1. Clark, D. L. Chemical Complexities of Plutonium. Los Alamos Sci. 364–381 (2000).
2. Morss, L. R., Edelstein, N. M. & Fuger, J. The Chemistry of the Actinide and Transactinide Elements. (Springer, 2010).
3. Haire, R. G. Californium. in The Chemistry of the Actinide and Transactinide Elements (eds. Morss, L. R., Edelstein, N. M. & Fuger, J.) 1499–1576 (Springer, 2010).
4. Maly, J., Sikkeland, T., Silva, R. & Ghiorso, A. Nobelium: Tracer chemistry of the divalent and trivalent ions. Science (80-. ). 160, 1114–1115 (1968).
5. Silva, R. J. Fermium, Mendelevium, Nobelium, and Lawrencium. in The Chemistry of the Actinide and Transactinide Elements (eds. Morss, L. R., Edelstein, N. M. & Fuger, J.) 1621–1652 (Springer, 2010).
6. Mikheev, Ν. Β., Auerman, L. Ν., Rumer, I. A., Kamenskaya, A. N. & Kazakevich, Μ. Ζ. The anomalous stabilisation of the oxidation state 2+ of lanthanides and actinides. Russ. Chem. Rev. 61, 990–998 (1992).
7. Langeslay, R. R., Fieser, M. E., Ziller, J. W., Furche, F. & Evans, W. J. Synthesis, structure, and reactivity of crystalline molecular complexes of the {[C5H3(SiMe3)2]3Th}1− anion containing thorium in the formal +2 oxidation state. Chem. Sci. 6, 517–521 (2014).
8. Woen, D. H. & Evans, W. J. Expanding the + 2 Oxidation State of the Rare-Earth Metals, Uranium, and Thorium in Molecular Complexes. Handb. Phys. Chem. Rare Earths 50, 337–394 (2016).
9. Su, J. et al. Identification of the Formal +2 Oxidation State of Neptunium: Synthesis and Structural Characterization of {NpII[C5H3(SiMe3)2]3}1−. J. Am. Chem. Soc. 140, 7425–7428 (2018).
10. Windorff, C. J. et al. Identification of the Formal +2 Oxidation State of Plutonium: Synthesis and Characterization of {PuII[C5H3(SiMe3)2]3}−. J. Am. Chem. Soc. 139, 3970–3973 (2017).
11. Straub, M. D. et al. A Uranium(II) Arene Complex That Acts as a Uranium(I) Synthon. J. Am. Chem. Soc. 143, 19748–19760 (2021).
12. Lapierre, H. S., Kameo, H., Halter, D. P., Heinemann, F. W. & Meyer, K. Coordination and Redox Isomerization in the Reduction of a Uranium(III) Monoarene Complex. Angew. Chemie Int. Ed. 53, 7154–7157 (2014).
13. Murillo, J. et al. Actinide arene-metalates: ion pairing effects on the electronic structure of unsupported uranium–arenide sandwich complexes. Chem. Sci. 12, 13360–13372 (2021).
14. Dau, P. D., Shuh, D. K., Sturzbecher-Hoehne, M., Abergel, R. J. & Gibson, J. K. Divalent and trivalent gas-phase coordination complexes of californium: Evaluating the stability of Cf(II). Dalt. Trans. 45, 12338–12345 (2016).
15. Schöttle, C. et al. Nanosized Gadolinium and Uranium - Two Representatives of High-Reactivity Lanthanide and Actinide Metal Nanoparticles. ACS Omega 2, 9144–9149 (2017).
16. Marsh, M. L. et al. Electrochemical Studies of Selected Lanthanide and Californium Cryptates. Inorg. Chem. 58, 9602–9612 (2019).
17. David, F., Samhoun, K., Guillaumont, R. & Edelstein, N. Thermodynamic properties of 5f elements. J. Inorg. Nucl. Chem. 40, 69–74 (1978).
18. Bard, A. J. Standard Potentials in Aqueous Solution. (International Union of Pure and Applied Chemistry, 1985).
19. Silver, M. A. et al. Electronic Structure and Properties of Berkelium Iodates. J. Am. Chem. Soc. 139, 13361–13375 (2017).
20. Wild, J. F. et al. Studies of californium(II) and (III) iodides. J. Inorg. Nucl. Chem. 40, 811–817 (1978).
21. White, F. D. et al. Molecular and Electronic Structure, and Hydrolytic Reactivity of a Samarium(II) Crown Ether Complex. Inorg. Chem. 58, 3457–3465 (2019).
22. Poe, T. N., Molinari, S., Justiniano, S., McLeod, G. M. & Albrecht-Schönzart, T. E. Structural and Spectroscopic Analysis of Ln(II) 18-crown-6 and benzo-18-crown-6 Complexes (Ln = Sm, Eu, Yb). Cryst. Growth Des. 22, 842–852 (2022).
23. Brown, B. D. et al. The preparation and crystallographic properties of certain lanthanide and actinide tribromides and tribromide hexahydrates. J. Chem. Soc. A Inorganic, Phys. Theor. 67, 1889–1894 (1968).
24. Xémard, M. et al. Divalent Thulium Crown Ether Complexes with Field-Induced Slow Magnetic Relaxation. Inorg. Chem. 58, 2872–2880 (2019).
25. Merzlyakova, E. et al. 18-Crown-6 Coordinated Metal Halides with Bright Luminescence and Nonlinear Optical Effects. J. Am. Chem. Soc. 143, 798–804 (2021).
26. Wang, S., Alekseev, E. V., Depmeier, W. & Albrecht-Schmitt, T. E. Surprising coordination for plutonium in the first plutonium(III) borate. Inorg. Chem. 50, 2079–2081 (2011).
27. Polinski, M. J. et al. Differentiating between trivalent lanthanides and actinides. J. Am. Chem. Soc. 134, 10682–10692 (2012).
28. Mironov, Y. V., Cody, J. A., Albrecht-Schmitt, T. E. & Ibers, J. A. Cocrystallized mixtures and multiple geometries: Syntheses, structures, and NMR spectroscopy of the Re6 clusters [NMe4]4[Re6(Te(8-n)Se(n))(CN)6] (n = 0-8). J. Am. Chem. Soc. 119, 493–498 (1997).
29. Rogers, R. D., Rollins, A. N., Etzenhouser, R. D., Voss, E. J. & Bauer, C. B. Structural Investigation into the Steric Control of Polyether Complexation in the Lanthanide Series: Macrocyclic 18-Crown-6 versus Acyclic Pentaethylene Glycol. Inorg. Chem. 32, 3451–3462 (1993).
30. Cary, S. K. et al. A series of dithiocarbamates for americium, curium, and californium. Dalt. Trans. 47, 14452–14461 (2018).
31. Sperling, J. et al. Pressure-Induced Spectroscopic Changes in a Californium 1D Material Are Twice as Large as Found in the Holmium Analog. Inorg. Chem. 59, 10794–10801 (2020).
32. Peterson, J. R., Fellows, R. L., Young, J. P. & Haire, R. G. Stabilization of californium(II) in the solid-state – californium dichloride, 249CfCl2. Radiochem. Radioanal. Lett. 31, 277–282 (1977).
33. Peterson, J. R. & Baybarz, R. D. The stabilization of divalent californium in the solid state: Californium dibromide. Inorg. Nucl. Chem. Lett. 8, 423–431 (1972).
34. Young, J. P., Vander Sluis, K. L., Werner, G. K., Peterson, J. R. & Noé, M. High temperature spectroscopic and X-ray diffraction studies of californium tribromide: Proof of thermal reduction to californium(II). J. Inorg. Nucl. Chem. 37, 2497–2501 (1975).