Abral H, Ariksa J, Mahardika M, Handayani D, Aminah I, Sandrawati N, Sugiarti E, Muslimin A. N, Rosanti S. D (2020) Effect of heat treatment on thermal resistance, transparency and antimicrobial activity of sonicated ginger cellulose film. Carbohydr Polym 240:116287. https://doi.org/10.1016/j.carbpol.2020.116287
Abral H, Chairani M. K, Rizki M. D, Mahardika M, Handayani D, Sugiarti E, Muslimin A. N, Sapuan S.M, Ilyas R.A (2021) Characterization of compressed bacterial cellulose nanopaper film after exposure to dry and humid conditions. J Mater Res Technol 11:896-904. https://doi.org/10.1016/j.jmrt.2021.01.057
Aghaei Z, Emadzadeh B, Ghorani B, Kadkhodaee R (2018) Cellulose acetate nanofibres containing alizarin as a halochromic sensor for the qualitative assessment of rainbow trout fish spoilage. Food Bioproc Tech 11(5):1087-1095. https://doi.org/10.1007/s11947-017-2046-5
Basha R. K, Konno K, Kani H, Kimura T (2011) Water vapor transmission rate of biomass based film materials. Eng Agric Environ Food 4(2):37-42. https://doi.org/10.1016/S1881-8366(11)80018-2
Bhargava N, Sharanagat V. S, Mor R. S, Kumar K (2020) Active and intelligent biodegradable packaging films using food and food waste-derived bioactive compounds: A review. Trends Food Sci Technol 105:385-401. https://doi.org/10.1016/j.tifs.2020.09.015
Chen H.-z, Zhang M, Bhandari B, Guo Z (2018) Applicability of a colorimetric indicator label for monitoring freshness of fresh-cut green bell pepper. Postharvest Biol Technol 140:85-92. https://doi.org/10.1016/j.postharvbio.2018.02.011
Cheng J.-H, Dai Q, Sun D.-W, Zeng X.-A, Liu D, Pu H.-B (2013) Applications of non-destructive spectroscopic techniques for fish quality and safety evaluation and inspection. Trends Food Sci Technol 34(1):18-31. https://doi.org/10.1016/j.tifs.2013.08.005
Chi W, Cao L, Sun G, Meng F, Zhang C, Li J, Wang L (2020) Developing a highly pH-sensitive ĸ-carrageenan-based intelligent film incorporating grape skin powder via a cleaner process. J Clean Prod 244:118862. https://doi.org/10.1016/j.jclepro.2019.118862
Crank, J (1979) The mathematics of diffusion. Oxford university press.
Doh H, Dunno K. D, Whiteside W. S (2020) Preparation of novel seaweed nanocomposite film from brown seaweeds Laminaria japonica and Sargassum natans. Food Hydrocoll 105: 105744. https://doi.org/10.1016/j.foodhyd.2020.105744
Don S, Xavier K. M, Devi S. T, Nayak B. B, Kannuchamy N (2018) Identification of potential spoilage bacteria in farmed shrimp (Litopenaeus vannamei): Application of Relative Rate of Spoilage models in shelf life-prediction. Lwt 97:295-301. https://doi.org/10.1016/j.lwt.2018.07.006
Etxabide A, Kilmartin P. A, Maté J. I (2021) Color stability and pH-indicator ability of curcumin, anthocyanin and betanin containing colorants under different storage conditions for intelligent packaging development. Food control 121:107645. https://doi.org/10.1016/j.foodcont.2020.107645
Ezati P, Tajik H, Moradi M, Molaei R (2019) Intelligent pH-sensitive indicator based on starch-cellulose and alizarin dye to track freshness of rainbow trout fillet. Int J Biol Macromol 132:157-165. https://doi.org/10.1016/j.ijbiomac.2019.03.173
Fang Z, Hou G, Chen C, & Hu L (2019) Nanocellulose-based films and their emerging applications. Curr Opin Solid State Mater Sci 23(4):100764. https://doi.org/10.1016/j.cossms.2019.07.003
Goodarzi M. M, Moradi M, Tajik H, Forough M, Ezati P, Kuswandi B (2020) Development of an easy-to-use colorimetric pH label with starch and carrot anthocyanins for milk shelf life assessment. Int J Biol Macromol 153:240-247. https://doi.org/10.1016/j.ijbiomac.2020.03.014
Govier G. W, Aziz K (1972) The flow of complex mixtures in pipes (Vol. 469). Van Nostrand Reinhold Company New York.
Herschel W. H, Bulkley R (1926) Konsistenzmessungen von gummi-benzollösungen. Kolloid-Zeitschrift 39(4):291-300. https://doi.org/10.1007/BF01432034
Hu B, Pu H, Sun D.-W (2021) Multifunctional cellulose based substrates for SERS smart sensing: Principles, applications and emerging trends for food safety detection. Trends Food Sci Technol 110:304-320. https://doi.org/10.1016/j.tifs.2021.02.005
Huang, S, Wang G, Lin, H, Xiong Y, Liu X, Li H (2021) Preparation and dynamic response properties of colorimetric indicator films containing pH-sensitive anthocyanins. Sensors and Actuators Reports 3:100049. https://doi.org/10.1016/j.snr.2021.100049
Hubbe M. A, Ferrer A, Tyagi P, Yin Y, Salas C, Pal L, Rojas O. J (2017) Nanocellulose in thin films, coatings, and plies for packaging applications: A review. BioResources 12(1):2143-2233. https://doi.org/10.15376/biores.12.1.2143-2233
Inam W, Bhadane R, Akpolat R. N, Taiseer R. A, Filippov S. K, Salo‐Ahen O. M, Zhang H (2022) Interactions between polymeric nanoparticles and different buffers as investigated by zeta potential measurements and molecular dynamics simulations. View: 20210009. https://doi.org/10.1002/VIW.20210009
Jiang G, Hou X, Zeng X, Zhang C, Wu H, Shen G, Li S, Luo Q, Li M, Liu X, Chen A, Wang Z (2020) Preparation and characterization of indicator films from carboxymethyl-cellulose/starch and purple sweet potato (Ipomoea batatas (L.) lam) anthocyanins for monitoring fish freshness. Int J Biol Macromol 143:359-372. https://doi.org/10.1016/j.ijbiomac.2019.12.024
Kang S, Wang H, Xia L, Chen M, Li L, Cheng J, Jiang S (2020) Colorimetric film based on polyvinyl alcohol/okra mucilage polysaccharide incorporated with rose anthocyanins for shrimp freshness monitoring. Carbohydr Polym 229: 115402. https://doi.org/10.1016/j.carbpol.2019.115402
Karkhanis S. S, Stark N. M, Sabo R. C, Matuana L M (2018) Water vapor and oxygen barrier properties of extrusion-blown poly (lactic acid)/cellulose nanocrystals nanocomposite films. Compos Part A Appl Sci Manuf 114:204-211. https://doi.org/10.1016/j.compositesa.2018.08.025
Kuswandi B, Restyana A, Abdullah A, Heng L. Y, Ahmad M (2012) A novel colorimetric food package label for fish spoilage based on polyaniline film. Food control 25(1):184-189. https://doi.org/10.1016/j.foodcont.2011.10.008
Li J, Wang Y, Wei X, Wang F, Han D, Wang Q, Kong L (2014) Homogeneous isolation of nanocelluloses by controlling the shearing force and pressure in microenvironment. Carbohydr Polym 113:388-393. https://doi.org/10.1016/j.carbpol.2014.06.085
Liang L, Bhagia S, Li M, Huang C, Ragauskas A. J (2019) Cross-linked nanocellulosic materials and their applications. ChemSusChem 13(1):78-87. https://doi.org/10.1002/cssc.201901676
Li M.-C, Wu Q, Song K, Lee S, Qing Y, Wu Y (2015) Cellulose nanoparticles: structure–morphology–rheology relationships. ACS Sustain Chem Eng 3(5):821-832. https://doi.org/10.1021/acssuschemeng.5b00144
Ludwicka K, Kaczmarek M, Białkowska A (2020) Bacterial Nanocellulose—A Biobased Polymer for Active and Intelligent Food Packaging Applications: Recent Advances and Developments. Polymers 12(10):2209. https://doi.org/10.3390/polym12102209
Ma Q, Wang L (2016) Preparation of a visual pH-sensing film based on tara gum incorporating cellulose and extracts from grape skins. Sens Actuators B Chem 235:401-407. https://doi.org/10.1016/j.snb.2016.05.107
Mangaraj S, Yadav A, Bal L. M, Dash S, Mahanti N. K (2019) Application of biodegradable polymers in food packaging industry: a comprehensive review. J Packag Technol Res 3(1):77-96.https://doi.org/10.1007/s41783-018-0049-y
Merz B, Capello C, Leandro G. C, Moritz D. E, Monteiro A. R, Valencia G. A (2020) A novel colorimetric indicator film based on chitosan, polyvinyl alcohol and anthocyanins from jambolan (Syzygium cumini) fruit for monitoring shrimp freshness. Int J Biol Macromol 153:625-632. https://doi.org/10.1016/j.ijbiomac.2020.03.048
Mokhena T. C, John M. J (2020) Cellulose nanomaterials: New generation materials for solving global issues. Cellulose 27(3):1149-1194. https://doi.org/10.1007/s10570-019-02889-w
Moradi M, Tajik H, Almasi H, Forough M, Ezati P (2019) A novel pH-sensing indicator based on bacterial cellulose nanofibers and black carrot anthocyanins for monitoring fish freshness. Carbohydr Polym 222:115030. https://doi.org/10.1016/j.carbpol.2019.115030
Müller P, Schmid M (2019) Intelligent packaging in the food sector: A brief overview. Foods 8(1):16. https://doi.org/10.3390/foods8010016
Musso Y. S, Salgado P. R, Mauri A. N (2019) Smart gelatin films prepared using red cabbage (Brassica oleracea L.) extracts as solvent. Food Hydrocoll 89:674-681. https://doi.org/10.1016/j.foodhyd.2018.11.036
Nasiri M, Ashrafizadeh S (2010) Novel equation for the prediction of rheological parameters of drilling fluids in an annulus. Ind Eng Chem Res 49(7):3374-3385. https://doi.org/10.1021/ie9009233
Nguyen L. H, Naficy S, McConchie R, Dehghani F, Chandrawati R (2019) Polydiacetylene-based sensors to detect food spoilage at low temperatures. J Mater Chem C 7(7):1919-1926. https://doi.org/10.1039/c8tc05534c
Pourjavaher S, Almasi H, Meshkini S, Pirsa S, Parandi E (2017) Development of a colorimetric pH indicator based on bacterial cellulose nanofibers and red cabbage (Brassica oleraceae) extract. Carbohydr Polym 156: 193-201. https://doi.org/10.1016/j.carbpol.2016.09.027
Prietto L, Mirapalhete T. C, Pinto V. Z, Hoffmann J. F, Vanier N. L, Lim L.-T, Guerra Dias A.R, da Rosa Zavareze E (2017) pH-sensitive films containing anthocyanins extracted from black bean seed coat and red cabbage. Lwt 80:492-500. https://doi.org/10.1016/j.lwt.2017.03.006
Rakić V, Rinnan Å, Polak T, Skrt M, Miljković M, Ulrih N. P (2019) pH-induced structural forms of cyanidin and cyanidin 3-O-β-glucopyranoside. Dyes and Pigments 165:71-80. https://doi.org/10.1016/j.dyepig.2019.02.012
Reid MS, Villalobos M, Cranston ED (2017) Benchmarking cellulose nanocrystals: from the laboratory to industrial production. Langmuir 33(7):1583-1598.
Sani M. A, Tavassoli M, Hamishehkar H, McClements D. J (2021) Carbohydrate-based films containing pH-sensitive red barberry anthocyanins: Application as biodegradable smart food packaging materials. Carbohydr Polym 255:117488. https://doi.org/10.1016/j.carbpol.2020.117488
Segal L, Creely J. J, Martin Jr A, Conrad C (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J:29(10):786-794. https://doi.org/10.1177/004051755902901003
Sun L, Sun J, Chen L, Niu P, Yang X, Guo Y (2017) Preparation and characterization of chitosan film incorporated with thinned young apple polyphenols as an active packaging material. Carbohydr Polym 163: 81-91. https://doi.org/10.1016/j.carbpol.2017.01.016
Sun X, Wu Q, Zhang X, Ren S, Lei T, Li W, Xu G, Zhang Q (2018) Nanocellulose films with combined cellulose nanofibers and nanocrystals: tailored thermal, optical and mechanical properties. Cellulose 25(2):1103-1115. https://doi.org/10.1007/s10570-017-1627-9
Vedove T. M, Maniglia B. C, Tadini C. C (2021) Production of sustainable smart packaging based on cassava starch and anthocyanin by an extrusion process. J Food Eng 289:110274. https://doi.org/10.1016/j.jfoodeng.2020.110274
Wei, Y.-C, Cheng, C.-H, Ho, Y.-C, Tsai, M.-L, Mi, F.-L (2017) Active gellan gum/purple sweet potato composite films capable of monitoring pH variations. Food Hydrocoll 69:491-502. https://doi.org/10.1016/j.foodhyd.2017.03.010
Weston M, Phan M. A. T, Arcot J, Chandrawati R (2020) Anthocyanin-based sensors derived from food waste as an active use-by date indicator for milk. Food Chem 326:127017. https://doi.org/10.1016/j.foodchem.2020.127017
Yam K. L, Takhistov P. T, Miltz J (2005) Intelligent packaging: concepts and applications. J Food Sci 70(1):R1-R10. https://doi.org/10.1111/j.1365-2621.2005.tb09052.x
Yao X, Hu H, Qin Y, Liu J (2020) Development of antioxidant, antimicrobial and ammonia-sensitive films based on quaternary ammonium chitosan, polyvinyl alcohol and betalains-rich cactus pears (Opuntia ficus-indica) extract. Food Hydrocoll 106:105896. https://doi.org/10.1016/j.foodhyd.2020.105896
Yong H, Liu, J, Qin, Y, Bai, R, Zhang, X, & Liu, J (2019) Antioxidant and pH-sensitive films developed by incorporating purple and black rice extracts into chitosan matrix. Int J Biol Macromol 137:307-316. https://doi.org/10.1016/j.ijbiomac.2019.07.009
Yousefi H, Su H.-M, Imani S. M, Alkhaldi K, M. Filipe C. D, Didar T. F (2019) Intelligent food packaging: A review of smart sensing technologies for monitoring food quality. ACS sensors 4(4):808-821. https://doi.org/10.1021/acssensors.9b00440
Yousuf B, Gul K, Wani A. A, Singh P (2016) Health benefits of anthocyanins and their encapsulation for potential use in food systems: a review. Crit Rev Food Sci Nutr 56(13):2223-2230. https://doi.org/10.1080/10408398.2013.805316
Yun D, Cai H, Liu Y, Xiao L, Song J, Liu J (2019) Development of active and intelligent films based on cassava starch and Chinese bayberry (Myrica rubra Sieb. et Zucc.) anthocyanins. RSC adv 9(53):30905-30916. https://doi.org/10.1039/C9RA06628D
Zhang J, Zou X, Zhai X, Huang X, Jiang C, Holmes M (2019) Preparation of an intelligent pH film based on biodegradable polymers and roselle anthocyanins for monitoring pork freshness. Food Chem 272:306-312. https://doi.org/10.1016/j.foodchem.2018.08.041
Zhang K, Huang T.-S, Yan H, Hu X, Ren T (2020) Novel pH-sensitive films based on starch/polyvinyl alcohol and food anthocyanins as a visual indicator of shrimp deterioration. Int J Biol Macromol 145:768-776. https://doi.org/10.1016/j.ijbiomac.2019.12.159