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Abstract

Drying wood fiber is a complex, dynamic, highly nonlinear, and energy-intensive process involving
simultaneous heat and mass transfer. So, the theoretical modeling of wood fiber drying because wood
fiber shrinks anisotropically during a drying process is very complicated. The semi-theoretical and
empirical thin-layer drying models developed on a laboratory scale are a suitable option for examining the
drying kinetics of lignocellulose materials. In this study, drying kinetics of wood fibers were evaluated
using 18 semi-empirical models at three temperatures of 105 °C, 120 °C, and 135 °C, utilizing a halogen
moisture analyzer. The findings revealed that raising the temperature increased the drying constant while
decreasing the drying time of wood fibers. According to drying curves, no constant drying rate was
observed and all the drying process occurred in two falling drying rate periods. More specifically, despite
the high initial moisture content of wood fiber about 170% (based on dry weight), the wood fiber drying
process was mainly controlled by diffusion mechanism. The fitness of drying curves on semi-theoretical
and empirical models based on statistical parameters, including root mean square error (RMSE), sum of
square errors (SSE), and coefficient of determination (R2) showed that the Midilli et al. model had the
highest coefficient of determination and the lowest error percentage. Also, the moisture content was more
accurately predicted by ANN model than the Midilli et al. model.

Introduction

Wood cellulose fiber is the most abundant natural material on earth (Zhao et al. 2021). Cellulosic fibers
have various uses due to their renewability, recyclability, and biodegradability, including textiles,
papermaking, bio-based composites, polymer composites, and fiber-reinforced composites (Thyavilli et al.
2019). Adjusting moisture content in wood fiber through the drying period is a critical part of most wood
product manufacturing processes. Due to their high strength and affordable cost, wood fibers are
commonly used to reinforce wood-plastic composites (WPC) (Huang et al. 2006). Several studies have
examined the effect of the drying process on the quality of wood fibers, their dispersion in the plastic
matrix, and the mechanical characteristics of WPC (Huang et al. 2006; Chen et al. 2017). Accordingly, as
water evaporates in natural fibers, pores form during the mixing of wood and polymer fibers, resulting in
poor performance of wood-plastic composites (WPC). Therefore, natural fibers should be dried to about 1
% to 5 % before the mixing process (Huang et al. 2006). Drying cellulose fibers is a key step in the
manufacturing process of medium-density fiberboard (MDF). In this regard, the moisture content of the
fibers should be decreased to 8 to 12 % (based on dry weight) before pressing the fiber mat (Pang 2000).
Lindell and Stenstrom (2006) reported that the dryer section consumes much energy (more than 80%) in
paper mills. When utilizing biomass as fuel, the high moisture content of the biomass affects the
combustion strongly. For example, the calorific value of dried biomass is 3.5 MW h/ton, while wet
biomass is 2.2 MW h/ton (Rajendran 2017; Soni 2007). As aforementioned, drying wood and cellulose
fibers consumes significant energy in all related applications, and it significantly impacts the ultimate
pricing of products (Konopka et al. 2021). As a result, researchers and industry owners have always
considered strategies to recognize and manage the drying process of wood and cellulose fibers. Modeling
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the drying process of cellulose fibers is one technique to manage and identify the drying process. Several
investigations have been carried out to simulate and examine the drying kinetic of wood and cellulosic
fibers based on Fick's law of diffusion (Fernando et al. 2018; Chanpet et al. 2020; Autengruber et al. 2020;
Remond et al. 2005; Winberg et al. 2000; Salin 2008; Dincer 1998). Recently, several studies have shown
that the theoretical models do not adequately describe the fundamental aspects of the experimental
wood drying process. Remond et al (2005) indicated that when softwoods dry, a thin and dry shell
without free water develops quickly in the substrate near the wood surface, slowing the drying process
and releasing free water from the substrates. These substrates are still saturated with free water. It has
been shown by Wiberg and Moren (1999) that at the beginning of the drying process with high moisture
content, the moisture content in the central part of Sapwood decreases very rapidly without any moisture
gradients. The diffusion phenomenon cannot describe the moisture migration process gradient-free.

So, itis clear that when surface moisture evaporates quickly, the surface of the fibers also dries quickly,
resulting in the highest wood shrinkage. Moreover, the diameter of pores in the wood cell wall will be
decreased. Consequently, moisture cannot be transferred from the lower layers near the surface to the
fiber surface (Li and Zhao 2020). Some researchers believe that some of the interactions and
relationships between water and wood during the drying process at the microstructural scale are still
unknown. (Penttila et al. 2021; Zitting et al.2021). As a result, mathematical modeling of the drying
process of wood and cellulose fibers seems to be complex (Sander et al 2007). Due to shrinkage and
deformation in the cell walls of wood fibers during the drying process, the accuracy of the presented
mathematical models is questioned. The drying process of lignocellulosic materials, agricultural
products, and food has been modeled using semi-empirical and experimental models (Verma et al 1985;
Babalis et al 2006; Demir et al 2007; Doymaz 2007a; Gan and Pe. 2014). Fick's second law and its
variants, as well as Newton's law of cooling, are used to develop experimental and semi-empirical models.
They were primarily designed based on actual data collected in laboratory settings. Additionally, they are
less complicated and more accessible to comprehend than mathematical models (Wang and Singh 1976;
Hii et al 2009; Kumar et al 2012). Also, these models have shown a strong capacity to estimate and
forecast the drying kinetics of various materials (Ertekin and Firat 2017; Midili et al. 2002). Thin drying
layer modeling is one of the most effective approaches for analyzing the drying kinetics of hygroscopic
materials (Ademiluyi et al 2008; Kaleta et al 2013). Thin-layer drying means to dry as one layer of sample
particles or slices. It is assumed that there are the same air velocity and temperature throughout this thin
layer. (Kaur and Singh 2014; Lee and Kim 2009; Vega et al. 2007). The drying kinetics of bacterial
cellulose (Jatmiko et al 2017), Cotton fibers (Ghazanfari et al, 2006), and unbleached Kraft pulp sheet
(Kong et al 2020) have all been investigated using thin-layer drying models, with promising findings.

Artificial neural network is one of the newest techniques for modeling and forecasting complex dynamic
systems such as the wood drying process. Some researchers have utilized the ANNs to simulate the
drying process of wood and agricultural products (Dash et al. 2020; Chai et al. 2019; Saxena et al. 2022).
The neural network models have been utilized to simulate agricultural product drying kinetics as well as
the wood drying process. Previous research has shown that the artificial neural network (ANN) is more
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advantageous since it can precisely predict the drying kinetics and be easily applicable to non-linear
processes. (Saxena et al. 2018).

Previous studies have employed conventional and convective dryers to study the drying kinetics of wood
particles and cellulose fibers (Bry's et al. 2020; Arabi et al. 2017; Zarea Hosseinabadi et al. 2012). These
drying methods involve several drawbacks, including low energy efficiency and lengthy drying time,
especially in falling drying rate periods (Wang et al. 2007). Radiant dryers, such as halogens lamps,
deliver heat to the material more quickly than convective or conductive dryers. As a result, the drying time
decreases. The halogen hygrometer is a cutting-edge, quick, and precise method for detecting the
moisture content of various materials. Halogen hygrometers are now acknowledged as a scientific,
accurate approach and ASTM-accepted method in the industry (determination moisture of plastic
granules by loss in weight in designation D6980-12). This is the first study to use a halogen hygrometer
to describe the drying kinetics of wood fiber analysis. As a result, the research aims to explore the impact
of halogen drying temperature on kinetic drying of wood fiber and predict the moisture content of wood
fibers vs. time using artificial neural networks and thin drying layer models.

Materials And Method

Wood fibers were obtained from Arian Sina factory. In order to investigate the drying rate of wood fibers
above the FSP point, they were combined with water in equal weight ratios for 24 hours and then stored
in a sealed polyethylene bag at 3 ° Cto 5 ° C for seven days. The sample was mixed every day to ensure
that the wood fibers had a consistent moisture level. Finally, wood fibers with a moisture content of 170%
(based on dry weight) were subjected to the drying process.

Drying process

Moisture Analyzer Halogen model MB45, manufactured by OHAUS, was used to dry wood fibers at three
different temperatures: 105 ° C, 120 ° C, and 135 ° C. The MB45 has a sample capacity of 45g, with a
readability of 0.001g and repeatability of 0.015% (using a 10g sample). The heater type of MB45 is a
halogen lamp, and the operating temperature range is 50° C to 200° C in 1° C increments. The sample
was heated in halogen hygrometers by absorbing the IR radiation produced by the halogen lamp. The
weight difference before and after drying was used to determine the mass and moisture content of the
sample continuously throughout the drying process. Halogen hygrometers work on the Loss on Drying
(LOD) principle like oven dryers. However, there are various benefits such as quick drying time, ease of
use, and direct measurement without computations compared to the oven dryer. To investigate the drying
kinetics of wood fibers, 4 g of wet fibers were dispersed on a stainless steel tray placed on a precise and
sensitive scale in the dryer compartment. The fiber was distributed on a tray carefully to prevent the fibers
from accumulating at one point. After adjusting the temperature of the dryer chamber in the scope of this
study, the weight loss values of the samples at a specified time interval, every 30 seconds, were presented
and recorded online on the hygrometer display. The wood fibers continued to dry until the sample's
moisture content was nearly zero. The tests were performed three times for each temperature, and the

Page 4/23



mean moisture content measurements were used to design and fit the drying curves for each
temperature.

Drying kinetics of wood fibers

The moisture content of wood fibers was measured according to Equations 1 and 2.

(MM, 1
MR = (Mu - M,)

_ My ar 2
MR _( Mg )

Where MR is the moisture ratio (dimensionless), M, is the moisture content at time t (kg of solids/kg of
water), M, is the equilibrium moisture (kg of solids/kg of water), and My is the initial moisture content (kg
of solids/kg of water).

It should be noted that due to the insignificant value of M, in comparison with Mt and MO, it can be
saved. Therefore Eq. 1 can be simplified to Eq 2. (Ertekin and Firat 2017; Doymaz 2007a).

The drying rate of wood fibers was measured using Equation 3 (Ertekin and Firat 2017).

on - (et :

Where M, and M, 4; are the MC at t and MC at t+dt (kg moisture/kg dry matter), respectively, t is drying
time (s). Equation 2 was used to obtain the moisture ratio of wood fibers at each temperature. Then, the
experimental drying data of moisture ratio versus time was fitted to thin drying layer models using
MATLAB 2016 software (Table 2). The models listed in Table 2 have already been widely used to
investigate the drying kinetics of food, agricultural products, and municipal waste. The performance of
these models was examined through comparing the coefficient of determination (R?), sum squares of
error (SSE), and root mean squared error (RMSE) which were calculated in relation to 4 to 6, respectively.
The best thin drying layer model is the one with the smallest error value and the greatest coefficient of
determination.
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Where MR; and MR, are the predicted and experimental moisture ratios (MR) at iy, observation,
respectively. MR,,,, is the mean value of the explanatory variable, N is the number of observations, and n
is the number of model parameters

Artificial Neural network model

Artificial neural network (ANN), as a nonlinear modeling method, is generally used to model complex
physical phenomena such as the drying process of wood and lignocellulosic materials. The ANN
configuration used in this study was a Multi-layer perceptron (MLP) consisting of one input layer, one or
two hidden layers, and one output layer, as shown in Fig.1. The general form of the MLP output can be
expressed mathematically in equation 7.

n

z f(WjiX; + B

i=1

m
Y=g E—I—Zvj
=1

Where Y is the prediction value of the dependent variable; X; is the input value of ith independent variable;
W;; is the weight of the relationship between the ith input neuron and jth hidden neuron; Bj is the bias
value of the jth hidden neuron; vj is the weight of the relationship between the j;;, hidden neuron and
output neuron; 0 is the bias value of output neuron; g (.) and f (.) are the activation functions of output
and hidden neurons, respectively (Saxena et al. 2022). The input variables in the input layer were
temperature, and drying time and the output variables in the output layer were moisture ratio. For ANN
model building, the input data is split into 3 sets: training (70 %), testing (15 %), and validation (15 %).
The number of the hidden layer and the number of neurons in these layers were determined by trial and
error. The neural network was trained using the Levenberg-Marquardt (LM) learning algorithm. The
transfer function of the hidden layer and output layer were hyperbolic tangent sigmoid and linear,
respectively. The hyperbolic tangent sigmoid transfer function was as follows:
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Where f (x) and x are the output and input values of neurons, respectively.

The coefficient of determination (R?), mean squared error (MSE), and mean absolute error (MAE) were
used to predict the ANN performance. Equations 9 to 11 include the formulas for computing these
statistical characteristics.

n
- 9
MAPE = lz (—Iy”"' }r""""l) 100
n = Yexp.
n

1 : 10
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Where y exp is the actual data values, y pred is the predicted data values, is the average of the actual
values, and n is the number of data.

Results And Discussion
Drying curves

Fig. 3. depicts the drying behavior of wood fibers using a moisture analyzer at 105 °C, 120 °C, and 130 °C.
Accordingly, reaching the moisture content of wood fibers from 170 % (based on dry weight) to final
moisture content (near zero) took 18, 14, and 12 minutes for 105 °C, 120 °C, and 135 ° C, respectively. As
shown in Figure 3, the increase in the drying temperatures significantly decreased the drying times. In
halogen moisture analyzer ohaus MB Series, the halogen radiator emits infrared radiation (IR) in the short
wavelength range of 0.75-1.5 micrometers (near-infrared). When the halogen lamp is radiated toward the
product, it is extremely heated and its thermal gradient within the material significantly increases in a
short period. Since the halogen radiant energy can be easily passed through the air without heating the
ambient air, this energy just heats the product. Thus, the internal part of materials would be warmer than
the surrounding air and the rate of heat transfer is greater as compared to the hot air drying technique
(Younis et al. 2018; Hung et al. 2021).Therfore, IR drying technology has the advantages of high energy
efficiency, short drying time, uniform heating of materials, and low energy costs (Hung et al. 2021). The
changes in drying rates versus drying time are shown in Fig. 4. Accordingly, the drying rate increased with
an increase in drying temperature. Also, the drying speed was quick at the beginning of the drying
operation (especially at a higher temperature), but the drying rate was slow by passing the time. It is due
to a lack of sufficient moisture at the end point of the drying process. The relationship between drying
rate and moisture content at different drying temperatures is shown in Fig. 5. Accordingly, the three drying
periods were observed, including preheating period (A) and the first and second drying rate periods (B and

Page 7/23



C). The constant drying rate period was not found; however, the initial moisture content of wood fibers
was about 170% (based on dry weight). The morphological structure of fibers and drying techniques can
significantly affect the drying process. When wood fibers are heated quickly by a moisture analyzer, many
morphological changes might occur in their structures. The microstructure and rheological behaviour of
the wood cell wall is closely intertwined with its moisture properties. Since, external layers of wood fibers
are rapidly shrink, First of all, a thin and dry shell was formed near the surface of fibers that it create
many barriers for migration moisture from internal layers to ones. (Li and Zhao 2020). Due to these
morphological interactions, even if there is a lot of free water in the bottom layers, the rate of migration of
water molecules from the interior to the surface is less than the rate of vaporization from the surface into
the environment. Therefore, it is extremely difficult to find a constant drying rate period during the drying
process of wood fibers. For lignocellulosic materials, constant drying rate periods are often extremely
short or not seen at all (Kong et al. 2020; Arabi et al. 2017; Zarea Hosseinabadi et al. 2012). The heat and
mass transfer in the drying process of solid material can be defined based on bio number (Sander et al.
2010). The constant drying is observed for solid materials with a bio number less than 0.1, while the bio
number value for lignocellulosic materials was reported as more than 0.2 (Soni 2007). It means that the
drying process and mass transfer parameters for biomass materials were mostly controlled by internal
resistance (Dincer 1998). According to Fig 5, the drying process almost completely occurred in the first
and second falling rate periods (B and C). The first falling drying rate happened when wet spots on the
surface gradually diminished until the whole surface was dried. As a result, the surface moisture of the
fibers decreased over time while the surface temperature increased. During this period, the drying process
was controlled by moisture diffusion and internal resistances inside wood fibers. When the surface was
totally dried, the second falling drying rate started at point C, and the dry surface was transmitted to the
layers underneath the surface. According to Fig 5, about 60% of the total drying time occurred during this
period. In this phase, the drying rate was independent of drying conditions such as temperature and
moisture content. The moisture transfer might be due to liquid diffusion, capillary movement, and vapor
diffusion. Also, the drying time was usually greater than the first falling drying rate period.

Drying curves fitting

The nonlinear regression approach and MATLAB 2016 software was used to fit moisture content data at
various drying temperatures to the thin-layer drying models presented in Table 2. The regression
constants (a, b, ¢, d...,), the drying constants (k), and the statistical indicators (R2, SSE, and RMSE) of the
thin-layer drying models are shown in tables 3, 4, and 5 for 105 °C, 120 °C, and 135°C, respectively.
Accordingly, The Midilli et al 2002 model showed the best fitting performance for describing kinetic drying
of wood fibers at temperatures ranging from 90°C to 120°C (Tables 2,3, and 4). The Midilli et al. model is
composed of an exponential and a linear term describing the moisture ratio as a function of drying time
(Ertekin and Firat 2017). It successfully predicted the drying characteristics of poplar wood particles
(Zarea Hosseinabadi, 2012) and cassava pulp (Charmongkolpradit and Luampon 2017).

ANN model
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A multilayer perceptron consisting of layers with one or more neurons with different activation functions
was employed to optimize the perceptron network. MLP model was developed based on temperature and
drying time as input variables and moisture content as an output variable. The number of neurons in the
hidden layer is variable (x). Experimental data were separated into three groups for the artificial neural
network modeling, including training (70%), validation (15%), and testing (15%). After training and testing
the network, the findings revealed that topology 2-5-1 with hyperbolic tangent sigmoid transfer functions
provided the greatest training for content moisture modeling. The R values for MR for neural network
training, validation, and testing data are shown in Fig. 6. In the training, validation, and testing data, as
well as the total data, the R-values for MR were 0.99956, 0.99979, 0.99947, and 0.99958, respectively.
According to Table 5, the total data in the artificial neural network for MR prediction had an absolute
mean percent error (MAPE) of 2.53%. The artificial neural network showed a higher capacity to predict the
moisture content of wood fibers than regression and thin-layer drying models, as evidenced by the high
coefficient of determination and low error percentage between experimental and predicted data. Fig.7.
depicts experimental data against predicted data obtained based on ANN models. Accordingly, the neural
network predicted the experimental data (R?) more accurately than Midilli et al, model. Artificial neural
networks are unique machine learning algorithms that mimic the human brain and find the relationship
between the data sets. Therefore, ANN can learn from the past data and improve its performance based
on previous experience and training. Also, the designed program can adapt to new conditions in case of
data change. These two factors of generalizability and adaptability distinguish the artificial neural
network from other modeling methods and allow it to provide better results than other modeling methods.
Many researchers have utilized ANNSs to predict the drying process of wood and lignocellulosic materials.
These studies employed MAPE, MSE, and R2 statistical parameters as the main comparison between
experimental and predicted data. The findings from the current study are consistent with results from
previous studies (Saxena et al. 2022). Overfitting is the most common issue in neural network training.
This issue occurs when a neural network only performs well on training data and does not provide good
results for other data sets. A periodic epoch performance chart for a neural network is shown in figure 8,
when the error due to the validation data stays constant for six consecutive epochs, the neural network
computation stops. As shown in Fig 8, after 25 epochs, the error was fixed in the following six
consecutive periods, and the forecasting and data processing was stopped. This showed the network has
been well-trained, validated, and tested.

Conclusion

The wood fibers are stretched during the drying process. This makes the wood fibers shrink more,
creating small cracks in wood fibers. Moreover, moisture outlets will be blocked. As a result, applying
mathematical models to analyze the drying kinetics of hygroscopic materials is complicated and
challenging. Thin-layer drying of materials is a valuable tool for understanding the fundamental
mechanism of moisture transport in hygroscopic materials since they are based on laboratory settings.
Therefore, it is important to explore the thin-layer modeling approach for estimating the drying kinetics of
wood fiberat 105 ° C, 120 ° C, and 135 ° C. The drying process was carried out with a halogen moisture
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analyzer. A moisture analyzer is a device that determines the moisture content with the loss on drying
method and consists of a weighing and halogen heating unit. The results showed that the drying
constant increased with increasing temperature while the drying time of wood fibers decreased. Despite
the high moisture content of wood fibers, about 170% db. (above FSP), the constant drying rate period
was not observed during the drying period, and the whole drying process took place at a falling drying
rate period. The performance of thin drying layer models was investigated based on statistical
parameters including R2, SSE, and RMSE. The findings showed the Midili et al, 2002 model presented the
best fit for the drying processes of the wood fibers. Moreover, the ANN model was more productive and
precise than thin-layer drying methods for predicting changes in the moisture content of wood fibers. The
results showed a moisture analyzer is a reliable tool for predicting moisture changes and drying kinetic of
lignocellulose materials. As a result, as an innovative, rapid, and accurate approach, halogen radiation
can be used to assess the quantity of moisture content and analyze the drying kinetics of lignocellulosic
materials, particularly in MDF and particleboard manufacturing process.
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Table 1. Mathematical models applied to drying curves.
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Model name

Lewis (Newton)
Henderson and Pabis
Logarithmic

Modified Midilli et al.-llI

Two-term

Noomhorm and Verma

Modified Henderson and
Pabis

Two-term exponentia
Modified two term-V

Page

Modified Page-lV
Hii et al

Kaleta et al. I
Modified Page ll
Modified page .l
Demir et al.
Wang and Singh

Midilli et al.

Model equation

MR = exp(-kt)

MR = a exp(-kt)

MR = a exp(-kt) +c

MR = a exp(-kt) + ct

MR = a exp(-kq t) + b exp(-k; t)

MR = a exp(-k; t) + b exp(-k, ) + ¢

MR = a exp (-k; t) + b exp(-ky, t) +
exp(-ks 1)

MR = a exp(-kt) + (1 - a) exp(-akt)
MR = a exp(-kt) + (1 - a) exp(-gt)
MR = exp (-kt")

MR = a exp(-kt")

MR = a exp (-kt" ) + b exp(-gt")

MR = a exp(-kt") + (1 - a)exp(-gt")
MR = exp[-(kt) "]

MR = a exp[-(kt) "]

MR = a exp[-(kt) "] + b

MR = 1 + at + bt2

MR = a exp(-kt" ) + bt

Reference

Ghazanfari et al,2006
Kaur and Singh, 2014
Gan PL and Poh, 2104
Kaur and Singh ,2014

Kumar et al., 2014

Kaleta and Gornicki
2010

Erbay and Icier, 2009

Lee and Kim, 2009
Verma et al.1985

Doymaz, 2007a
Babalis et al., 2006

Hii et al., 2009

Kaleta et al 2013
Vega et al, 2007
Ertekin and Firat 2017
Demir et al 2007
Wang and Singh 1978

Midilli et al., 2002

Table 2. Statistical results and drying constant of mathematical models at different temperature drying.
(T=105C).
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T Model R2 Constant Parameters RSME SSE
105  F(t) = exp(kt) 0.522  k=0.001095 0.3785  17.91
F(t) = a exp(kt) 0.986 a =2.004, k =0.002016 0.06489 0.5221
F(t)=a exp(kt) +c 0.9991 a=2.352,k=0.00129, ¢ = -0.4487 0.01638  0.03298
F(t)=a exp(kt) +ct 0999  a=1.909,k =0.001517,c = 0.01715 0.03619
-0.0002181
F(t)=a exp(kit) +¢  0.9991 a=58.78, k, =0.0007727, k, 0.01646  0.03304
exp(-kot) =0.0007472, ¢ =-56.89
F(t)=a exp(kit) +b 09991 a=2.361,k; =0.00126,k, =0.01683,  0.01627 0.03205
exp(k,t) +c ¢ =0.02563, d =-0.471
F(t)=a exp(k4t) +c 0.9981 a=20.62, k; =0.0002808, k; = 0.02422 0.07037
exp(k,t) +d exp(Kst) 0.003502, ks = 0.0002256 ¢
=0.5778,d =-19.28

F(t)=a exp(kt) #(1-  0.5598 a=18.57,k, =0.0003812, k, 0.3655  16.43
a) exp(-akst) =1.902e-05
F(t)=a exp(kt) +(1-a) 0.9229 a=2.035, k =0.002048, g = 0.9649 0.153 2.878
exp(-gt)
F(t)=exp(i") 0991  k=2.326e-08,n =2.617 0.05198 0.335
F(t)=a exp(kt") 0.9955 a=1.827,k=0.0002737,n =1.298 0.03695 0.1679

= g - 09317 a=1.787,k=0.0001936,g=0.9649, 0.1445 2.548
F(t)=a exa( kt") +(1 2 21348
a) exp(-gt")

= ) 0.9993 a=1.571,k=7.104, ¢ =-0.001415,n 0.02559 0.02934
F(t)=a exp(kt") +bt 20507
F(t)=1+at+bt? 0.6887 a=0.00017,b=-9.287e-07 0.3061  11.62
F(t)=a expl-(kt)"] 0.9955 a=1.827,k=0.001797, n =1.298 0.03695 0.1679
F(t)= expl(kt)"] 07135 k=0.001215, n = 3.284 02925  10.61

= _(IF\ 0.9991 a=2.359,k=0.001285,c=-0.4543,n 0.02644 0.03298
F(t)=a exp[-(kt)"] +b 20,0974

Table 3. Statistical results and drying constant of mathematical models at different temperature drying.
(T=120C).
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T R CONSTANT RSME SSE
120 f(t) = exp(-kt) 0.5283  k =0.001879 0.3961 102
f(t) = a exp(t) 0.9834 a=2.03,k = 0.004077 0.07483 0.3584
F(t)=a exp(kt) +c 0.9953 a =2.33,k =0.002757, c =-0.3846 0.0395  0.0183
F(t)=a exp(kt)+ct 0.9951 a=1.95k=0.003183, c= 0.04088 0.1053
-0.000384
F(t)=a exp(-kqt) +c 0.9956 a=-21.48,k; =0.001749, k, = 0.03921 0.01533
exp(-kyt) 0.001879, ¢ = 23.44
F(t)=a exp(-kqt) +c 0.9955 a=0.02299, k, =1.886, k, = 0.03996 0.09742
exp(Kot) +d 0.002709 ¢ = 2.335, d =-0.3999
F(t)=a exp(kqt) +c 0.9896 a=-0.1399, k; =0.003085, k, = 0.06121 0.2248
exp(k,t) +d exp(- -7.165e-05, k3= 0.0022, ¢ =-0.5655,
Kst) d=2.515
F(t)=a exp(k{t) +(1-  0.5332  a=10.8,k;= 0.001431, k, 0.4003  10.09
a) exp(-akyt) =0.0001278
F(t)=a exp(kt) +(1-  0.6409 a=23.93,k =-0.001424, g = 03511  7.766
a) exp(-gt) -0.001497
F(t)=exp(ki") 0.6957 k=1.629¢-08,n =2.979 03207  6.581
F(t)=a exp(kt") 0.9938 a=1.866,k=0.0006577,n=1.305 0.0462  0.1345
- et (1 - 0.5595 a=0.5306, k =0.0008578, g = 0.392 9.525
Ft)=a expCkt")+(1 0.0008555, n = 1.137
a)exp(-gt")
— 14N 0.9993 a=1.683,k=-0.0001672,c 0.03104 0.010839
Ff)=a exp(kt") + bt =.0.005202, n = 1.289
F(t)=1+at+bt? 0.6606 a= 0.0001447,b =-3.198e-06 0.3387  7.34
F(t)=a expl-(kt)"] 0.9938 a=1.866, k= 0.003653, n =1.305 0.0462  0.1345
F(t)= expl-(kt)"] 0.6966 k =0.002446,n = 3.258 0.3202 6.562
_ L+\N 0.9957 a=2.163,k =0.003044, c =-0.2463, 0.03875 0.09308
F(t)=a exp[-(kt)"] +c o -1088

Table 4. Statistical results and drying constant of mathematical models at different temperature drying.
(T=1350C).
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135

Table. 5. Evaluation the performance of neural network using statistical parameters

F(t) = exp(-kt)

F(t) = a exp(-kt)
F(t)=a exp(kt) +c
F(t)=a exp(kt) +ct
F(t)=a exp(-kqt)+c
exp(-kot)

F(t)=a exp(-kqt) +c
exp(kyt) +d

F(t)=a exp(-kqt) +c
exp(-kyt) +d exp(-kst)
F(t)=a exp(-kqt) +(1-a)
exp(-akyt)

F(t)=a exp(kt) +(1-a)
exp(-gt)

F(t)=exp(kt")
F(t)=a exp(kt")

F(t)=a exp(-kt") +(1-a)
exp(-gt")

F(t)=a exp(-kt") +bt
F(t)=1+at+bt?
F(t)=a exp[-(kt)"]

F(t)= exp[-(kt)"]

F(t)=a exp[-(kt)"] +c

0.5162
0.9779
0.9955
0.9948

0.9899

0.9923

0.9969

0.5242

0.8228

0.6787

0.9985

0.835

0.9992

0.6357

0.9985

0.6794

0.9992

CONSTANT

k =0.003319

a=2.105,k =0.007026

a =2.466, k =0.004556, c =-0.4479

a=2.023,k=0.00535,c=
-0.0007366

a=156.1,k ;=0.0134, k, = 0.01358,
c=-154.3

a = 42.25,k, = 0.01385,k, =
0.01444, ¢ = -40.38, d = 0.08261

a =20.54,k; =0.01244,k, =

0.01039, k; = 0.01324,c =1.814,d
=-20.37

a=19.77,k, =0.002262 k, =
0.0001113

a=2.306,k =0.007674, g =0.9575

k=2.107e-08, n = 3.226

a=1.92,k=0.0006959,n=1.43

a=1.938,k=0.001101,c =
-0.0001875,n =1.33

a = 3.394e-05,b = -8.057e-06
a=1.92,k=0.006198,n =1.43
k =0.004207, n = 3.565

a=2.031,k =0.005811,c =
-0.09174,n =1.313

RSME
0.4435
0.09605
0.04369
0.04732

0.06657

0.05903

0.03795

0.4507

0.2752

0.3659

0.02557

0.269

0.01871

0.3896

0.02557

0.3655

0.01848

SSE
8.064
0.369
0.07445
0.08732

0.1684

0.1289

0.05183

7.921

2.953

5.356

0.0255

2.75

0.0113

6.072

0.0255

5.343

0.01298
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Factor Parameter
training
MC validation
testing
All data

R

0.99998
0.99998
0.99993
0.99997

MSE MAPE
0.000011
0.000014
0.00005

2.53

Figures

Figure 1

Moisture Analyzer, MB45 AM (ohaus.com)
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Figure 2

Schema of artificial neural network for prediction moisture content of wood fiber.
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Figure 3

Moisture content versus drying time at different halogen drying temperature.
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Drying rate versus drying time at different halogen drying temperature.
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Drying rate versus moisture content at different halogen drying temperature
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Regression plots of the developed ANN model for (a) the training data set, (b) the validation data set, (c)
the testing data set, and (d) All data.
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Comparison of ANN predictions and experimental data
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Figure 8

Neural network performance by period (epoch) for training, validation, and testing data.

Page 23/23



