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Abstract
Multiple primary lung cancer (MPLC) with lymph node metastasis (LNM) is a rare phenomenon of multifocal lung cancer. The genomic landscapes of MPLC
and the clonal evolution pattern between primary lung lesions and lymph node metastasis haven’t been fully illustrated. We performed whole-exome
sequencing (WES) on 52 FFPE (Formalin-fixed Paraffin-Embedded) samples from 11 patients diagnosed with MPLC with LNM. Genomic profiling and
phylogenetic analysis were conducted to infer the evolutional trajectory within each patient. The top 5 most frequently mutated genes in our study were TTN
(76.74%), MUC16 (62.79%), MUC19 (55.81%), FRG1 (46.51%), and NBPF20 (46.51%). For 81.82% of patients (9/11), most genetic alterations harbored by
pulmonary tumors were mutually exclusive, suggesting their heterogenous origins. Individually, the genetic profile of lymph node metastatic lesions
overlapped with that of multiple lung cancers in different degrees but are more genetically related to specific pulmonary lesions. SETD2 was a potential
metastasis biomarker of MPLC. The mean putative neo-antigen number of the primary tumor (646.5) is higher than that of lymph node metastases (300, p = 
0.2416). Primary lung tumors and lymph node metastases are highly heterogenous in immune repertoires. Our findings portrayed the comprehensive genomic
landscape of MPLC with LNM. We characterized the genomic heterogeneity among different tumors and offered novel clues of the clonal evolution between
MPLC and their lymphatic metastases, thus advancing the treatment strategies and preventions of MPLC with LNM.

Introduction
According to the newest data published in 2022(1), the lung cancer death rate is 21% worldwide, ranking the first in both genders among all cancer types. Over
350 people die of lung cancer every day. Lung cancer brings huge burdens to public healthcare annually(2, 3).

In recent decades, multifocal lung cancer has been an increasingly common scenario in clinical practice(4, 5). It is reported that up to 15% of lung cancer
patients developed two or more lesions(6), among which multiple primary lung cancer (MPLC) is very common(7). MPLC indicates patients who developed
two or more lung tumors that were originally independent, and the multiple pulmonary lesions can be synchronous or metachronous(8, 9). In 2016, the
International Association for the Study of Lung Cancer (IALSC) classified multifocal lung cancer into 4 categories: (1) Second primary cancer (2) Separate
Tumor Nodules (Intrapulmonary metastasis, IPM) (3) Multifocal Lung Adenocarcinoma with Ground Glass/ Lepidic (GG/L) Features and (4) Diffuse
Pneumonic Type(10), among which second primary cancer and multifocal GG/L are commonly acknowledged as MPLC by clinicians. So far, there are no
guidelines or widely accepted criteria in the realm of MPC.

Identifying the “dominant” lung lesions that have the most malignant nature is crucial for MPLC patients, many of whom are not qualified for radical surgical
resection because of operational contraindication, such as advanced age or prolonged anesthesia risk. Pre-locating the key tumor before surgery can provide
those patients with more treatment options. From the view of evolution, MPLC with lymph node metastasis (LNM) is an ideal material for studying the genetic
trajectory of MPLC, thus identifying the “dominant” lung lesions. However, there are several barriers to the study of MPLC with LNM. Firstly, precise
discrimination between MPLC and lung cancer intrapulmonary metastasis (IPM) has been a clinical dilemma for decades(6, 11). Both two diseases behave as
multiple tumor sites in the lung, but they are of distinct staging strategies [8], treatment [9–11], and prognosis [8, 12, 13]. Secondly, MPLC with LNM is very rare
in clinical practice. Thirdly, the difficulties in sample collection of MPLC with LNM hamper its studies.

What we know about MPLC with LNM is far from enough, though some researchers paid attention to it. In 2016, Gao et al. focused on an MPLC patient with
one lymph node metastasis and applied targeted panel sequencing on him(12). The lymph node metastasis shared 52 common mutations with one of the
pulmonary tumors but had no overlap with other lung lesions within the individual. A similar conclusion was observed in Omada et al.’s research in 2020(13),
in which five MPLC with LNM patients were included.

Our study performed WES on tumor samples from 11 patients diagnosed as MPLC with LNM. We are the first to characterize the clonal evolution pattern of
MPLC with lymph node metastasis using comprehensive genetic sequencing. Our findings may help grasp the mysterious nature of MPLC and identify the
tumor lesion that is most likely to metastasis before surgery, thus may spur the introduction of MPLC guidelines.

We present the following article in accordance with the MDAR reporting checklist.

Methods And Materials
Study design and patients. According to the 8th edition of the TNM staging system published in 2017, a total of 1458 patients during 2011 and 2019 who
were diagnosed with MPLC receiving no adjuvant treatment before surgery were identified in Cancer Hospital, the Chinese Academy of Medical Sciences, and
Peking Union Medical College. Under the following criteria: (1). Positive lymph node metastasis; (2). Complete access to FFPE specimens of pulmonary
tumors, lymph node metastasis tumors, and matched normal samples, 11 patients were finally included in our study. Two independent certified pathologists
confirmed the diagnosis by HE staining and provided the pathological details of each patient (Table 1). The clinical information was retrieved from the
medical record system of our hospital (Table 2). CT (Computerized Tomography) images were obtained from the department of radiology of our hospital and
two experienced radiological specialists annotated the pulmonary tumor lesions independently. The ethics committee of Cancer Hospital, Chinese Academy of
Medical Science approved the study and written informed consent was obtained from each involved patient. The study was performed in accordance with the
local ethical regulations and the guidelines of the Declaration of Helsinki.

WES Sequencing. We extracted total DNA from archived FFPE samples using QIAamp DNA FFPE Tissue Kit (Qiagen, cat. no. 56404). To enhance the tumor
purity, tumor areas on FFPE slides were marked by two independent pulmonary pathologists and the non-tumor components were scraped off before DNA
extraction. DNA from paired normal lung tissue samples was used to eliminate the influence of germline mutation. Isolated genomic DNA quality was verified
using three combined methods: (1) DNA degradation, and contamination was monitored on 1% agarose gels. (2) DNA purity was checked using the
NanoPhotometer® spectrophotometer (IMPLEN, CA, USA). (3) DNA concentration was measured by Qubit® DNA Assay Kit in Qubit® 2.0 Fluorometer



Page 3/17

(Invitrogen, USA). WES libraries were prepared using Agilent SureSelect Human All Exon V6 kit (Agilent Technologies, CA, USA). Following the manufacturer’s
recommendations, index codes were added to each sample, and the clustering of the index-coded samples was performed on a cBot Cluster Generation
System using Hiseq PE Cluster Kit (Illumina). DNA libraries were sequenced on the Illumina Hiseq platform with a paired-end 2×150 protocol. The WES was
conducted at CapitalBio Technology Inc. Beijing, China, from January 2020.01 to October 2020.

Data Processing and Bioinformatics.

Sequence Alignment, and Variant Calling. We trimmed and filtered raw data using Trimmomatic 0.33(14). Paired-end clean reads were aligned to the human
reference sequence hg19 using the BWA-MEM algorithm (BWA version 0.7.10-r789) with default parameters(15). To guarantee the meaningful downstream
analysis, duplicated sequencing reads were excluded by Picard v.2.13. In contrast, low confidence reads (reads containing adapter contamination, low-quality
nucleotides, and unrecognizable nucleotide (N)) were removed by the criteria of TLOD < 10. All high-confident mutations were then annotated into the MAF
format using the tool vcf2maf. We called somatic single-nucleotide variants (SNVs) and small indels using MuTect (version 3.1-0-g72492bb) and Strelka
(version 1.0.14)(16, 17). All mutations in coding regions were manually checked using the Integrative Genomics Viewer (version2.3.34)(18).

Definitions of putative driver mutations. We compared all non-silent mutations with lists of lung cancer/pan-cancer potential driver genes in the COSMIC
cancer gene census (September 2021) and identified the driver mutations in our data if they are in the lists.

Mutation spectra and signature analyses. We extracted the 5′ and 3′ sequence context of each mutation from the hg19 reference genome and categorized the
SNVs into C > A, C > G, C > T, T > A, T > C, and T > G bins according to the type of substitution and then subcategorized into 96 sub-bins according to the
nucleotides preceding (5′) and succeeding (3′) the mutated base. The deconstructSigs package (v1.8.0) was used to infer the contributions of 30 published
signatures from the Catalog of Somatic Mutations in Cancer (COSMIC) (https://cancer.sanger.ac.uk/cosmic/signatures_v2) in each sample(19). The
contribution of each signature for each tumor was statistically quantified.

Phylogenetic Tree Construction and Labeling. All nonsynonymous somatic mutations were considered for the purpose of determining phylogenetic trees. We
built trees using binary presence/absence matrices generated from the distribution of variants within different tumors within each patient. R Bioconductor
package phangorn(20) was used to perform the parsimony ratchet method, generating unrooted trees. Branch and trunk lengths were proportional to the
number of nonsynonymous mutated genes. To label the clonal phylogenetic trees for each patient, we defined 5 categories of mutations according to the
driver genes lists in the COSMIC cancer gene census (September 2021): (1) Tier 1 NSCLC/lung cancer driver genes. (2) Tier 2 NSCLC/lung cancer driver genes.
(3) Tier 1 pan-cancer driver genes. (4) Tier 2 pan-cancer driver genes. (5) Genes not in the list.

Unsupervised Clustering. The hclust function (the agglomeration method is "ward.D2") in R software (Version 4.0.2) was utilized to perform unsupervised
clustering. According to the driver gene list from Catalog of Somatic Mutations in Cancer (COSMIC) (https://cancer.sanger.ac.uk/cosmic/signatures_v2),
totally 40 genes were utilized, including 20 genes with top mutation frequencies in our data, 10 pan-cancer driver genes with top mutation frequencies except
for the top 20 genes, and 10 lung cancer driver genes with top mutation frequencies except for the top 20 genes

Functional enrichment analysis. We applied the 468 genes from the MSK-IMPACT assay to our cohort and conducted GO functional enrichment analysis and
showed the key genes.

Venn Diagram and Upset graph. Venn diagrams and Upset graphs were used to illustrate the mutational overlaps among multiple samples within individuals.
For patients who have no more than 5 tumor samples, we drew the Venn diagrams using Omicshare (an online tool,
https://www.omicshare.com/tools/Home/Soft/venn). For Patient 1 and Patient 11, each of whom has 6 tumor samples, the R software package UpSetR was
applied to draw Upset graphs.

Putative Neoantigens Identification and Binding Affinity Prediction. Polysolver algorithm(21) was applied to conduct HLA typing. Non-silent mutations were
used to generate a list of mutant peptides of approximately 9–11 amino acids in length with the mutated residues represented in each position.

NetMHCpan (v3.0) was used to predict the binding affinity of each mutant peptide and its corresponding wild-type peptide to the patient’s germline HLA
alleles(22). Candidate neoantigens were identified as those with a predicted mutant peptide binding affinity of < 500 nmol/L.

Statistical Analysis.
Statistical analysis was performed using Fisher’s exact test for categorical variables and the Wilcoxon test or Mann–Whitney U test for continuous variables.
We estimated the mutual exclusivity of mutations by Monte Carlo simulation. We calculated the relevance between constant variables using Pearson’s
correlation or Spearman’s correlation. Kaplan–Meier curves and the log-rank tests were used for the survival analysis. Statistical tests were performed in R
(v3.2.0) and GraphPad (v8) We regarded a two-tailed P value < 0.05 as statistically significant.

Result
Patient cohort. The workflow was presented in Fig. 1A. Initially, 1458 patients were selected, based on whom 1421 patients were excluded for they lacked
lymph node metastasis, and 26 patients were excluded for their FFPE samples were not available. Finally,11 MPLC with LNM patients were recruited. We
explored these patients from clinicopathological information, hematoxylin-eosin (HE) staining, WES sequencing, and radiological images. The ideograph of all
11 patients was displayed in Fig. 1B. Representative HE images of Patients 1 and 11 were shown in Fig. 1C (Supplementary Fig. 1).
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Clinicopathological and Demographic information. The clinicopathological details and WES depth were in Table 1. We defined the pathological subtype with
the highest proportion as the major pathological component. In 72.73% (8/11) patients, the multiple lung tumors were of heterogenous major pathological
components, while in Patient1, 5, and 11, all their pulmonary tumors were solid subtypes. In 81.2% (9/11) patients, we captured pathological consistency
between primary tumors and metastases, but in Patient7 and 10, their lymph node metastasis sites were heterogenous to primary tumors pathologically.
Stage annotations were based on the proposed TNM classification criteria of lung cancers with multiple pulmonary sites by IASLC in 2016[6]. Most lung
tumors were staged as T1 and T2 and most lymph node metastatic lesions were staged as N1 or N2. The average sequencing depth of tumor and normal
samples were 275x (range 69x-435x) and 332x (range 63x-487x), respectively. Table 2 exhibits demographic information. According to the proposed
differentiation criteria of lung cancer with multiple pulmonary sites of involvement by IASCL in 2016(10), all patients in our study were MPLC. The average age
of our cohort was 59.6 years old (range 42–76). Totally 27.27% (3/11) patients were with smoking history, and 27.27% (3/11) patients were alcohol users.
Over one-third of patients (36.36%, 4/11) patients had a positive family history, especially Patient 9, who had a familial history of both lung cancer and
prostate cancer. All patients were synchronous MPLC, except Patient6 (metachronous MPLC). The post-surgery recurrence/metastasis rate was 55.56% (5/9)
patients. The average follow-up time of all patients is 61.1 months.

Genomic Alterations. We successfully conducted WES on 52 DNA samples collected from 11 patients to assess genomic alterations globally. Sequencing
quality information of all the samples was in Supplementary Data 1, and the list of somatic nonsynonymous mutations was in Supplementary Data 2. The
alteration spectrum is Fig. 2A (Supplementary Data 3). According to the driver gene list from COSMIC Cancer Gene Census (Sep. 2021,
https://cancer.sanger.ac.uk/census, Supplementary Data 4), we marked the pan-cancer driver genes (light brown) and lung cancer/NSCLC driver genes
(green). The mean tumor mutation burden (TMB) for pulmonary tumors and lymph node metastases was 12.78 and 8.94 mutations per megabase,
respectively.

Among the top 20 genes with the highest alteration rates, 30% (6/20) were pan-cancer driver genes. TTN (Titin, 76.74%), MUC16 (Mucin16, 62.79%), and
MUC19 (Mucin19, 55.81%) were the 3 genes with the highest alteration rates in our cohort. Pan-cancer driver genes with high alteration rates include FLNA
(Filamin A, 41.86%), MUC4 (Mucin 4, 41.86%), and FAT3 (FAT Atypical Cadherin 3, 39.53%). Lung cancer/NSCLC driver genes with high alteration rates include
BIRC6 (Baculoviral IAP Repeat Containing 6, 30.23%), EGFR (Epidermal Growth Factor Receptor, 30.23%), and TP53 (Tumor Protein P53, 20.93%). SETD2 (SET
Domain Containing 2, Histone Lysine Methyltransferase) is the histone H3 lysine 36 histone (H3K36) methyltransferase(23) and has been reported in various
solid tumors and blood malignancies(24–26). In our cohort, SETD2 alternated in all 6 tumor samples (2 primary tumors and 4 lymph node metastasis) of
Patient1, including 5 splice site mutations and 1 missense mutation. Other genes alternating in both primary tumors and lymph node metastasis tumors
within individuals include CALR (Calreticulin), FRG1(FSHD Region Gene 1), and ACTG1 (Actin Gamma 1).

The single-nucleotide variations (SNVs) displayed considerable variations across and within patients, indicating intratumor heterogeneity (Fig. 2B,
Supplementary Data 5). For Patient4, 9, and 10, who were with smoking history, the majority of their sequenced samples displayed a preponderance of C > A
transitions, which is associated with tobacco exposure(27). In Patient9, the SNV pattern of Patient9LN1 is highly similar to that of Patient9T1 rather than
Patient 9T2, implying the metastasis dominance of Patient 9T1. The contributions of various known signatures to each sample are demonstrated in Fig. 2C
(Supplementary Data 6). Signature 4 was prevalent in Patient4, 9, and 10, consistent with the fact that they were smokers. However, signature 4 was also
observed in non-smoker patients, and signature 29 (representing tobacco chewing) was prevalent in a large proportion of samples, suggesting that tobacco
exposure may play a critical role in the pathogenesis of MPLC with LNM. Signature 3 was identified in 93.20% (40/43) of tumor samples, indicating that DNA
mismatch repair was highly involved in the etiology of MPLC with LNM. The signatures echoes between primary tumors and lymph node metastasis tumors
offer clues for identifying the dominant primary tumor. For example, in Patient1, signature 22 only appeared in T1 and LN1, suggesting the unique connection
between them. In Patient9, the signatures contribution of LN1 was almost identical to that of T1, implying T1 might be the source of LN1. Based on the MSK-
IMPACT 468 panel genes (Supplementary Data 7), we acquired 315 genes from our data and conducted functional enrichment analysis (Fig. 2D,
Supplementary Data 8). Several signaling pathways were involved, including histone modification, chromatin remolding, MAPK, and cell cycle.

Overall, the mutation spectrum of MPLC with lymph node metastasis was disconcordant with that of typical lung adenocarcinoma, indicating the unique
genomic contexture of this disease. Meanwhile, primary tumor and lymph node metastasis echo in both SNVs and COSMIC signature levels, showing the
potentiality of clarifying metastasis trajectory and identifying dominant primary tumor.

Genomic Heterogeneity. The Upset map and Venn diagram show the mutation repertoire overlap within representative individuals (Fig. 3A, Supplementary
Data 9, Supplementary Fig. 2, 3.). The mean number of genes shared by all samples within individuals was 3.67 (range 1–10) per patient. FRG1B
(LOC102724813) mutation was shared by all tumors of Patient1, 2, 6, and 9. Both SETD2 p.X1529_splice and STAG2 (Stromal Antigen 2) p.D1014E were
harbored by Patient1T2, Patient1LN2, and Patient1LN4. SETD2 is a histone lysine methyltransferase playing a significant role in renal malignancies(28),
prostate cancer(24), and NSCLC(29). STAG2 is proved to be involved with viral infection via STING signaling(30). FRG1B (LOC102724813) mutation was
shared by all tumors of Patient1, 2, 6, and 9. CEP192 p.L1701F, a gene involved with PLK1 activity regulation at G2/M Transition, mitotic centrosome
maturation, and bipolar assembly(31, 32), was the only mutation common to all 6 tumors of Patient11.

Mutation distribution analysis reveals that MPLC with lymph node metastasis is of high intratumor heterogeneity and the genomic complexity of pulmonary
tumors and lymph node metastasis tumors is hard to gauge (Fig. 3B, Supplementary Data 10). In all patients, the mutations private to only one tumor sample
account for the largest proportion (ratio range 66.40%-99.72%, median 96.08%; number range 518 to 6721, median 1596), indicating enormous heterogeneity
among tumors. For Patient5 and Patient7, the percentages of mutations shared by all tumors are higher than other patients (Patient5, 19.74%, Patient7,
3.74%), we believe it results from that the two patients lack matched normal samples. Generally, pulmonary tumors take larger percentages of private
mutations than lymph node metastasis tumors (pulmonary, range 37.92%-96.92%, median 53.55%; lymph node metastasis, range 0%-59.48%, median 28.66%.
p = 0.054), emphasizing the significance of primary tumor management. However, in Patient2, 7, 10, and 11, lymph node metastasis tumors claim more private
mutations than lung tumors, suggesting that lymph node metastasis tumors may be more complex in the genomic background. We visualized the intratumor
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heterogeneity by global unsupervised clustering analysis (Fig. 3C, Supplementary Data 11). Patient11 was the only patient whose tumors were closely
clustered, except Patient5 and 7, who lack paired normal samples. Pulmonary tumors and lymph node metastasis tumors from distinct individuals tended to
be clustered together, respectively, implying genomic differences between primary lung tumors and lymph node metastasis sites.

Clonal Architecture and Evolutional Trajectory. Filtered nonsynonymous variances from each tumor sample were used to construct phylogenetic trees using
the parsimony ratchet method(33). The branch lengths were proportional to the number of nonsilent alterations within individuals (the scales were different
among patients for better visual effect) and the driver genes were annotated next to the branches. Individual CT (computerized tomography) images before
surgery were provided to validate the multiple pulmonary tumors. Heatmaps were used to show mutation distribution (Fig. 4, Supplementary Data 12,
Supplementary Fig. 4.). Based on the driver gene list from COSMIC Cancer Gene Census (Sep. 2021, https://cancer.sanger.ac.uk/census), we annotated the
driver genes to the branches.

We observed diverse evolutional patterns between pulmonary primary tumors and lymph node metastases. Firstly, in Patient1, all 4 lymph node tumors were
earlier in evolution than the two pulmonary tumors. The same phenomenon was found in Patient11LN1, indicating that lymph node metastasis could be an
early event in the pathogenesis of MPLC. Secondly, for Patient4, 8, and 9, lymph node metastasis lesions were more closely related to the specific individual
pulmonary tumor, suggesting these pulmonary tumors were more aggressive in nature. Thirdly, in Patient2 and 11, lymph node metastases were associated
with more than one pulmonary tumor, indicating that multiple pulmonary lesions of MPLC could contribute to metastasis within individuals, for whom radical
resection is necessary. Moreover, for Patient3, 5, 7, and 10, their results were consistent with Patient4, 8, and9, but needed further exploration since each of
them had only one pulmonary tumor available. The three lung tumors of Patient6 were highly heterogeneous in genetic background, suggesting the intricate
nature of MPLC.

Generally, the diverse evolution patterns suggested the complex nature of MPLC with LNM.

Immune Repertoires of MPLC with LNM
Currently, the major management for MPLC is surgical resection, and the clues of chemotherapy or immunotherapy are rare. To offer new insights for the
immunotherapy administration in MPLC, we performed neoantigen number prediction, neoantigen binding affinity prediction, and clone cluster calculation in
Fig. 5. Overall, multiple tumors in MPLC showed extremely high heterogeneity in the immune background, which is more complicated than the mutational
spectrum. Both primary pulmonary tumors and lymph node metastasis tumors could have diverse clone clusters. In Fig. 5A (Supplementary Data 13), we
showed the predicted neoantigen number of each sample. For key patients (Patient 1, 2, 4, 8, 9, and 11), the mean predicted neoantigen number of primary
lung cancers (mean 646.5, range 59-5186) was higher than that of lymph node metastases (mean 300, range 45-4562), but this discrepancy was not
significant statistically (p = 0.2416). For all 11 patients, neoantigens private to only one tumor sample possessed absolute advantage (range 71.40%-100%,
mean 99.36%). In Patient3 and 6, all their predicted neoantigens were private to one tumor (Fig. 5B Left, Supplementary Data 14). Neoantigens of primary lung
tumors (range 35.07%-76.02%, mean 52.72%) hold similar proportions to that of lymph node metastases (range 2.38%-64.70%, mean 46.80%), while the two
parts shared few neoantigens (range 0-28.60%, mean 0.27%), suggesting the two parts might response to immunotherapy in different manners (Fig. 5B Right,
Supplementary Data 14). Binding affinity analysis shows that primary lung tumors and lymph node metastases harbor distinct neoantigens repertoires
(Fig. 5C, Supplementary Data 15), implying heterogeneous tumor microenvironments and potentially various reactions to immune checkpoint blockers. The
majority of sequenced samples were oligoclonal and the clonal structures of the primary tumor and metastases were in diverse patterns (Fig. 5D,
Supplementary Data 16).

Discussion
In our study, the mutation landscape of MPLC with LNM is quite different from that of east Asian LUAD patients(34) in our study, suggesting the unique nature
of this disease and the necessity of further research. The most frequently mutated oncogenes in our study were MUC16, FLNA, MUC4, FAT3, SETD2, and CALR,
all of which were pan-cancer driver genes, and no highly mutated lung cancer driver gene ranked in the top 20 mutations, such as EGFR, KRAS, and TP53. This
deviation might result from the insufficient sequencing depth of a few samples in our study, but we have reason to infer that such inconsistencies indicate
MPLC with LNM may have a unique mutation spectrum, which needs further validation in larger cohorts. SETD2 (SET Domain Containing 2) mutated in all 6
tumors of Patient1 (five of them were splice-site mutations), suggesting it may be the driving force of lymph node metastasis in MPLC. It is a histone lysine
methyltransferase, closely involved with cancer behavior(35, 36), and recurrently mutated in several cancer types(24, 37). Moreover, SETD2 mutated in one
lung tumor of an MPLC with LNM patient in a previous study(13), which was partly consistent with our results. TTN (Titin), the gene with the highest alteration
rate in our cohort, codes a sarcomere protein which is a major player in cardiomyocyte stiffness and cardiac train sensing(38). In lung cancer, several recent
studies reported that TTN mutations enhanced anti-tumor immunity and were associated with favorable responses to ICI administration(39–41). Therefore,
we believe that MPLC and MPLC with LNM might be ideal substrates for ICI.

Our study imposed further deliberation on the current MPLC diagnosis standard. In the clinical practice of multifocal lung cancer, precise differentiation
between MPLC and IPM has been a dilemma for decades(42), rendering treatment selection challenging [9–11]. Many previous studies have paid attention to
this field(11, 12, 43–45) (6, 46) (6, 13, 46–48), who believed that at most 1 mutation could be shared by any two lung tumors of MPLC and tumors sharing
multiple (≥ 2) mutations should be defined as IPM(11). However, in our study, the shared mutations of any two pulmonary tumors within an individual ranged
from 1 to 78 (median: 20, Patient3, 5, 7, and 10 were excluded for they only had one valid lung tumor), disconcordant with previous studies, and very few
overlap genes were oncogenes. This inconsistency could result from the sequencing strategies used by previous studies, most of them chose targeted
sequencing which only detected cancer-related genes (11, 49, 50), while WES/WGS was applied to only a few patients(12, 43). Our research indicates that
multiple pulmonary tumors of MPLC could be more like each other in the genomic contexture than what we know before and it might be arbitrary to
distinguish MPLC and IPM under the current “1 mutation” criteria. Moreover, consistent with Qu et al.’s work(51), our study suggests that the absence of LNM
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may not be a necessary criterion for the diagnosis of MPLC with similar tumor pathology. MPLC with LNM should be carefully diagnosed to guarantee that the
patients do not miss the best treatment opportunity.

We offered novel clues for identifying the “dominant” lung tumors in MPLC and challenged the current recognitions about MPLC. At present, the clonal
evolution relationships among different tumor lesions of MPLC with lymph node metastasis are unclear but of great significance, since we may catch the
driving force dictating the metastasis progression, identify the tumor site that has the most potential to metastasis so that doctors can react in advance, and
get a thorough understanding of the biological behavior of MPLC. However, these works are hampered by the enormous genetic heterogeneity of MPLC. While
in MPLC with LNM, the genetic trajectory between pulmonary primary tumor and lymph node metastasis is an ideal material to illustrate this dilemma. In 2016,
Liu et al.(12) firstly sequenced one MPLC with an LNM patient, who was adenocarcinoma. In 2020, Higuchi et al.(13) performed targeted sequencing on 5
MPLC with LNM patients, whose pulmonary tumors were all LUSC in histology. These two studies indicated that lymph node metastasis was genetically
related to one specific lung lesion, suggesting metastasis dominance. In our study, we drew phylogenetic trees for each patient and inferred the evolutional
process of multiple tumors, based on the theory of clonal heterogeneity and tumor evolution(52). We found the lymph node metastases could originate from
both one and multiple pulmonary tumors within the individual, indicating the “dominant” tumors could be more than one. In addition, our results challenge the
current understanding that MPLC is early in staging since some lymph node metastases are evolutionally earlier than pulmonary tumors.

For clinical doctors, we provided new choices for MPLC management by advancing dominant tumors identification. Currently, the most prevalent treatment for
MPLC is surgical resection(53, 54), although many therapies are feasible in MPLC, including photodynamic therapy(55), stereotactic ablative radiotherapy(56),
and combination of local radiofrequency ablation and melatonin(57). When the multiple tumors of MPLC are in different lobes or lungs, multiple operations
become necessary, which is riskier than one-time resection. However, many MPLC patients cannot endure highly radical resections because of surgical
contraindications. Therefore, if we can pre-locate and remove the dominant tumor, more patients will benefit from surgery in a safer manner. In addition,
recurrence is very common for multiple lung cancer in clinical practice, the underlying reasons of which are not clear, while dominant tumor resection can be
taken as a key indicator for recurrence prevention.

We offered novel insights for the immunotherapy administration in MPLC and MPLC with LNM. In the recent decade, immune checkpoint inhibitors achieved
considerable success in multiple malignancies(58), including NSCLC(59) (Non-Small Cell Lung Cancer). However, MPLC and MPLC with LNM are seldom
involved. In Fig. 5, we observed that the multiple tumors within individuals were highly heterogeneous in neoantigen, while disparities exist between primary
tumors and metastases. It is reasonable to infer that MPLC and MPLC with LNM may be ideal audiences of ICIs (immune checkpoint inhibitors) and different
strategies should be applied to primary and metastases samples.

There are mainly three obstacles in unveiling the nature of MPLC and MPLC with LNM: Firstly, the lack of guidelines or generally accepted definition of MPLC
hindered the integration of data generated by different researchers who might adopt other criteria. Secondly, it is not easy to collect MPLC samples in surgery
since some tumor nodules are too small to resect, and the multiple nodules might locate on a different side of the lungs. In contrast, only one side of the lung
will be touched in one surgery. Thirdly, WES or WGS (whole-genome sequencing) still cannot be afforded by most scientific institutes, so most researchers
used target sequencing, which could not give a profound coverage of the genomic contexture of MPLC. In our study, the incidence of MPLC with LNM was
2.54% (37/1458), and we estimate that the incidence is higher in the real world. Therefore, it is of great significance to study this malignancy regardless of
several obstacles.

Several limitations existed in our study. Firstly, a few samples failed in the WES quality control, causing imperfection of some patients. Secondly, the
sequencing depth of many samples is insufficient for producing highly valid results, many key mutations were missing. Thirdly, we only performed WES,
without transcriptional data or information from other omics.

In conclusion, by characterizing the molecular features of MPLC with LNM, we identified potential driver genes of this disease and revealed various evolution
patterns among pulmonary primary tumors and lymph node metastasis tumors. We found that lymph node metastasis might be an early event in the etiology
of MPLC. Our findings push the boundaries of both MPLC and MPLC with LNM by providing new information for dominant tumor identification. Further solid
evidence of MPLC and MPLC with LNM is warranted.
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Table 1 Tumor Identification, Pathological Subtype, and Sequencing information of 11 patients

Patient

  ID

Sample

  ID

Tumor 

 Location

Tumor Size

 (mm)

Histology Pathological Subtype TNM

 Stage

WES 

 Depth/X

 (Mean)A% P% MP% S% L%

1 N RLL — Normal — — 346 

T1 RLL 17*13*13 ADC       100   T2 383 

T2 RLL 10*10*9 ADC 10     90   T1b 306 

LN1 Lower Lobe Parabronchial — ADC       100   N1 289 

LN2 Region 7 — ADC       100   N2 311 

LN3 Upper Lobe Parabronchial — ADC       100   N1 334 

LN4 Middle Lobe Parabronchial — ADC 10 10 　 80 　 N1 327 

2 N RUL — Normal — — 321 

T1 RUL 12*10*10 ADC   80 20     T1b 313 

T2 RUL 10*10*7 ADC 100         T1a 221 

LN1 Extrapulmonary — ADC 100         N1 351 

LN2 Region 4R and 2R — ADC 30 70       N2 313 

LN3 Region 11 — ADC 100 　 　 　 　 N1 NA

3 N RUL — Normal — 　 367 

T1 LLL 13*12*14 ADC 20 80       T1b 295 

T2 RUL 24*15*15 ADC     100     T1c NA

LN1 LUL Parabronchial — ADC     100     N1 261 

LN2 LLL Extrapulmonary — ADC     100     N1 183 

LN3 Region 3A — ADC 　 　 100 　 　 N2 NA

4 N LUL — Normal — — 360 

T1 LUL 25*15*10 ADC 30     70   T1c 330 

T2 LUL 22*9*3 ADC 60     40   T1c 331 

T3 LUL 12*10*10 ADC 30     70   T1c 292 

LN1 Region 5 and 6 　 ADC 20 　 　 80 　 N2 300 

5 N RUL — Normal — — NA

T1 RUL 26*17*10 ADC       100   T2 261 

T2 RUL 30*26*20 ADC       100   T1c NA

LN1 Region 10 — ADC       100   N1 258 

LN2 Region 11 — ADC       100   N1 269 

LN3 Region 4R — ADC 　 　 　 100 　 N2 274 

6 N RLL — Normal — — 358 

T1 LUL 25*22*20 ADC 10 10   70 10 T2 276 

T2 LLL 15*13*5 ADC       70 30 T2 348 

T3 RLL 9*6*5 ADC   80   20   T1a 331 

LN1 Region 5 — ADC 10 10 　 80 　 N2 NA

7 N RLL — Normal — — NA

T1 RLL 10*5*3 ADC   30 70     T1a 234 

T2 RUL 30*25*30 ADC 40       60 T1c NA

LN1 Extrapulmonary — ADC 100         N1 435 

LN2 Region 4R — ADC 100 　 　 　 　 N2 299 

8 N RUL — Normal — — 299 



Page 11/17

T1 RUL 15*13*10 ADC 90 10       T1b 281 

T2 RUL 29*20*18 ADC 30 30   40   T2 306 

LN1 Region 4R — ADC 　 10 　 90 　 N2 365 

9 N RLL — Normal — — 487 

T1 RLL 65*35*35 ADC       100   T3 328 

T2 RUL 14*12*2 ADC       80 20 T3 363 

LN1 Subcarinal — ADC 　 　 　 100 　 N2 306 

10 N LUL — Normal — — 392 

T1 LUL 30*30*22 ADC   100       T2 237 

T2 LUL 10*5 ADC 95 5       T1a NA

LN1 Parabronchial — ADC       100   N1 344 

LN2 Parabronchial — ADC 100         N1 270 

LN3 Region 5 — ADC 　 　 　 100 　 N2 394 

11 N LUL 　 Normal — — 63 

T1 LUL 32*28*15 ADC   5   95   T2 72 

T2 LUL 17*10*7 ADC   20   80   T1b 69 

LN1 Extrapulmonary — ADC       100   N1 92 

LN2 Intrapulmonary — ADC     10 90   N2 70 

LN3 Proximal Posterior Basal — ADC       100   N1 84 

LN4 Region 10 — ADC 　 　 　 100 　 N1 115 

N, normal sample; T, tumor sample; LN, lymph node metastasis

 RUL, right upper lobe; RLL, right lower lobe; LUL, left upper lobe; LLL, left lower lobe

 ADC, adenocarcinoma

 A, Acinar; P, Papillary; MP, Micropapillary; S, Solid; L, Lepidic

 Failed, WES was not performed because of failure in cDNA library construction

 NA, unknown because of WES failure.

 H, high; M, middle; L, low; M-L, middle to low; H-M, high to middle

 

Table 2 Demographic information and clinical characteristics of 11 patients with MPLC

Patient
 ID

Age/
 Gender

Ethnicity Smoking, 
 PY

Alcohol,
 y

Family
 History

Pattern Surgery Comprehensive
Classification*

Adjunct 
 Therapy

Patient 
 Status#

Rec
 Dis
Met

1 42/F Han 0 0 Yes Syn Thoracotomy Primary ALK Targeted therapy Alive Rec

2 68/F Han 0 0 Yes Syn VATS Primary None Alive Non

3 45/F Han 0 0 No Syn VATS Primary EGFR Targeted
therapy

Alive Bon
 Me

4 56/M Han 35 0 No Syn VATS Primary Chemotherapy Alive Non

5 76/M Han 0 20 No Syn VATS Primary Chemotherapy
 +EGFR Targeted
therapy

NA NA

6 48/F Han 0 0 No Meta VATS Primary None Dead NA

7 64/F Han 0 0 No Syn VATS Primary None Alive Non

8 52/M Han 0 25 Yes Syn VATS Primary None Dead Rec

9 65/M Han 45 30 Yes Syn Thoracotomy Primary None Dead Rec

10 73/M Han 33 0 No Syn VATS Primary EGFR Targeted
therapy
 +Radiotherapy

Alive Bra
 Me

11 67/M Han 0 0 No Syn VATS Primary Capecitabine+Icotinib Alive Non

F, female; M, male. PY, packed-years, y, years. Syn, synchronous; Meta, metachronous. NA, unknown. Recur, Recurrence. VATS, video-assisted thoracoscopic su
 * Patients are classified according to the 8th TNM staging system published in 2017. 
 # Until the last follow-up time
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Figures

Figure 1

Study design and patient description

A. The flow chart showed the design and workflow of our research.

B. The cartoons showed the concept of multiple primary lung cancer, the different colors of the two tumors indicated they are genetically independent. Pattern
diagrams constituted by dots of different colors showed the tumor architecture within each patient. The green, red, and orange dots represented standard
samples, primary lung tumors, and lymph node metastases sites. The black circle indicated that the sample existed but failed to produce valid data in WES.

C. Representative HE staining image of patient 1 and patient 11.
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Figure 2

Mutational landscape of MPLC with lymph node metastasis.

A. Significantly mutated genes (SMGs). Upper: Top 20 genes with highest mutation frequency. Middle: Demographic and clinical information of the 11
patients. Bottom: Highly mutated pan-cancer driver genes (light brown) and lung cancer driver genes (green), ranked according to their frequency. Driver gene
identification is based on the COSMIC Cancer Gene Census (Sep. 2021, https://cancer.sanger.ac.uk/census).

B. Six-type mutation spectra of all samples.

C. Signature contributions of all samples based on the COSMIC database.

D. Putative driver genes (based on MSK-IMPACT 468 gene panel) with somatic mutations in all 11 patients were classified according to the functional
categories
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Figure 3

Genomic heterogeneity among different samples.

A. Upset map and Venn diagrams of representative patients showing the distribution of nonsynonymous somatic mutations among different tumors within
individuals (Patient 1 and 11: Upset Venn diagrams. Patient 2, 4, 8, and 9: Venn diagrams). The putative pathogenic mutations were marked with different
colors and typefaces according to the oncogene list in COSMIC Cancer Gene Census (https://cancer.sanger.ac.uk/census). Orange, Pan-cancer driver gene;
Red, NSCLC/lung cancer driver gene; Blue, genes are not pan-cancer driver genes or NSCLC/lung cancer driver gene. Roman type, Tie 1 gene in COSMIC (gene
possessing a documented activity relevant to cancer, along with evidence of promoting oncogenic transformation); Italic, Tie 2 gene in COSMIC (genes with
strong indications of a role in cancer but with less extensive available evidence).

B. Distributions of mutations. Left: percentages of mutations shared by

all the tumor samples (Red), two or more tumor samples (Blue), and private to only one tumor sample (Yellow) in each patient, respectively. Right: percentages
of mutations shared by primary lung tumors and lymph node metastases (Red), private to primary lung tumor samples (Blue), and private to lymph node
metastasis samples (Yellow), regardless of tumor numbers.

D. The unsupervised clustering of all 11 patients based on non-synonymous mutations. All 11 patients are distinguished with different colors. Red, primary
tumor. Blue, lymphatic metastasis tumors.



Page 15/17

Figure 4

Clonal architecture and evolution of representative patients.

Left: CT (computerized tomography) images of each patient, with yellow arrows marking the tumor's location. Middle: Heatmaps show the distribution of all
non-silent mutations; presence (blue), absence (gray). Colum next to the heatmap shows the distribution of mutations; mutation present in all tumors (blue),
shared in more than one but not all tumors (orange), in one pulmonary tumor (red), and in one lymph node metastasis tumor (green).  Right: Phylogenetic trees
based on the distribution of all detected mutations. Trunk and branch lengths are proportional to the number of non-silent mutations acquired. Putative driver
genes are indicated next to the trunk or with an arrow pointing to the branches where they were detected. Orange, Pan-cancer driver gene; Red, known
NSCLC/lung cancer driver gene; Roman type and Italic represent tie 1 gene and tie 2 genes in COSMIC, respectively.
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Figure 5

Immunogenicity heterogeneity across and within individuals.

A. Left: The number of all predicted neoantigens in each tumor of 11 patients. Right: The difference in the mean number of potential neoantigens in primary
tumors and lymph node metastasis tumors based on Patient1, 2, 4, 8, 9, and 11 (p value=0.2416).

B.  Distributions of predicted neoantigens. Left: percentages of neoantigens shared by all the tumor samples (Red), two or more tumor samples (Blue), and
private to only one tumor sample (Yellow) in each patient, respectively. Right: percentages of neoantigens shared by primary lung tumors and lymph node
metastases (Red), private to primary lung tumor samples (Blue), and private to lymph node metastasis samples (Yellow), regardless of tumor numbers.

C. Predictions of neoantigen binding affinity across all 9-11 amino acids peptides generated from nonsynonymous mutations and the matched wild-type
peptides using NetMHCpan algorithms. Red, neoantigens shared by both primary and lymph node metastasis tumors; Blue, neoantigens private to primary
lung tumors; Orange, neoantigens private to lymph node metastasis tumor.

D. Histograms and density plots of SciClone inferred clonal clusters. Left: Clonal clusters of all 11 patients. Right: Clonal clusters density plots of Patient1 and
11.
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