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Abstract
In this paper, we establish error estimates of Hermite-Hadamard inequalities
corresponding ζ1q-fractional calculus operators via (α,m)-convex functions.
Identity is used to examine the main results of this study. The results in the
literature are obtained as remarks on our general consequences.
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1 Introduction
One of the most crucial concepts in mathematics is convexity. It has a wide range
of applications (see books [1, 2]). The theory of optimization and the theory of
inequalities involving convex functions have many attractive consequences. Such
functions have been studied by a number of scholars, aiming to extend them in
many ways using novel ideas and efficient approaches [3, 4]. Ghulam et al. [5] in-
troduced Hadamard inequalities for strongly m-convex functions through Riemann-
Liouville fractional integrals. For both s-convex and s-concave functions, Khan et
al. [6] developed various new and generalized Hermite-Hadamard type inequalities.
Some Jensen’s and Hardy-type conditions for convex functions are enhanced by
Wang et al. [7] using Riemann-Liouville delta fractional integrals. Inequalities of
the Hermite-Hadamard type for integrals emerging in conformable fractional calcu-
lus were introduced by Bohner et al. [8]. Páles et al. [9] established an extension of
the decomposition theorem in the context of higher-order convexity notions. Fol-
lowing are preliminaries related to our main results.

Definition 1.1 The mapping Λ : [ζ1, ζ2] → R is said to be convex if

Λ (ϑµ1 + (1− ϑ)µ2) ≤ ϑΛ(µ1) + (1− ϑ)Λ(µ2)

holds for every µ1, µ2 ∈ [ζ1, ζ2] and ϑ ∈ [0, 1].

Λ is a concave function if Λ−1 is convex.
In the following manner, Toader et al. [10] established the class of m-convex

functions defined by the following definition.
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Definition 1.2 The mapping Λ : [ζ1, ζ2] → R is called m-convex, if the inequality

Λ (ϑµ1 +m(1− ϑ)µ2) ≤ ϑΛ(µ1) +m(1− ϑ)Λ(µ2)

satisfies for every µ1, µ2 ∈ [ζ1, ζ2] and m,ϑ ∈ [0, 1].

For m = 1, the m-convexity of a function is reduces to the classical convexity.

Many authors have established various integral inequalities relevant to m-convex
mappings owing to the extensive implications of the said convex functions. Tariq
et al. [11] introduced a novel family of convex functions known as exponential type
m-convex functions. Wang et al. [12] presents certain Hermite-Hadamard type in-
equalities for m-convex mappings involving fractional integrals with exponential
kernels.

The following concept of (α,m)-convexity is given by Mihesan’s et al. [13].

Definition 1.3 The mapping Λ : [ζ1, ζ2] → R is said to be (α,m)-convex mapping,
if the following inequality

Λ (ϑµ1 +m(1− ϑ)µ2) ≤ ϑαΛ(µ1) +m(1− ϑα)Λ(µ2)

holds for all µ1, µ2 ∈ [ζ1, ζ2], ϑ ∈ [0, 1] and (α,m) ∈ [0, 1]2.

It is notable that for α = 1, (α,m)-convexity is evidently reduces to m-convexity
and to classical convexity for α = m = 1.

Safdar et al. [14] explored some conclusions for generalized (α,m)-convex functions
that are differentiable in absolute sense. For (α,m)-convex functions, Erhan et al.
[15] proposes a number of Hadamard-type integral inequalities.

In literature, convex functions are used to generate a variety of inequalities [16, 17].
One of the most well-known classical inequality is a Hermite-Hadamard inequality,
which has a wide range of geometrical implications and applications [18] and is
stated as follows:

Theorem 1.1 If Λ : [ζ1, ζ2] → R is a convex mapping and µ1, µ2 ∈ [ζ1, ζ2] with
µ1 < µ2, then the following inequality

Λ

(

µ1 + µ2

2

)

≤
1

µ2 − µ1

∫ µ2

µ1

Λ(ν)dν ≤
Λ(µ1) + Λ(µ2)

2

holds. The inequalities are reversed if Λ is concave.

Using fractional integrals and derivatives, a majority of scholars investigated this
inequality and produced a lot of refinements and extensions [19, 20, 21, 22].

Furthermore, certain actions in the area of q-analysis are being conducted, as
initiated by Euler, in order to gain ability in mathematics that leads to quantum
computing q-calculus, which is acknowledged as a connection between physics and
mathematics [23, 24]. Quantum calculus has a wide spectrum of uses in quantum
information theory, which is a branch of strategy that includes, along with other
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aspects, information theory, computer science, cryptography and philosophy [25,
26].

The q-parameter was utilized by Newton in his studies on infinite series. Addi-
tionally, Jackson [27, 28] was the first to propose the quantum calculus or limitless
calculus in a systematic way. Since then, the scope of related research has expanded
rapidly. In [29], Bermudo et al. present some variants of the Hermite-Hadamard in-
equality for general convex functions in the context of q-calculus. Chu et al. [30]
illustrated the notion of ζ2Dp,q derivative and ζ2(p,q)-integral.

For several sorts of tasks, quantum and post-quantum integrals are often used
to investigate numerous integral inequalities. For differentiable convex functions
having a critical point, Jhanthanam et al. [31] establish several new conclusions
on the left-hand side of the q-Hermite-Hadamard inequality. For a newly defined
quantum integral, Budak et al. [32] initially obtained two new Hermite-Hadamard-
type quantum inequalities and then established many quantum Hermite-Hadamard
inequalities. For convex stochastic processes and coordinated stochastic processes,
Sitthiwirattham et al. [33] offered some new q Hermite-Hadamard type inequalities,
using newly defined integrals. Prabseang et al. [34] looked into several novel quan-
tum analogues of Hermite-Hadamard inequalities for double integrals, as well as
improvements of Hermite-Hadamard inequalities for q-differentiable convex func-
tions. For convex functions, Ali et al. [35] also obtains some new Hermite-Hadamard
inequalities using the newly specified R(p,q)-integral.

Now, we will go through some common q-calculus definitions, inequalities and the
notation as follows [23]:

[k]q =
1− q

k

1− q
= 1 + q+ q

2 + · · ·+ q
k−1

for q ∈ (0, 1).
The q-Jackson integral of a mapping Λ from 0 to ζ2 was defined by Jackson [27]

as follows:

ζ2
∫

0

Λ(ν)dqν = (1− q)ζ2

∞
∑

k=0

q
kΛ(ζ2q

k), (1.1)

where 0 < q < 1, given that the sum converges absolutely.
Jackson [27] was defined the q-Jackson integral of a mapping on [ζ1, ζ2] as follows:

ζ2
∫

ζ1

Λ(ν)dqν =

ζ2
∫

0

Λ(ν)dqν −

ζ1
∫

0

Λ(ν)dqν.

Definition 1.4 [36] Consider the function Λ : [ζ1, ζ2] → R to be continuous. Then,
for Λ at ϑ ∈ [ζ1, ζ2], the ζ1q-derivative is determined as

ζ1DqΛ(ν) =
Λ(ν)− Λ(qν + (1− q)ζ1)

(1− q)(ν − ζ1)
(1.2)

for ν ̸= ζ1.



Samraiz et al. Page 4 of 15

Since Λ : [ζ1, ζ2] → R is a continuous mapping, we can have

ζ1DqΛ(ζ1) = lim
ν→ζ1

ζ1DqΛ(ν).

If ζ1DqΛ(ν) exists for all ν ∈ [ζ1, ζ2], the function Λ is well-known ζ1q-differentiable
on [ζ1, ζ2]. If we choose ζ1 = 0 in (1.2), then we have 0DqΛ(ν) = DqΛ(ν), where
DqΛ(ν) is the q-derivative of Λ at ν ∈ [0, ζ2] given by

DqΛ(ν) =
Λ(ν)− Λ(qν)

(1− q)ν

for ν ̸= 0, see for [23] more details.

Definition 1.5 Consider the mapping Λ : [ζ1, ζ2] → R to be continuous. Then,
for Λ at ϑ ∈ [ζ1, ζ2], the second ζ1q-derivative is given as

ζ1D
2
q
Λ(ν) = ζ1Dq

(

ζ1DqΛ(ν)
)

=
Λ(q2ϑζ2 + (1− ϑq2)ζ1)− (1 + q)Λ(qϑζ2 + (1− ϑq)ζ1) + qΛ(ϑζ2 + (1− ϑ)ζ1)

(1− q)2q(ζ2 − ζ1)2ϑ2
.

Definition 1.6 [29] Consider the function Λ : [ζ1, ζ2] → R to be continuous. Then,
for Λ at ϑ ∈ [ζ1, ζ2], the ζ2q-derivative is defined as

ζ2DqΛ(ν) =
Λ(qν + (1− q)ζ2)− Λ(ν)

(1− q)(ζ2 − ν)

for ν ̸= ζ2.

Definition 1.7 [36] Consider the function Λ : [ζ1, ζ2] → R to be continuous. Then
the ζ1q-definite integral [ζ1, ζ2] is given as

ζ2
∫

ζ1

Λ(ν)ζ1dqν = (1− q)(ζ2 − ζ1)
∞
∑

k=0

q
kΛ(qkζ2 + (1− q

k)ζ1)

= (ζ2 − ζ1)

1
∫

0

Λ ((1− ϑ)ζ1 + ϑζ2) dqϑ.

In the area of q-calculus, the following ζ1q-Hermite-Hadamard inequality for con-
vex functions was established by Alp et al. [37].

Theorem 1.2 If Λ : [ζ1, ζ2] → R is a convex differentiable mapping on [ζ1, ζ2],

then

Λ

(

qζ1 + ζ2

1 + q

)

≤
1

ζ2 − ζ1

ζ2
∫

ζ1

Λ(ν)ζ1dqν ≤
qΛ(ζ1) + Λ(ζ2)

1 + q
, (1.3)

where 0 < q < 1.
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In [37, 38], authors developed some estimates for the above inequality.
Furthermore, Bermudo et al. [29] provided the next definition and derived the

Hermite-Hadamard inequalities.

Definition 1.8 Consider the function Λ : [ζ1, ζ2] → R to be continuous. Then the
ζ2q-definite integral [ζ1, ζ2] is given as

ζ2
∫

ζ1

Λ(ν)ζ2dqν = (1− q)(ζ2 − ζ1)

∞
∑

k=0

q
kΛ(qkζ1 + (1− q

k)ζ2)

= (ζ2 − ζ1)

1
∫

0

Λ (ϑζ1 + (1− ϑ)ζ2) dqϑ.

Theorem 1.3 [29] Let Λ : [ζ1, ζ2] → R be a convex and differentiable function on
[ζ1, ζ2], then we have the following q-Hermite-Hadamard inequalities

Λ

(

ζ1 + qζ2

1 + q

)

≤
1

ζ2 − ζ1

∫ ζ2

ζ1

Λ(ν)ζ2dqν ≤
Λ(ζ1) + qΛ(ζ2)

1 + q
, (1.4)

where 0 < q < 1.

From Theorem 1.2 and Theorem 1.3, we obtain the next inequalities.

Corollary 1.1 [29] For any convex mapping Λ : [ζ1, ζ2] → R and 0 < q < 1, we
have

Λ

(

qζ1 + ζ2

1 + q

)

+ Λ

(

ζ1 + qζ2

1 + q

)

≤
1

ζ2 − ζ1







ζ2
∫

ζ1

Λ(ν)ζ1dqν +

ζ2
∫

ζ1

Λ(ν)ζ2dqν






≤ Λ(ζ1) + Λ(ζ2) (1.5)

and

Λ

(

ζ1 + ζ2

2

)

≤
1

2(ζ2 − ζ1)







ζ2
∫

ζ1

Λ(ν)ζ1dqν +

ζ2
∫

ζ1

Λ(ν)ζ2dqν






≤

Λ(ζ1) + Λ(ζ2)

2
. (1.6)

Theorem 1.4 (Hölder’s inequality)[39, p. 604] Let ν > 0, 0 < q < 1 and ρ1 > 1.

If 1
ρ1

+ 1
ϱ1

+ 1, then

ν
∫

0

∣

∣Λ(ν)Φ(ν)
∣

∣dqν ≤





ν
∫

0

∣

∣Λ(ν)
∣

∣

ρ1

dqν





1

ρ1





ν
∫

0

∣

∣Λ(ν)Φ(ν)
∣

∣

ϱ1

dqν





1

ϱ1

.
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2 Main Results
The present section is dedicated to explore some new Hermite-Hadamard inequali-
ties for such functions that have second ζ1q-derivatives in absolute values are convex.
For the existence of the main results, we need the following lemma.

Lemma 2.1 [40, Lemma 4.1] If Λ : [ζ1, ζ2] → R is a twice ζ1q-differentiable
mapping on (ζ1, ζ2), where [ζ1, ζ2] ⊂ R and ζ1D

2
q
Λ is integrable and continuous on

[ζ1, ζ2], then we have

qΛ(ζ1) + Λ(ζ2)

1 + q
−

1

(ζ2 − ζ1)

ζ2
∫

ζ1

Λ(ν)ζ1dqν

=
q
2(ζ2 − ζ1)

2

1 + q

1
∫

0

ϑ(1− qϑ)ζ1D
2
q
Λ ((1− ϑ)ζ1 + ϑζ2) dqϑ,

where 0 < q < 1.

The aim of this paper is to find some estimates for right-hand side of inequality
(1.4).

Theorem 2.1 If Λ : [ζ1, ζ2] → R is a twice ζ1q-differentiable mapping on (ζ1, ζ2),
where [ζ1, ζ2] ⊂ R and ζ1D

2
q
Λ is integrable and continuous on [ζ1, ζ2], provided that

|ζ1D
2
q
Λ| is (α,m)-convex on [ζ1, ζ2], then the following inequality holds.

∣

∣

∣

∣

∣

∣

∣

qΛ(ζ1) + Λ(ζ2)

1 + q
−

1

(ζ2 − ζ1)

ζ2
∫

ζ1

Λ(ν)ζ1dqν

∣

∣

∣

∣

∣

∣

∣

≤
q
2(ζ2 − ζ1)

2(1− q)2

(1 + q)(1− qα+2)(1− qα+3)

[

v1
∣

∣

ζ1D
2
q
Λ (ζ1)

∣

∣+m

∣

∣

∣

∣

ζ1D
2
q
Λ

(

ζ2

m

)∣

∣

∣

∣

]

, (2.7)

where

v1 =
(1− q

α+2)(1− q
α+3)

(1− q2)(1− q3)
− 1. (2.8)

Proof By taking first the modulus in Lemma 2.1 and then using the (α,m)-convexity
of |aD2

q
Λ|, we get

∣

∣

∣

∣

∣

∣

∣

qΛ(ζ1) + Λ(ζ2)

1 + q
−

1

(ζ2 − ζ1)

ζ2
∫

ζ1

Λ(ν)ζ1dqν

∣

∣

∣

∣

∣

∣

∣

≤
q
2(ζ2 − ζ1)

2

1 + q

1
∫

0

ϑ(1− qϑ)
∣

∣

ζ1D
2
q
Λ ((1− ϑ)ζ1 + ϑζ2)

∣

∣ dqϑ

=
q
2(ζ2 − ζ1)

2

1 + q

1
∫

0

ϑ(1− qϑ)

∣

∣

∣

∣

ζ1D
2
q
Λ

(

(1− ϑ)ζ1 +mϑ
ζ2

m

)∣

∣

∣

∣

dqϑ
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≤
q
2(ζ2 − ζ1)

2

1 + q

1
∫

0

ϑ (1− qϑ)

[

(1− ϑα)
∣

∣

ζ1D
2
q
Λ (ζ1)

∣

∣+mϑα

∣

∣

∣

∣

ζ1D
2
q
Λ

(

ζ2

m

)∣

∣

∣

∣

]

dqϑ

=
q
2(ζ2 − ζ1)

2

1 + q

[

∣

∣

ζ1D
2
q
Λ (ζ1)

∣

∣

1
∫

0

(ϑ− ϑα+1)(1− qϑ)dqϑ

+m

∣

∣

∣

∣

ζ1D
2
q
Λ

(

ζ2

m

)∣

∣

∣

∣

1
∫

0

ϑα+1 (1− qϑ) dqϑ

]

.

After simplification inequality (2.7) is obtained.

Corollary 2.1 By choosing α = 1 inequality (2.7) becomes

qΛ(ζ1) + Λ(ζ2)

1 + q
−

1

(ζ2 − ζ1)

ζ2
∫

τ1

Λ(ν)ζ1dqν

≤
q
2(ζ2 − ζ1)

2

(1 + q)(q2 + q+ 1)(q3 + q2 + q+ 1)

[

q
2
∣

∣

ζ1D
2
q
Λ (ζ1)

∣

∣+m

∣

∣

∣

∣

ζ1D
2
q
Λ

(

ζ2

m

)∣

∣

∣

∣

]

.

Corollary 2.2 By choosing α = m = 1 inequality (2.7) becomes

qΛ(ζ1) + Λ(ζ2)

1 + q
−

1

(ζ2 − ζ1)

ζ2
∫

ζ1

Λ(ν)ζ1dqν

≤
q
2(ζ2 − ζ1)

2

(1 + q)(q2 + q+ 1)(q3 + q2 + q+ 1)

[

q
2
∣

∣

ζ1D
2
q
Λ (ζ1)

∣

∣+
∣

∣

ζ1D
2
q
Λ (ζ2)

∣

∣

]

.

Remark 2.1 Let the assumptions of Theorem 2.1 assumed to be true with the
limit as q → 1− and α = m = 1, then we get the following trapezoidal inequality

∣

∣

∣

∣

∣

∣

∣

1

ζ2 − ζ1

ζ2
∫

ζ1

Λ(ν)dν −
Λ(ζ1) + Λ(ζ2)

2

∣

∣

∣

∣

∣

∣

∣

≤
(ζ2 − ζ1)

2

12

[

|Λ′′(ζ1)|+ |Λ′′(ζ2)|

2

]

,

which appeared in [41, Proposition 2].

Theorem 2.2 Suppose that Λ : [ζ1, ζ2] → R is a twice ζ1q-differentiable mapping
on (ζ1, ζ2) where [ζ1, ζ2] ⊂ R and ζ1D

2
q
Λ is integrable and continuous on [ζ1, ζ2]. If
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|ζ1D
2
q
Λ|ϱ1 , ϱ1 > 1, is (α,m)-convex on [ζ1, ζ2], then the following inequality holds:

∣

∣

∣

∣

∣

∣

∣

qΛ(ζ1) + Λ(ζ2)

1 + q
−

1

(ζ2 − ζ1)

ζ2
∫

ζ1

Λ(ν)ζ1dqν

∣

∣

∣

∣

∣

∣

∣

≤
q
2(ζ2 − ζ1)

2

(1 + q)2−
1

ρ1 (1 + q+ q2)

[

(1− q
3)(1− q)

(1− qα+2)(1− qα+3)

]
1

ϱ1

×

[

v1
∣

∣

ζ1D
2
q
Λ (ζ1)

∣

∣

ϱ1

+m

∣

∣

∣

∣

ζ1D
2
q
Λ

(

ζ2

m

)∣

∣

∣

∣

ϱ1
]

1

ϱ1

, (2.9)

where v1 is defined in (2.8) and 0 < q < 1.

Proof By taking first the modulus and then using the power mean inequality in
Lemma 2.1, we get

∣

∣

∣

∣

∣

∣

∣

qΛ(ζ1) + Λ(ζ2)

1 + q
−

1

(ζ2 − ζ1)

ζ2
∫

ζ1

Λ(ν)ζ1dqν

∣

∣

∣

∣

∣

∣

∣

≤
q
2(ζ2 − ζ1)

2

1 + q

1
∫

0

ϑ(1− qϑ)
∣

∣

ζ1D
2
q
Λ ((1− ϑ)ζ1 + ϑζ2)

∣

∣ dqϑ

≤
q
2(ζ2 − ζ1)

2

1 + q





1
∫

0

ϑ(1− qϑ)dqϑ





1− 1

ϱ1




1
∫

0

ϑ(1− qϑ)
∣

∣

ζ1D
2
q
Λ ((1− ϑ)ζ1 + ϑζ2)

∣

∣

ϱ1

dqϑ





1

ϱ1

=
q
2(ζ2 − ζ1)

2

1 + q





1
∫

0

ϑ(1− qϑ)dqϑ





1− 1

ϱ1




1
∫

0

ϑ(1− qϑ)

∣

∣

∣

∣

ζ1D
2
q
Λ

(

(1− ϑ)ζ1 +mϑ
ζ2

m

)∣

∣

∣

∣

ϱ1

dqϑ





1

ϱ1

By the (α,m)-convexity of |ζ1D2
q
Λ|ϱ1 , we have

∣

∣

∣

∣

∣

∣

∣

qΛ(ζ1) + Λ(ζ2)

1 + q
−

1

(ζ2 − ζ1)

ζ2
∫

ζ1

Λ(ν)ζ1dqν

∣

∣

∣

∣

∣

∣

∣

≤
q
2(ζ2 − ζ1)

2

1 + q





1
∫

0

ϑ(1− qϑ)dqϑ





1− 1

ϱ1

×





1
∫

0

ϑ(1− qϑ)

[

(1− ϑα)
∣

∣

ζ1D
2
q
Λ (ζ1)

∣

∣

ϱ1

+mϑα

∣

∣

∣

∣

ζ1D
2
q
Λ

(

ζ2

m

)∣

∣

∣

∣

ϱ1
]

dqϑ





1

ϱ1

=
q
2(ζ2 − ζ1)

2

1 + q





1
∫

0

ϑ(1− qϑ)dqϑ





1− 1

ϱ1

×





∣

∣

ζ1D
2
q
Λ (ζ1)

∣

∣

ϱ1

1
∫

0

(ϑ− ϑα+1)(1− qϑ)dqϑ+m

∣

∣

∣

∣

ζ1D
2
q
Λ

(

ζ2

m

)∣

∣

∣

∣

ϱ1

1
∫

0

ϑα+1(1− qϑ)dqϑ





1

ϱ1
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=
q
2(ζ2 − ζ1)

2

(1 + q)

(

1

(1 + q)(1 + q+ q2)

)1− 1

ϱ1

×

(

(1− q)2

(1− qα+2)(1− qα+3)

)
1

ϱ1
[

v1
∣

∣

ζ1D
2
q
Λ (ζ1)

∣

∣

ϱ1

+m

∣

∣

∣

∣

ζ1D
2
q
Λ

(

ζ2

m

)∣

∣

∣

∣

ϱ1
]

1

ϱ1

.

After simplification the required inequality is obtained.

Corollary 2.3 By choosing α = 1 inequality (2.9) becomes
∣

∣

∣

∣

∣

∣

∣

qΛ(ζ1) + Λ(ζ2)

1 + q
−

1

(ζ2 − τ1)

ζ2
∫

ζ1

Λ(ν)ζ1dqν

∣

∣

∣

∣

∣

∣

∣

≤
q
2(ζ2 − ζ1)

2

(1 + q)2−
1

ϱ1 (1 + q+ q2)

(

1

(1 + q+ q2 + q3)

)
1

ϱ1

×

[

q
2
∣

∣

ζ1D
2
q
Λ (ζ1)

∣

∣

ϱ1

+m

∣

∣

∣

∣

ζ1D
2
q
Λ

(

ζ2

m

)∣

∣

∣

∣

ϱ1
]

1

ϱ1

.

Corollary 2.4 By choosing α = m = 1 inequality (2.9) becomes
∣

∣

∣

∣

∣

∣

∣

qΛ(ζ1) + Λ(ζ2)

1 + q
−

1

(ζ2 − ζ1)

ζ2
∫

ζ1

Λ(ν)ζ1dqν

∣

∣

∣

∣

∣

∣

∣

≤
q
2(ζ2 − ζ1)

2

(1 + q)2−
1

ϱ1 (1 + q+ q2)

(

1

(1 + q+ q2 + q3)

)
1

ϱ1

×
[

q
2
∣

∣

ζ1D
2
q
Λ (ζ1)

∣

∣

ϱ1

+
∣

∣

ζ1D
2
q
Λ (ζ2)

∣

∣

ϱ1

]
1

ϱ1
.

Remark 2.2 By choosing the limit as q → 1− and α = m = 1 in Theorem 2.2,
we have an integral inequality, which appeared in [42, Remark 3].

Theorem 2.3 Suppose that Λ : [ζ1, ζ2] → R is a twice ζ1q-differentiable function
on (ζ1, ζ2), where [ζ1, ζ2] ⊂ R and ζ1D

2
q
Λ is continuous and integrable on [ζ1, ζ2]. If

|ζ1D
2
q
Λ|ϱ1 is (α,m)-convex on [ζ1, ζ2] for some ϱ1 > 1 and 1

ρ1

+ 1
ϱ1

= 1, then

∣

∣

∣

∣

∣

∣

∣

qΛ(ζ1) + Λ(ζ2)

1 + q
−

1

(ζ2 − ζ1)

ζ2
∫

ζ1

Λ(ν)ζ1dqν

∣

∣

∣

∣

∣

∣

∣

≤
q
2(ζ2 − ζ1)

2

(1 + q)
(v2)

1

ρ1

×





q(1− q
α)
∣

∣

ζ1D
2
q
Λ (ζ1)

∣

∣

ϱ1

+m(1− q)
∣

∣

∣ζ1D
2
q
Λ
(

ζ2
m

)∣

∣

∣

ϱ1

1− qα+1





1

ϱ1

, (2.10)

where

v2 = (1− q)

∞
∑

k=0

(qk)ρ1+1(1− q
k+1)ρ1 (2.11)
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for 0 < q < 1.

Proof By taking first the modulus and then using the well known Hölder’s inequality
in Lemma 2.1, we get

∣

∣

∣

∣

∣

∣

∣

qΛ(ζ1) + Λ(ζ2)

1 + q
−

1

ζ2 − ζ1

ζ2
∫

ζ1

Λ(ν)ζ1dqν

∣

∣

∣

∣

∣

∣

∣

≤
q
2(ζ2 − ζ1)

2

1 + q

1
∫

0

ϑ
(

1− qϑ
) ∣

∣

ζ1D
2
q
Λ ((1− ϑ) ζ1 + ϑζ2)

∣

∣ dqϑ

≤
q
2(ζ2 − ζ1)

2

1 + q





1
∫

0

(ϑ (1− qϑ))
ρ1 dqϑ





1

ρ1
(

∣

∣

ζ1D
2
q
Λ ((1− ϑ) ζ1 + ϑζ2)

∣

∣

ϱ1

dqϑ
)

1

ϱ1

=
q
2(ζ2 − ζ1)

2

1 + q





1
∫

0

(ϑ (1− qϑ))
ρ1 dqϑ





1

ρ1
(∣

∣

∣

∣

ζ1D
2
q
Λ

(

(1− ϑ) ζ1 +mϑ
ζ2

m

)∣

∣

∣

∣

ϱ1

dqϑ

)
1

ϱ1

.

Since |ζ1D
2
q
Λ|ϱ1 is (α,m)-convex, therefore we can write

∣

∣

∣

∣

∣

∣

∣

qΛ(ζ1) + Λ(ζ2)

1 + q
−

1

(ζ2 − ζ1)

ζ2
∫

ζ1

Λ(ν)ζ1dqν

∣

∣

∣

∣

∣

∣

∣

≤
q
2(ζ2 − ζ1)

2

1 + q





1
∫

0

(ϑ(1− qϑ))
ρ1 dqϑ





1

ρ1

×





∣

∣

ζ1D
2
q
Λ (ζ1)

∣

∣

ϱ1

1
∫

0

(1− ϑα)dqϑ+m

∣

∣

∣

∣

ζ1D
2
q
Λ

(

ζ2

m

)∣

∣

∣

∣

ϱ1

1
∫

0

ϑαdqϑ





1

ϱ1

.

After simple calculation, we get the required inequality.

Corollary 2.5 By choosing α = 1 inequality (2.10) becomes

∣

∣

∣

∣

∣

∣

∣

qΛ(ζ1) + Λ(ζ2)

1 + q
−

1

(ζ2 − ζ1)

ζ2
∫

ζ1

Λ(ϑ)ζ1dqν

∣

∣

∣

∣

∣

∣

∣

≤
q
2(ζ2 − ζ1)

2

(1 + q)
(v2)

1

ρ1





q

∣

∣

ζ1D
2
q
Λ (ζ1)

∣

∣

ϱ1

+m
∣

∣

∣ζ1D
2
q
Λ
(

ζ2
m

)∣

∣

∣

ϱ1

1 + q





1

ϱ1

,

where v2 is define in (2.11).
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Corollary 2.6 By choosing α = m = 1 inequality (2.10) becomes

∣

∣

∣

∣

∣

∣

∣

qΛ(ζ1) + Λ(ζ2)

1 + q
−

1

(ζ2 − ζ1)

ζ2
∫

ζ1

Λ(ν)ζ1dqν

∣

∣

∣

∣

∣

∣

∣

≤
q
2(ζ2 − ζ1)

2

(1 + q)
(v2)

1

ρ1

(

q

∣

∣

ζ1D
2
q
Λ (ζ1)

∣

∣

ϱ1

+
∣

∣

ζ1D
2
q
Λ (ζ2)

∣

∣

ϱ1

1 + q

)
1

ϱ1

,

where v2 is define in (2.11).

Remark 2.3 By choosing the limit as q → 1− and α = m = 1 in Theorem 2.3,
we have an integral inequality, which appeared in [42, Remark 4].

In terms of the second q-derivatives we obtain another Hermite-Hadamard-type
inequality for powers.

Theorem 2.4 Let the assumptions of Theorem 2.3 be true, then the inequality

∣

∣

∣

∣

∣

∣

∣

qΛ(ζ1) + Λ(ζ2)

1 + q
−

1

ζ2 − ζ1

ζ2
∫

ζ1

Λ(ν)ζ1dqν

∣

∣

∣

∣

∣

∣

∣

≤ q
q
2(ζ2 − ζ1)

2

(1 + q)

(

1

[ρ1 + 1]q

)
1

ρ1

(

v3
∣

∣

ζ1D
2
q
Λ (ζ1)

∣

∣

ϱ1

+mv4

∣

∣

∣

∣

ζ1D
2
q
Λ

(

ζ2

m

)∣

∣

∣

∣

ϱ1
)

1

ϱ1

(2.12)

holds, where

v3 = (1− q)

∞
∑

k=0

q
k(1− q

kα(1− q
k+1)ρ1

and

v4 = (1− q)

∞
∑

k=0

q
k(α+1)(1− q

k+1)ρ1 .

Proof By taking the modulus and then using the well known Hölder’s inequality in
Lemma 2.1, we get

∣

∣

∣

∣

∣

∣

∣

qΛ(ζ1) + Λ(ζ2)

1 + q
−

1

(ζ2 − ζ1)

ζ2
∫

ζ1

Λ(ν)ζ1dqν

∣

∣

∣

∣

∣

∣

∣

≤
q
2(ζ2 − ζ1)

2

1 + q

1
∫

0

ϑ (1− qϑ)
∣

∣

ζ1D
2
q
Λ ((1− ϑ)ζ1 + ϑζ2)

∣

∣ dqϑ
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≤
q
2(ζ2 − ζ1)

2

1 + q





1
∫

0

ϑρ1dqϑ





1

ρ1
(

(1− qϑ)
ϱ1

∣

∣

ζ1D
2
q
Λ ((1− ϑ) ζ1 + ϑζ2)

∣

∣

ϱ1

dqϑ
)

1

ϱ1

=
q
2(ζ2 − ζ1)

2

1 + q





1
∫

0

ϑρ1dqϑ





1

ρ1
(

(1− qϑ)
ϱ1

∣

∣

∣

∣

ζ1D
2
q
Λ

(

(1− ϑ) ζ1 +mϑ
ζ2

m

)∣

∣

∣

∣

ϱ1

dqϑ

)
1

ϱ1

.

Since |ζ1D
2
q
Λ|ϱ1 is (α,m)-convex, we have

∣

∣

∣

∣

∣

∣

∣

qΛ(ζ1) + Λ(ζ2)

1 + q
−

1

(ζ2 − ζ1)

ζ2
∫

ζ1

Λ(ν)ζ1dqν

∣

∣

∣

∣

∣

∣

∣

≤
q
2(ζ2 − ζ1)

2

1 + q





1
∫

0

ϑρ1dqϑ





1

ρ1

×





∣

∣

ζ1D
2
q
Λ (ζ1)

∣

∣

ϱ1

1
∫

0

(1− qϑ)
ϱ1 (1− ϑα) dqϑ

+ m

∣

∣

∣

∣

ζ1D
2
q
Λ

(

ζ2

m

)∣

∣

∣

∣

ϱ1

1
∫

0

(1− qϑ)
ϱ1 ϑαdqϑ





1

ϱ1

=
q
2(ζ2 − ζ1)

2

(1 + q)

(

1

[ρ1 + 1]q

)
1

ρ1

(

v3
∣

∣

ζ1D
2
q
Λ (ζ1)

∣

∣

ϱ1

+mv4

∣

∣

∣

∣

ζ1D
2
q
Λ

(

ζ2

m

)∣

∣

∣

∣

ϱ1
)

1

ϱ1

,

where

v3 =

1
∫

0

(1− qϑ)ϱ1(1− ϑα)dqϑ

and

v4 =

1
∫

0

(1− qϑ)ϱ1ϑαdqϑ.

Hence the proof is done.

Corollary 2.7 By choosing α = 1 in inequality (2.12) becomes

∣

∣

∣

∣

∣

∣

∣

qΛ(ζ1) + Λ(ζ2)

1 + q
−

1

(ζ2 − ζ1)

ζ2
∫

ζ1

Λ(ν)ζ1dqν

∣

∣

∣

∣

∣

∣

∣

≤
q
2(ζ2 − ζ1)

2

(1 + q)

(

1

[ρ1 + 1]q

)
1

ρ1

(

v3
∣

∣

ζ1D
2
q
Λ (ζ1)

∣

∣

ϱ1

+mv4

∣

∣

∣

∣

ζ1D
2
q
Λ

(

ζ2

m

)∣

∣

∣

∣

ϱ1
)

1

ϱ1

,

where

v3 = (1− q)

∞
∑

k=0

q
k(1− q

k)(1− q
k+1)ρ1
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and

v4 = (1− q)

∞
∑

k=0

q
2k(1− q

k+1)ρ1 .

Corollary 2.8 By choosing α = m = 1 inequality (2.12) becomes
∣

∣

∣

∣

∣

∣

∣

qΛ(ζ1) + Λ(ζ2)

1 + q
−

1

(ζ2 − ζ1)

ζ2
∫

ζ1

Λ(ν)ζ1dqν

∣

∣

∣

∣

∣

∣

∣

≤
q
2(ζ2 − ζ1)

2

(1 + q)

(

1

[ρ1 + 1]q

)
1

ρ1
(

v3
∣

∣

ζ1D
2
q
Λ (ζ1)

∣

∣

ϱ1

+ v4
∣

∣

ζ1D
2
q
Λ (ζ2)

∣

∣

ϱ1

)
1

ϱ1
,

where

v3 = (1− q)
∞
∑

n=0

q
n(1− q

n)(1− q
n+1)ρ1

and

v4 = (1− q)

∞
∑

n=0

q
2n(1− q

n+1)ρ1

.

Remark 2.4 By choosing the limit as q → 1− and α = m = 1 in Theorem 2.4,
we have

∣

∣

∣

∣

∣

∣

∣

Λ(ζ1) + Λ(ζ2)

2
−

1

ζ2 − ζ1

ζ2
∫

ζ1

Λ(ν)dν

∣

∣

∣

∣

∣

∣

∣

≤
(ζ2 − ζ1)

2

2

(

1

ρ1 + 1

)
1

ρ1

(

1

(ϱ1 + 1)(ϱ1 + 2)

)
1

ϱ1 (

(ϱ1 + 1) |Λ′′(ζ1)|
ϱ1 + |Λ′′(ζ2)|

ϱ1
)

1

ϱ1 .

3 Conclusion
In this paper, we tried to represent the relation of integral calculus without the
limit known as quantum calculus. This relationship was presented in terms of error
estimates of Hermite-Hadamard inequalities. The established results are correlated
with the existing literature presented as remarks. Such estimates provide a future
direction for the readers to establish such estimates for other convexities.
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