Hence, this SCARNA has been introduced as a diagnostic biomarker and therapeutic target in liver fibrosis and hepatocellular carcinoma. Silencing of
SCARNA10 coding gene in hepatocytes has been displayed down-expression of TGFβ, TGFβRI, SMAD2, SMAD3 and KLF6 (48–51). SCARNA13 is also highly
expressed in hepatocellular carcinoma and is involved in tumorigenesis and metastasis (52–54).

GO analysis of the top 20 DEGs in this study presented that they are mainly enriched in the pathways associated with negative regulation of gene silencing,
negative regulation of chromatin organization, negative regulation of chromatin silencing, nucleosome positioning, regulation of chromatin silencing, DNA
packaging, negative regulation of DNA metabolic process, regulation of DNA recombination, chromosome condensation, negative regulation of DNA
recombination, positive regulation of gene expression, epigenetic, chromatin assembly, nucleosome organization, positive regulation of histone H3-K9
methylation, the establishment of protein localization to chromatin, Regulation of histone H3-K9 methylation, the establishment of protein localization to
chromosome, protein localization to chromatin, positive regulation of histone methylation and nucleosomal DNA binding (Table 2). Of course, among the first
20 DEGs only two genes, H1-4 and H1-5, were identified as influential genes in GO analysis.

In this study, the top 20 DEGs KEGG analysis showed a relationship between pancreatic cancer and diseases such as systemic lupus erythematosus,
alcoholism, neutrophil extracellular trap formation and viral carcinogenesis due to the function of H4C2 and H4C3 genes. Many other studies have proved that
alcoholism (consumption of high amounts of alcohol) is one of the critical risk factors in the progression and development of pancreatic adenocarcinoma,
especially in patients with KRAS mutations (55–58). There have been many reports on the effect of neutrophil extracellular trap formation on pancreatic
cancer, but its exact role in the development of this cancer is still unknown. one article has pointed to the anti-cancer effects of neutrophil extracellular trap,
but most studies have emphasized the function of neutrophil extracellular trap formation in tumor symptoms exacerbation, resistance to immunotherapy and
induction of migration and invasion in pancreatic cancer cells. Neutrophil extracellular trap formation has even been suggested to be involved in predicting the
survival of pancreatic adenocarcinoma patients after surgery (59–62). There is ample evidence linking systemic lupus erythematosus to the risk of developing
various cancer types. In a meta-analysis study, systemic lupus erythematosus was associated with an increased risk of pancreatic cancer (63). But in another
study, no significant relationship was found between the two diseases (64). As in our research, other studies show the role of viral infections in pancreatic
carcinogenesis. Some of these viruses include the SARS-COVID-19 family and the hepatitis family (B and C). Certainly, careful monitoring of patients with any
of the diseases may help in the early diagnosis of pancreatic cancer and improve the prognosis of these patients (65–67).

In the last part of this study, PPI network analysis was performed for the top 100 DEGs found in this study. As announced in the results section (Fig. 7), 14
nodes were identified with these DEGs. Eleven of them with a degree of connectivity equal to 13 were selected as hub genes. Interestingly, all of the hub genes
were histones encoding genes. Of course, our study also found 23 histone encoding genes among the top 100 DEGs. These genes include H4C3, H1-4, H4C2,
H1-5, H4C5, H4C4, H2AC20, H2AC14, H2BC13, H2AC17, H2BC3, H1-3, H2AC12, H2AC21, H2BC17, H2AC4, H4C8, H2BC6, H3C7, H3C11, H4C1, H4C6 and H4C13,
indicating the role of histones in the development of pancreatic cancer. Numerous reports suggest that histone gene expression profiles in many types of
cancer such as breast, lung, prostate, kidney and pancreas may involve in patients' prognosis. For example, the expression of histone H1.3 in pancreatic
adenocarcinoma patients can predict the clinical outcome after pancreatic surgery. Therefore, H1.3 is identified as one of the prognostic biomarkers in
pancreatic cancer (30, 32, 68, 69). Finally, much studies on histones and non-coding RNAs found in this study should be performed to determine their role and
function in pancreatic cancer.

Conclusion
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Briefly, we present a gene expression profile analysis of patients with pancreatic adenocarcinoma. We identified DEGs and their associated biological
pathways and showed that they could be the link between pancreatic adenocarcinoma and several diseases. During this study, we identified many key genes
that we believe could serve as potential candidates for the diagnosis and prognosis of pancreatic adenocarcinoma in the near future. As, the role of some of
them, such as H1.3, is now identified as a prognostic biomarker. However, more extensive studies are needed to determine the role of each of these genes in
the diagnosis, treatment, and prognosis of pancreatic adenocarcinoma.
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Figure 1

Normalization of gene expression profile data. The mean expression of housekeeping genes among normal and cancerous samples has been calculated and
shown in the upper part of the figure. Also, the expression value of the top 10 DEGs in both normal and adenocarcinoma groups has been depicted
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Figure 2

Clustering of adenocarcinoma and normal samples based on DEGs

Figure 3

The ability of principal components to explain the variation among samples using all DEGs.
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Figure 4

The ability of principal components to explain the variation among samples using the top 20 DEGs.

Figure 5

The most significant Go enrichment analysis of top 20 DEGs
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Figure 6

KEGG Enrichment analysis of top 20 DEGs

Figure 7

The PPI network of 20 top DEGs.

Figure 8

Protein-protein interaction (PPI) network. A. The PPI network of top 100 DEGs. B. The connectivity degree of hub genes. Genes with a degree of connectivity
equal to 13 were considered hub genes.


