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Abstract

Background
Prostate cancer (PCa) screening is not routinely conducted in men 55 and younger, although this age
group accounts for more than 10% of cases. Polygenic risk scores (PRSs) and patient data applied
towards early prediction of PCa may lead to earlier interventions and increased survival. We have
developed machine learning models to predict PCa risk in men 55 and under using PRSs combined with
patient data.

Methods
We conducted a retrospective study on 91,106 male patients aged 35 to 55 using the UK Biobank
database. Five gradient boosting models were developed and validated utilizing routine screening data,
PRSs, additional clinical data, or combinations of the three.

Results
Combinations of PRSs and patient data outperformed models that utilized PRS or patient data only, and
the highest performing models achieved an area under the receiver operating characteristic curve of
0.788. Our models demonstrated a substantially lower false positive rate (35.4%) in comparison to
standard screening using prostate speci�c antigen (60–67%).

Conclusion
This study provides the �rst preliminary evidence for the use of PRSs with patient data in a machine
learning algorithm for PCa risk prediction in men 55 and under for whom screening is not standard
practice.

Introduction
Prostate cancer (PCa) is the second most common cancer in men and responsible for 375,000 deaths
worldwide.(1) Although it presents an indolent clinical course, PCa still remains a major health burden
with mortality rates expected to rise 1.05% by 2040.(2) PCa is generally asymptomatic in the early and
later stages.(3, 4) Routine cancer screening can prevent future health complications by facilitating early
detection and allowing for timely intervention. The most common screening methods for PCa are the
digital rectal examination (DRE) and prostate-speci�c antigen (PSA) test. The largest conducted trial of
DRE and PSA screening demonstrated the usefulness of screening with a subsequent risk reduction in
PCa-related deaths of up to 49%.(5) However, there is controversy surrounding the effectiveness of PSA
screening as false positive results, overdiagnosis, and overtreatment are associated with use of this
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screening tool.(6) In 2012, the United States Preventive Services Task Force issued a recommendation
discouraging routine PCa screening in men regardless of risk factors, causing high-grade cases to
increase by 11.3%.(4) Further efforts are warranted to improve current PCa initial screening approaches
and methods.

Screening is generally recommended for men aged 55 and older, as the majority of PCa cases are
diagnosed in older men. Although the average age of PCa diagnosis is 66, with the highest incidence
seen in those older than 65,(7) more than 10% of cases occur in men 55 and younger(8) and current
research indicates that younger men diagnosed with high-grade PCa have an overall poorer prognosis.(9)
Developing an accurate screening tool to predict the risk of PCa for patients younger than the standard
screening age would therefore allow for earlier identi�cation of those younger patients at risk and
potentially reduce the public health burden.

The high heritability of PCa(10) demonstrates that genetic factors play a considerable role in its
development. Several genome-wide association studies have identi�ed over 170 single nucleotide
polymorphisms (SNPs) that are associated with an increased risk of PCa.(11) These genetic variants can
be combined to determine an individual’s polygenic risk score (PRS), and PRSs have been demonstrated
to have a large clinical utility potential for numerous diseases, including PCa.(12)

PCa is also associated with additional known risk factors, such as age and ethnicity,(13) that can be
routinely entered into electronic health records. PRSs along with patient data may be used for earlier and
more accurate predictions of PCa, leading to earlier interventions, increased survival, and reduced
healthcare costs. We have developed and validated machine learning (ML) models to predict PCa
diagnosis speci�cally in younger men (age ≤ 55) based on PRS and relevant patient data. This risk
assessment screening method is not contingent on the use of PSA or DRE results.

Methods

Data source
Data from 502,460 participants in the UK Biobank (UKBB) were analyzed in this retrospective study. UKBB
is a longitudinal electronic health record repository that incorporates clinical and genetic data. Patient
data from hospitals and UKBB assessment centres between January 2007 to June 2020 were used in this
study. Prior to use, passive patient data gathering and de-identi�cation was conducted in compliance
with the Health Insurance Portability and Accountability Act. The use of de-identi�ed retrospective data is
classi�ed as a non-human subject study and exempt from Institutional Review Board approval.

Cohort de�nition and Gold Standard
We included all male UKBB participants aged 35 to 55 who had genotypic data. The gold standard labels
for a positive PCa diagnosis were de�ned using data from two �elds: International Classi�cation of
Diseases, Tenth Revision, Clinical Modi�cation (ICD-10) diagnoses, and self-reported cancer code. The
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ICD-10 code used to de�ne PCa was C61 - Malignant neoplasm of prostate, and the self-reported cancer
code was 1044 - Prostate Cancer. Any patient �tting either of these two criteria was labeled as positive.
Those that had a PCa diagnosis prior to this visit were excluded. All other patients were considered
negative cases.

Genetic Data and PRS
The PRSs were created using the PRSice tool (https://www.prsice.info/quick_start/).(14) The polygenic
score (PGS) weights found on the PGS Catalog website
(https://www.pgscatalog.org/score/PGS000333/)(15) were used to generate the PRSs for every
participant. The genome wide association study for this set of weights was performed on a cohort of
European ancestry(11) for PCa among other traits. This set of weights were then trained and validated on
the FINRISK biobank cohort.(15) The study reported weights and summary statistics of 6,606,785 SNPs.
The UKBB cohort had a total of 784,256 variants out of which 541,268 variants overlapped with the
variants reported by the study.

Machine Learning Algorithm, Input Features, and Prediction
Models
We used XGBoost, a gradient boosting algorithm(16), implemented in Python. This algorithm was chosen
because it allows the analysis of contributions of individual features to the algorithm results. Five models
were developed: 1) PRSs only, 2) Features I: utilizing only age, father’s history, sibling history and
ethnicity, 3) PRSs + Features I, 4) Minimal Features: age, father’s history and body mass index (BMI), and
5) PRSs + Minimal Features. Four additional models were investigated: 1) Features II: Features I + BMI,
smoking status, glycated hemoglobin (HbA1c), C-reactive protein, and insulin-like growth factor 1, 2) PRS 
+ Features II, 3) Features III: Features II + number of same sex partners, diabetes diagnosis, and diabetes
medication and 4) PRS + Features III. Apart from HbA1c, these supplementary features did not improve
model performance and are not the main models of focus in our study. We partitioned the dataset into
training (60%), validation (20%), and hold-out testing (20%) splits prior to training of the model. The
validation set was used during training to validate the model performance. The hold out test set is not
seen by the model during the training or validation phase. Results are reported for the hold out test set.
The model was trained to predict PCa up to 11 years, the maximum time between the patient’s visit to the
health facility used for training and the �rst diagnosis of PCa in the data set. Missing values in the
continuous features were �lled as null, and missing values in categorical features were �lled with the
appropriate data code for “Unknown” or “No response”. Family history features are binary features,
created by checking the presence of the code for PCa in the appropriate columns for father and sibling
history. The hyperparameters of the model were tuned on the validation set using a 3-fold grid search
cross-validation approach. The hyperparameters that were tuned were eta (learning rate), gamma
(minimum loss reduction to split), and lambda (L2 regularization term). The number of estimators was
�xed to be 100, and the maximum depth to be 6.

Statistical analysis
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The performance of each model was evaluated on the 20% hold-out test set with respect to the area
under the receiver operating characteristic (AUROC), sensitivity, speci�city, diagnostic odds ratio, and
positive and negative likelihood ratios. The threshold for predicting labels was calculated by setting the
minimum sensitivity value to 0.800. 95% con�dence intervals for these metrics were constructed using
1000 bootstrapped samples. We conducted a SHapely Additive ExPlanations (SHAP) plot(17) to evaluate
feature importance.

Results

Subject characteristics
There were 502,460 UKBB participants before exclusion of any patients. The number of patients was
229,106 after excluding female patients. After exclusion of male patients over the age of 55 and those
with a prior PCa diagnosis, a total of 91,106 men were included in the study: 90,419 control participants
and 687 participants with a PCa diagnosis. Figure 1 represents the attrition chart. Table 1 summarizes
the patient characteristics for positive cases (participants with PCa diagnosis) and controls (participants
with no PCa diagnosis). Group differences were calculated with Fisher’s exact test. Age (p < 0.0001) and
black ethnicity (p < 0.0001), showed signi�cant group differences. Table 2 provides the input features for
the �ve ML models: PRS only, Features I (age, father’s history, sibling history and ethnicity), PRS + 
Features I, Minimal Features (age, father’s history and BMI), PRS + Minimal Features. Supplementary
Table 1 lists the input variables for the four additional ML models: Features II, PRS + Features II, Features
III, and PRS + Features III.
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Table 1
Demographic data and other patient characteristics for individuals with and without prostate cancer

(PCa) included in the hold out test set.
Demographics With PCa (n = 687) Without PCa (n = 90,419) P-value

Age 35–45 29 (4.2%) 23334 (25.8%) < 0.0001

45–55 658 (95.8%) 67085 (74.2%) < 0.0001

Ethnicity White 624 (90.8%) 82384 (91.1%) 0.978

Black 37 (5.4%) 2239 (2.5%) < 0.0001

Asian 13 (1.9%) 3377 (3.7%) 0.010

Mixed 7 (1.0%) 683 (0.8%) 0.375

Other 6 (0.9%) 1736 (1.9%) 0.048

BMI Mean 27.53 27.76 0.186

Range (Min-Max) 16.75–43.16 14.87–63.44 -

Smoking Status Current smoker 95 (13.8%) 13886 (15.4%) 0.369

Previous smoker 185 (26.9%) 24721 (27.3%) 0.901

Never smoker 406 (59.1%) 51413 (56.9%) 0.549

Did not answer 1 (0.1%) 399 (0.4%) 0.381

Table 2
Input variables for the �ve machine learning (ML) models: PRS only, Features I, PRS + Features I, Minimal

Features and PRS + Minimal Features.

  Machine Learning Model

Input Variables 1) PRS
only

2)
Features I

3) PRS + 
Features I

4) Minimal
Features

5) PRS + Minimal
Features

Genetic PRS   PRS   PRS

Demographics   Age Age Age Age

  Father’s
history

Father’s
history

Father’s
history

Father’s history

  Sibling
history

Sibling
history

   

  Ethnicity Ethnicity    

Clinical
Measurements

      BMI BMI

ML Algorithm Performance
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Figure 2 shows the ROC curves for the �ve models. Table 3 summarizes the performance metrics of all
�ve models and includes the AUROC, sensitivity, speci�city, diagnostic odds ratio, false positive rates, and
positive and negative likelihood ratios. The PRS + Features I and PRS + Minimal Features models’
performance were comparable and demonstrated the highest AUROCs, 0.788 (95% CI = 0.758–0.819) and
0.788 (95% CI = 0.757–0.820), respectively. At a sensitivity of 0.800, the PRS + Features I model
demonstrated a speci�city of 0.629 and the PRS + Minimal Features model a speci�city of 0.646. The
PRS + Minimal Features model had a false positive rate of 35.4%. The performance metrics of the four
additional models (Features II, PRS + Features II, Features III, and PRS + Features III) are presented in
Supplementary Table 2.

Table 3
Performance metrics of all �ve machine learning algorithm models. Abbreviations: Area under the
receiver operating characteristic (AUROC); diagnostic odds ratio (DOR); false positive rate (FPR),

likelihood ratio positive (LR+), likelihood ratio negative (LR-), polygenic risk score (PRS).

  Only PRS
scores

Features I
only

PRS + 
Features I

Minimal features
only

PRS + Minimal
features

AUROC 0.669

(0.634,
0.708)

0.750

(0.714,
0.781)

0.788

(0.758,
0.819)

0.751

(0.714, 0.784)

0.788

(0.757, 0.820)

Sensitivity 0.920

(0.877,
0.963)

0.807

(0.743,
0.870)

0.800

(0.736,
0.864)

0.807

(0.743, 0.870)

0.800

(0.736, 0.864)

Speci�city 0.295

(0.289,
0.302)

0.552

(0.545,
0.560)

0.629

(0.622,
0.636)

0.563

(0.556, 0.570)

0.646

(0.639, 0.653)

DOR 4.819

(4.229,
5.410)

5.151

(4.744,
5.557)

6.783

(6.382,
7.184)

5.377

(4.971, 5.784)

7.299

(6.897, 7.700)

LR+ 1.306

(1.244,
1.370)

1.802

(1.664,
1.953)

2.157

(1.986,
2.341)

1.846

(1.704, 2.000)

2.260

(2.081, 2.454)

LR- 0.271

(0.157,
0.466)

0.350

(0.252,
0.485)

0.318

(0.231,
0.438)

0.343

(0.248, 0.476)

0.310

(0.225, 0.426)

FPR 0.705

(0.698,
0.711)

0.448

(0.440,
0.455)

0.371

(0.364,
0.378)

0.437

(0.430, 0.444)

0.354

(0.347, 0.361)

Feature Importance
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The SHAP plot (Fig. 3) shows the features with the highest contribution to the XGB results for the PRS + 
Minimal Features model. Age, PRS, and father’s PCa history were identi�ed as the top features having a
positive association with PCa risk, whereas higher BMI was associated with lower risk. Sibling history and
ethnicity were also identi�ed as high-importance predictors in the Features I model and HbA1c in the
Features II model; however, inclusion of PRS resulted in a sharp decrease in their feature importance.
Supplementary Fig. 1 presents the SHAP plots of the Features I, PRSs + Features I, Features II, PRS + 
Features II model, and Minimal Features ML models.

Discussion

Summary of the Study
This is the �rst study demonstrating the utility of ML algorithms for PCa risk assessment in younger men
who have not reached the recommended age for routine PCa screening. We achieved the same accuracy
as the PRS + Features I model with fewer inputs (PRS + Minimal Features) and successfully created a risk
assessment tool for identifying high-risk individuals among men aged 55 and younger. PCa incidence in
men of this age group has been steadily increasing over the last few decades and is expected to continue
rising. Younger men with high grade PCa have a signi�cantly diminished overall survival and disease-
speci�c survival compared to older men.(18, 19) Our ML-based prediction model may aid in the early
detection of PCa in young at-risk individuals to prompt further examination and provide an opportunity
for early treatment and prevention options.

Signi�cance and impact of PRS in PCa prediction models
There are notable biological differences between early and late onset PCa, which can have signi�cant
clinical implications.(20) The early onset of PCa in younger men is thought to be largely attributed to
genetic factors.(21) This is consistent with the presence of PRS and paternal PCa history among the top
features of the ML prediction models. Although familial history is a known PCa risk factor, using genetic
data in the form of a PRS can provide a more objective risk pro�le that is not contingent upon accurate
information from an individual’s family members.(22) As research continues to identify new PCa
susceptibility loci,(11) we expect that future ML models will incorporate improved PRSs in parallel with
new genetic discoveries.

Importance of other features
When PRS was not included in our model, ethnicity was among the signi�cant features. PCa is known to
be disproportionately higher in black men,(23) which is consistent with the signi�cant overrepresentation
of black men with PCa cases in comparison to other racial groups in our study. Sibling history and HbA1c
were additional model features determined to be of high importance, although the addition of PRS to the
ML model substantially reduced their importance as predictors. Incorporation of PRS diminished the need
for these additional features and maintained high accuracy in our Minimal Features model. Interaction
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and overlapping effects between PRS and race/ethnicity, sibling history and HbA1c were not explored in
this study and warrant further investigation.

Age was identi�ed as the most important feature in predicting PCa, in agreement with established
literature.(7) Addition of other clinical data (BMI) also slightly improved performance metrics. BMI has
been reported to in�uence PCa aggressiveness, however the mechanisms are not yet known.(24–26) We
observed a negative association between BMI and PCa risk. Similar �ndings were reported by Giovannuci
et al. who found a lower risk of PCa in men with higher BMI only if they were younger (< 60 years old) or
had a family history of prostate cancer, and attributed their �ndings to the complex relationship between
obesity and various hormones.(27)

Comparison with other models
Previous studies in older men (ranging from 55–80 years) have reported that the inclusion of PRS data
improves the performance of different PCa prediction models.(28–31) Oh et al. identi�ed several
ethnicity-speci�c SNPs with moderate predictive performance (an AUROC of 0.637) in men 60 years and
older.(30) Aly et al. developed a baseline model in men 80 years and under based on age, PSA levels and
familial history and determined that the inclusion of PRS improved performance metrics (AUROC of 0.64
to 0.67) as well as reduced the number of required diagnostic biopsies.(31) Our models did not rely on the
use of PSA tests, which can be associated with false positive results leading to biopsy complications,(32)
particularly in younger men where poorly differentiated adenocarcinoma may impact the accuracy of
PSA as PCa risk predictor.(9) Our model demonstrated a substantial reduction in false positive rates for
ML PCa screening compared to using PSA serum tests: 35.4% for our PRS + Minimal Features model in
men aged 35–55, versus 60–67% for PSA screening in men aged 55–71.(33) This was also a
considerable improvement from the 70.5% false positive rate of our PRS only model, which is comparable
to current false positive rates of PSA screening in older men. Our ML models’ combination use of genetic
and patient data demonstrated increased accuracy in the identi�cation of PCa risk in a younger cohort of
men.

Study limitations
There are several limitations to this study. First, this work was conducted retrospectively, therefore we
cannot determine how this model would perform in prospective clinical practice. Additionally, PRS studies
that use cohorts of mainly European descent, as is the case with our dataset, may not be generalizable to
other populations and may affect risk prediction accuracy for individuals of non-European ancestry.(34)
Information on cancer aggressiveness (Gleason grades) was not available in our database and is an
aspect to investigate in future work. Other PCa risk assessment tools(35, 36) require PSA or DRE
measures, which were not available for direct comparison of risk assessment in this population. This
work provides promising preliminary evidence for PCa risk evaluation in younger men and warrants future
studies that should include validation of our ML algorithm in a prospective clinical setting and assessing
how patient care and outcomes are affected.
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Conclusion
ML algorithms which include PRS information and basic patient data can provide risk assessment for
PCa in a young population not routinely screened. Efforts to identify men at risk in earlier age groups can
help decrease the burden of PCa. Future work to support implementation of ML algorithms for PCa risk
assessment of younger men in clinical practice is needed.

Declarations
Additional Information

Acknowledgments 

We thank Misty M Attwood, PhD for her contribution to the research and development of this project.

Authors' contributions

AV designed the models and the computational framework, analyzed the data and contributed to the
writing of the manuscript. JM designed the models and the computational framework and analyzed the
data. MH and SS contributed to the writing and editing of the manuscript. AG and QM conceived of the
project idea. 

Ethics approval and consent to participate

Data were collected passively and de-identi�ed in compliance with the Health Insurance Portability and
Accountability Act, thus, this study was considered non-human subjects research and did not require
Institutional Review Board approval. 

Data availability

The data used in this study are available from UKBB and may be accessed by completing an application
via https://www.ukbiobank.ac.uk/register-apply/. The ML algorithm code developed in this study is
proprietary and not publicly available. 

Competing interests.

The authors declare no competing interests.

Funding information

The authors received no speci�c funding for this work.

References

https://www.ukbiobank.ac.uk/register-apply/


Page 11/15

1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics
2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries.
CA Cancer J Clin. 2021;71(3):209–49.

2. Ferlay J, Colombet M, Soerjomataram I, Mathers C, Parkin DM, Piñeros M, et al. Estimating the global
cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int J Cancer. 2019 Apr
15;144(8):1941–53.

3. Merriel SWD, Funston G, Hamilton W. Prostate Cancer in Primary Care. Adv Ther. 2018;35(9):1285–
94.

4. Leslie SW, Soon-Sutton TL, Sajjad H, Siref LE. Prostate Cancer. In: StatPearls [Internet]. Treasure
Island (FL): StatPearls Publishing; 2021 [cited 2021 Sep 9]. Available from:
http://www.ncbi.nlm.nih.gov/books/NBK470550/

5. van den Bergh RCN, Loeb S, Roobol MJ. Impact of Early Diagnosis of Prostate Cancer on Survival
Outcomes. Eur Urol Focus. 2015 Sep;1(2):137–46.

�. Palsdottir T, Nordstrom T, Karlsson A, Grönberg H, Clements M, Eklund M. The impact of different
prostate-speci�c antigen (PSA) testing intervals on Gleason score at diagnosis and the risk of
experiencing false-positive biopsy recommendations: a population-based cohort study. BMJ Open.
2019 Mar 30;9(3):e027958.

7. Rawla P. Epidemiology of Prostate Cancer. World J Oncol. 2019 Apr;10(2):63–89.

�. Siegel R, Naishadham D, Jemal A. Cancer statistics, 2012. CA Cancer J Clin. 2012;62(1):10–29.

9. Gupta S, Gupta A, Saini AK, Majumder K, Sinha K, Chahal A. Prostate Cancer: How Young is too
Young? Curr Urol. 2017 Jan;9(4):212–5.

10. Mucci LA, Hjelmborg JB, Harris JR, Czene K, Havelick DJ, Scheike T, et al. Familial Risk and
Heritability of Cancer Among Twins in Nordic Countries. JAMA. 2016 Jan 5;315(1):68–76.

11. Schumacher FR, Al Olama AA, Berndt SI, Benlloch S, Ahmed M, Saunders EJ, et al. Association
analyses of more than 140,000 men identify 63 new prostate cancer susceptibility loci. Nat Genet.
2018 Jul;50(7):928–36.

12. Lambert SA, Abraham G, Inouye M. Towards clinical utility of polygenic risk scores. Hum Mol Genet.
2019 Nov 21;28(R2):R133–42.

13. Leitzmann MF, Rohrmann S. Risk factors for the onset of prostatic cancer: age, location, and
behavioral correlates. Clin Epidemiol. 2012 Jan 5;4:1–11.

14. Choi SW, O’Reilly PF. PRSice-2: Polygenic Risk Score software for biobank-scale data. GigaScience
[Internet]. 2019 Jul 1 [cited 2021 Jul 29];8(7). Available from:
https://doi.org/10.1093/gigascience/giz082

15. Mars N, Koskela JT, Ripatti P, Kiiskinen TTJ, Havulinna AS, Lindbohm JV, et al. Polygenic and clinical
risk scores and their impact on age at onset and prediction of cardiometabolic diseases and
common cancers. Nat Med. 2020 Apr;26(4):549–57.



Page 12/15

1�. Chen T, Guestrin C. XGBoost: A Scalable Tree Boosting System. In: Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining [Internet]. San Francisco
California USA: ACM; 2016 [cited 2021 May 24]. p. 785–94. Available from:
https://dl.acm.org/doi/10.1145/2939672.2939785

17. Rodríguez-Pérez R, Bajorath J. Interpretation of Compound Activity Predictions from Complex
Machine Learning Models Using Local Approximations and Shapley Values. J Med Chem. 2020 Aug
27;63(16):8761–77.

1�. Lin DW, Porter M, Montgomery B. Treatment and survival outcomes in young men diagnosed with
prostate cancer: a population based cohort study. Cancer. 2009 Jul 1;115(13):2863–71.

19. Merrill RM, Bird JS. Effect of young age on prostate cancer survival: a population-based assessment
(United States). Cancer Causes Control CCC. 2002 Jun;13(5):435–43.

20. Salinas CA, Tsodikov A, Ishak-Howard M, Cooney KA. Prostate Cancer in Young Men: An Important
Clinical Entity. Nat Rev Urol. 2014 Jun;11(6):317–23.

21. Lange EM, Salinas CA, Zuhlke KA, Ray AM, Wang Y, Lu Y, et al. Early Onset Prostate Cancer Has A
Signi�cant Genetic Component. The Prostate. 2012 Feb 1;72(2):147–56.

22. Sun J, Na R, Hsu F-C, Zheng SL, Wiklund F, Condreay LD, et al. Genetic Score Is an Objective and
Better Measurement of Inherited Risk of Prostate Cancer than Family History. Eur Urol. 2013
Mar;63(3):585–7.

23. Edwards BK, Howe HL, Ries LAG, Thun MJ, Rosenberg HM, Yancik R, et al. Annual report to the nation
on the status of cancer, 1973–1999, featuring implications of age and aging on U.S. cancer burden.
Cancer. 2002 May 15;94(10):2766–92.

24. Haque R, Van Den Eeden SK, Wallner L, Richert-Boe K, Kallakury B, Wang R, et al. Association of Body
Mass Index and Prostate Cancer Mortality. Obes Res Clin Pract. 2014;8(4):e374–81.

25. Rodriguez C, Freedland SJ, Deka A, Jacobs EJ, McCullough ML, Patel AV, et al. Body Mass Index,
Weight Change, and Risk of Prostate Cancer in the Cancer Prevention Study II Nutrition Cohort.
Cancer Epidemiol Prev Biomark. 2007 Jan 1;16(1):63–9.

2�. Lavalette C, Cordina Duverger E, Artaud F, Rébillard X, Lamy P, Trétarre B, et al. Body mass index
trajectories and prostate cancer risk: Results from the EPICAP study. Cancer Med. 2020 Jul
8;9(17):6421–9.

27. Giovannucci E, Rimm EB, Liu Y, Leitzmann M, Wu K, Stampfer MJ, et al. Body Mass Index and Risk of
Prostate Cancer in U.S. Health Professionals. JNCI J Natl Cancer Inst. 2003 Aug 20;95(16):1240–4.

2�. Sipeky C, Talala KM, Tammela TLJ, Taari K, Auvinen A, Schleutker J. Prostate cancer risk prediction
using a polygenic risk score. Sci Rep. 2020 Oct 13;10:17075.

29. Black MH, Li S, LaDuca H, Lo M, Chen J, Hoiness R, et al. Validation of a prostate cancer polygenic
risk score. The Prostate. 2020 Nov 1;80(15):1314–21.

30. Oh JJ, Kim E, Woo E, Song SH, Kim JK, Lee H, et al. Evaluation of Polygenic Risk Scores for
Prediction of Prostate Cancer in Korean Men. Front Oncol. 2020 Oct 22;10:583625.



Page 13/15

31. Aly M, Wiklund F, Xu J, Isaacs WB, Eklund M, D’Amato M, et al. Polygenic Risk Score Improves
Prostate Cancer Risk Prediction: Results from the Stockholm-1 Cohort Study. Eur Urol. 2011
Jul;60(1):21–8.

32. Fenton JJ, Weyrich MS, Durbin S, Liu Y, Bang H, Melnikow J. Prostate-Speci�c Antigen-Based
Screening for Prostate Cancer: Evidence Report and Systematic Review for the US Preventive
Services Task Force. JAMA. 2018 May 8;319(18):1914–31.

33. Kilpeläinen TP, Tammela TLJ, Määttänen L, Kujala P, Stenman U-H, Ala-Opas M, et al. False-positive
screening results in the Finnish prostate cancer screening trial. Br J Cancer. 2010 Feb;102(3):469–74.

34. Cavazos TB, Witte JS. Inclusion of variants discovered from diverse populations improves polygenic
risk score transferability. HGG Adv. 2021 Jan 14;2(1):100017.

35. Ankerst DP, Straubinger J, Selig K, Guerrios L, De Hoedt A, Hernandez J, et al. A Contemporary
Prostate Biopsy Risk Calculator Based on Multiple Heterogeneous Cohorts. Eur Urol. 2018 Aug
1;74(2):197–203.

3�. Kranse R, Roobol M, Schröder FH. A graphical device to represent the outcomes of a logistic
regression analysis. The Prostate. 2008;68(15):1674–80.

Figures

Figure 1

Attrition chart for inclusion criteria of UK Biobank participants.
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Figure 2

Receiver operating characteristic (ROC) curves of the �ve machine learning algorithm models for risk
prediction of prostate cancer (PCa): PRSs only, Features I, PRSs + Features I, Minimal Features, and PRSs
+ Minimal Features.
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Figure 3

SHapely Additive ExPlanations (SHAP) plot of the PRS + Minimal Features model. Display of the top
predictor correlations and distribution of feature importance. Abbreviations: polygenic risk score (PRS);
body mass index (BMI).
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