Preprints are preliminary reports that have not undergone peer review.

6 Research Sq uare They should not be considered conclusive, used to inform clinical practice,

or referenced by the media as validated information.

Hierarchical Classification of Analog and Digital
Modulation Schemes using Higher-Order Statistics
and Support Vector Machines

Bengisu YALCINKAYA GOKDOGAN (% bengisu.yalcinkaya@atilim.edu.tr)
Atilim University https://orcid.org/0000-0003-3644-0692

Remziye Busra CORUK
Atilim University: Atilim Universitesi

Ali KARA
Gazi University: Gazi Universitesi

Hakan TORA
Atilim University: Atilim Universitesi

Research Article

Keywords: Hierarchical Modulation Classification, Feature Extraction, Machine Learning Algorithms,
Support Vector Machine, Analog Modulations, Digital Modulations

Posted Date: August 8th, 2022
DOI: https://doi.org/10.21203/rs.3.rs-1780652/v1

License: © ® This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License


https://doi.org/10.21203/rs.3.rs-1780652/v1
mailto:bengisu.yalcinkaya@atilim.edu.tr
https://orcid.org/0000-0003-3644-0692
https://doi.org/10.21203/rs.3.rs-1780652/v1
https://creativecommons.org/licenses/by/4.0/

Springer Nature 2021 BTEX template

Hierarchical Classification of Analog and
Digital Modulation Schemes using
Higher-Order Statistics and Support Vector
Machines

Bengisu Yalcinkaya Gokdogan'", Remziye Busra Coruk®, Ali
Kara? and Hakan Tora!

"Electrical and Electronics Engineering, Atilim University,
Incek, Golbasi, 06830, Ankara, Turkey.
2Electrical and Electronics Engineering, Gazi University, Eti,
Cankaya, 06570, Ankara, Turkey.

*Corresponding author(s). E-mail(s):
bengisu.yalcinkaya@atilim.edu.tr;
Contributing authors: busra.tezel@atilim.edu.tr;
akara@gazi.edu.tr; hakan.tora@atilim.edu.tr;

Abstract

Automatic Modulation Classification (AMC) algorithms play an impor-
tant role in various military and civilian applications. There have been
numerous AMC algorithms reported in the literature, most of which
focus on synthetic signals with a limited number of modulation types
having distinctive constellations. The efficient classification of high-order
modulation schemes under real propagation effects using models with
low complexity is still a challenge. In this paper, employing quadratic
SVM, a feature-based (FB) hierarchical classification method is proposed
to accurately classify especially higher-order modulation schemes and
its performance is investigated using over the air (OTA) collected data.
Statistical features, higher-order moments, and higher-order cumulants
are employed as features. Then, the performances of some well-known
classifiers are evaluated, and the classifier presenting the best perfor-
mance is employed in the proposed hierarchical classification model. An
OTA dataset containing 17 analog and digital modulation schemes is
used to evaluate the performance of the proposed classification model.
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With the proposed hierarchical classification algorithm, a significant
improvement has been achieved, especially in higher-order modulation
schemes. The overall accuracy with the proposed hierarchical structure
is 96% after 5 dB signal-to-noise ratio (SNR) value, approximately a 10%
increase is achieved compared to the traditional classification algorithm.

Keywords: Hierarchical Modulation Classification, Feature Extraction,
Machine Learning Algorithms, Support Vector Machine, Analog Modulations,
Digital Modulations.

1 Introduction

Automatic Modulation Classification (AMC) is a major task in a wide range of
military and civilian communication applications [1]. AMC algorithms can be
divided into two main groups likelihood-based (LB) [2] and feature-based (FB)
[3] approaches in the literature. LB approaches are based on maximum likeli-
hood ratio testing. By making predictions on the probability density function
(pdf) of the received signal, the classification is achieved through threshold-
ing [4]. LB approaches give the optimal solution, however, they are mostly
not preferable due to the sensitivity to model mismatches and non-ideal situa-
tions, i.e., frequency offsets, phase and timing errors, and noise along with high
computational complexity [5]. A few LB approaches have been proposed [6—
9], including Average Likelihood Ratio Test (ALRT), Generalized Likelihood
Ratio Test (GLRT), Hybrid Likelihood (HLRT), and Quasi-Hybrid Likelihood
Ratio Test (QHLRT). On the other hand, FB approaches simply focus on the
extraction of features from the signals to be classified are easier to implement,
and have lower computational complexity [10, 11]. The selection of features
that are unique in discriminating the modulation schemes play a critical role
in classification performance since the type of the features might also affect
the type of the classification methods to be used along with expected channel
perturbations or effects [12]. A variety of time and frequency domain based
features have been reported in the literature including higher-order statistics
(HOS), Wavelet, and Fourier transform of the signals [13-26].

There have been many reports regarding the performance of classifiers in
AMC applications employing FB approach for some basic modulation schemes
(analog or digital-binary-modulation schemes) [27]. The classifiers based on
traditional machine learning (ML) algorithms are available in the literature
mainly as k-nearest neighbors (KNN), decision trees, and support vector
machines (SVM). The performance and complexity of each classifier type under
various practical conditions are studied well in the literature. KNN algorithm
assigns the unknown data to the class with the most similar data of the training
set. This classifier may not give acceptable performance for high dimensions.
It also requires relatively high memory which results in low processing speed.
There are many types of KNN with varying flexibilities i.e., fine, medium, and
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coarse KNN. The decision tree is a frequently preferred structure in data min-
ing applications due to lower processing speed and memory requirement. On
the other hand, it has been reported to be poor when the number of features
is less, or the number of classes is high. There are several types of decision
tree algorithms as well with different flexibilities i.e., fine, medium, and coarse
trees. SVM is highly preferred for classification as it presents high performance
along with low computational complexity [28]. Therefore, the use of SVM has
increased incredibly as compared with the other classifiers [29]. SVM employs
support vectors to find a hyperplane that distinguishes the data points belong-
ing to different classes. At first glance, SVM or a similar classifier along with a
unique set of features would then seem to be a promising ML configuration for
AMC implementation for some basic modulation schemes. However, the per-
formance of such ML algorithms for higher-order modulation schemes has not
been thoroughly studied [30]. Additionally, there is a limited number of works
regarding ensemble methods with voting approaches for modulation classifica-
tion in the literature. Ensemble classifier uses multiple classifiers unitedly to
increase the accuracy. Bagged and Boosted methods are two commonly used
ensemble methods. Their prediction speed generally remains low due to the
multiple learner structure. The memory requirement may vary according to
the method. Model flexibility of this type of classifier is generally reported as
high [31]. High accuracy has not been reported at, especially, low SNR, values
although the number of modulations to be classified is limited [32-34]. Besides,
misclassification of similar types of modulation schemes is still a problem.
Recently, deep learning (DL) based methods have been proved to outperform
in feature extraction and classification. However, preprocessing of the received
signal is still a challenge and DL generally requires long training data size as
well as high computational cost or complexity [12]. When there is a relatively
small amount of records of the signals to be classified, DL based classifica-
tion might be challenging work [35, 36]. Therefore, classical ML-based AMC
implementations can still be considered as an effective option. In ML imple-
mentations, hierarchical classification has been proposed to classify diverse
signal types, i.e., radar signals and underwater communication signals. In [37],
hypothesis testing is utilized hierarchically and FB modulation classification is
employed for modulation orders up to 16. Classification for frequency modula-
tion schemes is reported in [38] by adopting cascade systems, and [39] by using
a Naive Bayes classifier. In [40], a hierarchical deep neural network is proposed
for the classification of low-level modulation schemes. Finally, there have been
a few more hierarchical methods that have been reported in the literature,
such as FB using cumulants and thresholds for decision making or polyno-
mial classification [41-44]. In most of the reported works, a limited number of
hierarchical methods are applied only to some specific low-order modulation
schemes. Additionally, almost all of the published works report performance
analysis under simulated Additive White Gaussian Noise (AWGN) channel
conditions which do not represent real propagation channel perturbations [45].
Besides, the performances of classification of higher-order modulation schemes
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are mostly unsatisfactory at low signal-to-noise ratio (SNR) values [46, 47]. A
few hierarchical classifiers have been reported [48, 49] however they seem to
be impractical as they utilize many stages and classifiers which makes them
highly complex. Considering the trade-off of the low complexity and high suc-
cess, these types of structures generally remain insufficient despite their high
accuracy. Finally, it is still a challenge to present an efficient FB method with a
relatively short processing time, as well as classify diverse modulation schemes
with similar constellations including higher-order modulated signals having
real propagation effects with high accuracy.

In this study, employing quadratic SVM, a FB hierarchical classification
structure is proposed for AMC of 17 different modulation schemes consist-
ing of i) analog modulation schemes (Single Sideband, Double Sideband, and
Frequency Modulation) ii) digital modulation schemes (On-Off Keying, M-
ary Amplitude Shift Keying with M=4,8, M-ary Phase Shift Keying with
M=2,4,32, M-ary Amplitude Phase Shift Keying with M=16,32,64,128, M-ary
Quadrature Amplitude Modulation with M=16,64, Offset Quadrature Phase
Shift Keying and Gaussian Minimum Shift Keying). In our previous work,
we presented a performance comparison of several different FB traditional
classifiers by employing 14 modulation schemes. Using quadratic SVM as a
classifier, 98% overall accuracy was achieved at a 10 dB SNR value [50]. How-
ever, in the case of employing a dataset containing higher-order modulation
schemes with similar constellations, traditional modulation classification algo-
rithms remain insufficient to classify these types with high accuracy. Here,
we propose a method combining hierarchical structure with ensemble classifi-
cation approach to accurately classify higher-order modulation schemes with
similar constellations.

® A hierarchical modulation classification is presented with relatively higher
accuracy but relatively lower complexity (lower elapsed time).

® The performance comparison of the proposed method with 18 different well-
known classifiers including traditional SVMs is reported for realistic channel
effects.

e A series of analog and digital modulation schemes containing similar con-
stellations and higher orders are accurately classified by using the proposed
hierarchical classification model.

e A high-level overview of the methods used in the literature, classified
modulation types, accuracy rates and studied SNR levels is presented.

The rest of the paper is organized as follows: In Section II, the signal
preprocessing and higher-order statistical features along with the proposed
classification algorithm are detailed. Section III presents the performance of the
proposed classification method along with the comparison of some well-known
classifiers. Section IV draws conclusions and future works.
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2 Proposed Method

Feature extraction and classification are two main stages in FB-AMC. First
of all, features must be selected in accordance with the modulation types.
The extraction process includes the usage of signal processing algorithms and
estimations of signal properties such as amplitude, phase, and frequency. The
classification operation should then be performed with a classifier suitable
for features, channel conditions, modulation, and signal types. The proper
functioning of the classifier largely depends on the selection of appropriate
features.

2.1 Signal Dataset and Preprocessing

Radio signals acquired under different channel conditions, their SNR val-
ues, and modulation schemes affect the classification performance greatly. In
this work, modulated OTA signals available in [51] containing modulation
types listed in the previous section are used. The signals are provided in in-
phase/quadrature (I/Q) form with 1024 samples for each recording. There are
4096 signal recordings at each SNR value (from 0dB to 30 dB with 2dB steps)
for each modulation type.

The analytical expression for any sequence of complex I/Q signal compo-
nents at a specific time sample n(n = 1,2,, N) is given as

s(n) = I(n) +jQ(n) (1)

Next, the instantaneous amplitude a(n), instantaneous phase ¢(n), and

instantaneous frequency f(n) of the signal given in (1) can be respectively
written as

a(n) = \/1*(n) + Q*(n) (2)
o) = tan~ £ 0

Instantaneous signal characteristics are centered by removing mean values
(1) in order to avoid systematic bias. Moreover, linear component of the instan-
taneous frequency is also removed for incorrect estimation of frequency at the
down-conversion stage [52]. The centered amplitude a.(n), phase ¢cni(n) and
frequency f.(n) can be derived as follows

ac(n) = a(n) - pa (5)
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¢c71l(n) = anl (n) — Mo, (8)

where n(n = 1,2,, N) is the sample number of the signal, and A, is the
duration between time samples [53].

2.2 Feature Extraction

Based on the literature discussed in the previous section, a total of 41 features
consisting of HOS and extracted from the instantaneous characteristics a.(n),
¢eni(n), and fe(n) are employed. The use of statistical features instead of
instantaneous characteristics directly provides lower computational complex-
ity, smaller feature space, and better performance at low SNR values. Each
feature is computed from 1024 samples of the signal. For any instantaneous
signal characteristic z(k), that is, a.(n),f.(n) and @eni(n), the following well-
known features mean (u, ), variance (02), skewness (7,) and kurtosis (x,) can
be defined as

1
e = 3 ;x(m (9)
Ny
o2 = > lelk) ~ ]’ (10)
T p=1
Ny
Yo = e S lalh) — 7P (1)
T g
1 - —14
Ke = % kZ:l[x(k) — 1] (12)

where T is the mean value of z(k) [44].

Additionally, higher order moments (HOM) and higher order cumulants
(HOC) can also be computed for each of the signal characteristics as they are
known to be resistant to noise. In general, HOMs ca be defined, as in [15], as
follows

N
1
My, = i z_:l s[n]P~9.s[n]*? (13)
where p is the order of the moment, s* is the complex conjugate of s, and
q is the power of the conjugate signal s*. Next, higher order cumulants (HOC)
can easily be computed from HOMs. To set an example, computation of Cgg
can be indicated as follows [11]

Cso = Mgy — 15MogMag + 30Ma® (14)

where C' denotes the cumulants with order as subscript. HOCs are not only
known to be immune to rotation and excursion over the constellation diagram
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but also eliminate the effects of Gaussian noise. The feature set includes all
moments and cumulants up to 8" order. It should be noted that all cumu-
lants need to be normalized for deviation problems at the classification stage.
This can be achieved by increasing the power of cumulants (Cpq) to 2/p. For
example, the normalized cumulant for Cgs can be obtained as

~ 2 1
Cxo = CF, = G (15)

The magnitude of the HOMs and HOCs can be used by ignoring the phase
as it may cause shifting in the constellation while magnitude only processing
reduces the computational cost [54].

In this work, three main feature sets are utilized; the set based on instanta-
neous signal characteristics is sufficient for discriminating analog modulation
schemes while that of HOMs is effective at low SNR values. Finally, the last set
containing HOCs is used for discriminating higher-order modulation schemes.
Overall, a feature space consisting of all these feature sets is created for the
accurate classification of a variety of modulation schemes at a wide range of
SNR levels.

2.3 Classification

After the feature extraction process, SVM is employed for classification. SVM
offers ease of use by removing computational complexity and providing high
accuracy. It uses a hyperplane to separate classes. The objective is to find the
hyperplane which passes from the maximum distance between the data points
from two different classes that are closest to each other [34, 50]. These partic-
ular data points are known as support vectors. When the data points cannot
be separated linearly, the non-linear classification of SVM can be used with
the kernel trick. Employing the polynomial kernel of the SVM, the nonlinear
classification can be performed; thus, linear, quadratic, and cubic derivations
of the classifier can be obtained [44, 55]. The common problem in many classi-
fication algorithms is that one algorithm is not adequate to separate different
modulation types with high accuracy in some cases such as in low SNR or dif-
ferent modulation types with similar constellations. The type and the order of
the modulation classes, as well as the feature set, affect significantly the per-
formance of the classifier. While the classifiers may be successful in separating
some classes in the dataset, they may fail for some others. The flexibility of the
classifier could be increased to increase the accuracy though this may cause
overfitting. Moreover, prediction speed and memory requirement as well as dif-
ficulty in interpretability should also be studied. In this work, the performances
of several well-known classifiers are compared and quadratic SVM is employed
for the proposed hierarchical classification structure as it outperforms.

The proposed hierarchical classification structure is based on the constel-
lation structures and confusion between different modulation schemes in the
dataset. In the first stage, all of the modulation schemes in the dataset are
trained and tested with the traditional quadratic SVM classifier. Then, the
confusion matrices generated from the test set are examined at different SNR
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values. The modulation types with a high accuracy rate are classified at the
first stage. The remaining modulation schemes that are mostly confused with
each other are chosen as an input to the second stage classifiers. In the second
stage, two parallel classifiers are trained with different modulation schemes.
The decision on which classifier is trained with which modulation types is
made according to the confusion and constellation similarities. Based on the
confusion matrices of the test set at the first stage classification, the modu-
lation types that are confused with each other are determined. In the second
stage, the modulation types that are mostly confused with each other, such as
64-APSK and 128-APSK, are trained with different classifiers. For achieving a
high accuracy rate, the groups of modulation schemes with similar constella-
tions -but not highly confused- are selected and trained with the same classifier.
By this means, the misclassification is greatly reduced. The structure of the
proposed hierarchical SVM can be summarized as follows;

® Signals containing 17 different modulation schemes are trained and tested
with the traditional quadratic SVM classifier (C1) and the confusion
matrices are obtained.

¢ Confusion matrices at different SNR values from 0 dB to 30 dB are examined
and the modulation types that classify with high accuracy are determined.
These schemes are classified at the first stage.

¢ The remaining modulation schemes that are highly confused are given to
the second stage for classification.

¢ Second stage contains two parallel quadratic SVMs (C2 and C3) as sub-
classifiers trained with different groups of modulations. These modulation
groups are determined based on the following criteria;

-Highly confused modulation types are trained in different classifiers
(such as 16-QAM and 64-QAM).

-Each modulation scheme is utilized separately and the schemes that
do not greatly confuse with each other are trained in the same classifier
(16-QAM and 64-APSK).

-Care was taken that a modulation type selected to train in C2 would
confuse with at least two other modulation types trained in C3 when given
to C3 during the testing process. Thus, this modulation type will confuse
with other modulation types and its accuracy will decrease in C3, and at the
same time, it will be correctly classified in C2 with a high rate. The same
process is applied to C3 simultaneously. By this means, the misclassification
at the parallel classifiers is avoided.

¢ In the testing process of the second stage, test signals will be given to
the two parallel classifiers. Test signals will be classified correctly with a
high accuracy rate in the classifier trained with the test signals modulation
type. In the other classifier, the test signals will be confused with different
modulation types and the classification accuracy will be reduced. Based on
the ensemble classification approach, the testing accuracies of an individual
modulation type in the second stage classifiers C2 and C3 are considered
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as their weighted votes. The higher rated (voted) modulation type will be
considered correctly classified.

e At the end, the classifier with the correct modulation scheme will be
outperformed due to the structure of the proposed hierarchical scheme.

3 Results and Discussion

As discussed previously, 17 analog and digital modulation schemes are
classified with traditional and hierarchical methods.

3.1 Traditional Classification Models

Firstly, 18 different classifiers including decision trees, SVMs, and KNNs are
trained and tested in the MATLAB/Classification Learner toolbox in order to
evaluate and compare their performance at 0 dB, 10 dB, and 20 dB. Table 1
presents the performances of the classifiers. By this means, the benchmarking
of widely used classifiers in the AMC classification stage is provided. When
the performances presented in Table 1 are examined, polynomial derivatives of
SVM outperform all others. For different SNR levels, these classifiers show sim-
ilar performance which seems to be more consistent. In Table 1, the classifiers
showing similar performance are grouped and approximate accuracy (within
3% deviation) is reported for each SNR level.

Table 1 Performance comparison of some well-known classifiers at three different SNR
levels

Performances (%)

Classifiers 0dB 10dB 20dB
Fine/Medium Tree 46 78 79
Coarse Tree 27 29 29
Linear/Quadratic/Cubic SVM 50 86 86
Fine Gaussian SVM 35 72 72
Medium/Coarse Gaussian SVM 50 83 84
Fine/Medium/Coarse/Cosine/Weighted KNN 43 76 79
Boosted /Bagged Trees 48 80 81
Subspace Discriminant/RUSBoosted Trees 46 75 79

While classifying noisy signals, algorithms that have high flexibility could
model the small changes due to the noise in the signal structure, causing
an overfitting problem. Among the classifiers shown in Table 1, it has been
observed that Fine Gaussian SVM, Fine KNN, Weighted KNN, Bagged Trees,
and Cubic SVM - since it is known that Cubic SVM is more flexible than Linear
and Quadratic SVM - classifiers face overfitting problems. To prevent this issue
from occurring, 5-fold cross-validation is used for all of the experiments.

When we compare the classification performances given in Table 1 with the
results in [34] and our previous work [50], it can be clearly seen that traditional
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classification methods fail to satisfy achieving high accuracy in the case of
classifying higher-order similar constellation modulation schemes.

Figure 1 presents the average classification accuracy of Linear, Quadratic,
and Cubic SVMs, where 80% of the dataset is used in training while the
remaining is used in testing, for all modulation types (averaging of accuracy
over all modulation types at 2 dB SNR increments). It is evident that there
is no significant difference between the SVM derivations. However, quadratic
SVM seems to perform slightly better after 10 dB SNR.

90 T . , . :
BS e |
>‘80
O
s
3
7071
<
5
QO
o 50¢ —e—Linear SVM J
O —&—Quadratic SVM

Cubic SVM
40 ; : : : :
0 5 10 15 20 25 30

Signal to noise ratio SNR [dB]

Fig. 1 Classification performances for linear, quadratic and cubic SVMs

Next, the confusion matrices are examined for detailed view of the classifi-
cation as per modulation scheme. Shown in Figure 2 and Figure 3 are confusion
matrices for all 17 modulation schemes at 0 dB and 10 dB SNR only as there
is no significant change in the performance after 10 dB.

The accuracy of higher-order amplitude-phase modulation schemes is found
very low at 0 dB SNR. Classification accuracy is increased to 86% from 51%
for the same set of modulation schemes when SNR was increased to 10 dB.
However, it is still observed as pretty much low for some higher modulation
schemes (64-APSK and 128-APSK as well as 16-QAM and 64-QAM). When
the performances at different SNR values are examined, it can be seen that
the classifier is not affected by noise variations while classifying OOK and
AM-SSB-SC because of their constellation structures. In contrast, especially
QPSK, 32-PSK, 16-APSK, 32-APSK, 16-QAM, 64-QAM, and OQPSK modu-
lations are more sensitive to SNR variations. It can be concluded that M-APSK
(M>16) and higher-order QAM modulation schemes are likely to be misclas-
sified even if the SNR is increased. These could be, to some extent, attributed
to the complex constellation diagram of the higher-order modulation schemes.
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Fig. 2 Confusion Matrix for Quadratic SVM (SNR=0dB)

For higher-order M-APSK schemes, misclassification is observed as higher than
M-QAM. This is because M-APSK schemes have additional dimension (phase)
compared with M-QAM schemes. Then, the next section presents a hierarchical
classification technique in order to discriminate these higher-order modulation
schemes. It should be noted that the classification accuracy of OOK, 8ASK,
M-PSK (M=2,4,32), 32APSK, GMSK, OQPSK, SSB, DSB, and FM seems to
be classified with a relatively higher rate than the others.

3.2 Hierarchical Classification Model

The proposed hierarchical classification algorithm constructed as two-stage
classifications basically makes use of the performance of the SVM classifiers in
the previous section. To this end, the traditional classifier (C1) is firstly trained
with 17 modulation classes. Based on the results in the previous section, 11
modulation classes including OOK, 8ASK, BPSK, QPSK, 32-PSK, 32-APSK,
SSB, DSB, FM, GMSK and OQPSK are classified accurately at the first stage.
Here, if the classifier classifies the unknown signal as one of these 11 modulation
types, it is declared to be correct. Otherwise, none of the classes is declared,
and then the next two parallel classifiers (denoted by C2 and C3) are initiated
with the same input samples. The two classifiers are trained in parallel for
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Fig. 3 Confusion Matrix for Quadratic SVM (SNR=10dB)

two different groups of modulation schemes. The C2 is trained with 4-ASK,
32-APSK, 64-APSK and 16-QAM while the C3 is trained with 16-APSK, 128-
APSK and 64-QAM. The flow of the hierarchical classification is illustrated in
Figure 4.

The group of modulation schemes with which the second stage classifiers
are trained is identified based on the evaluation of confusion matrices and
mentioned in the previous section in detail. The modulation types classified in
the first (C1) and second stages (C2 and C3) are shown in Figure 5.

It should be noted that 4 classes (M-APSK where M=64, 128 and M-QAM
where M=16, 64) are highly confused. Then, one of the classifiers (C3) could
be trained with 128-APSK while the other (C2) is trained with 32-APSK and
64-APSK schemes. In this way, modulation schemes that are highly confused
can be classified with high accuracy. For instance, the classification accuracy
for 128-APSK is increased from 48.4% to 92% after 5dB. This similar approach
could be applied to M-QAM (where M=16,64), 4-ASK and M-APSK (where
M=16,64). Then, the modulation classes are grouped accordingly. For instance,
64-APSK is highly confused with 128-APSK, and then 64-APSK is trained
with C2. On the other hand, 16-APSK and 128-APSK are trained with C3
since their constellations are similar to 64-APSK. When the 64-APSK signal
will be given to both classifiers for testing, it can be successfully classified in
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Fig. 4 Flow of the Proposed Hierarchical Classification Model

C2 with a high rate, while in C3, confusing between 16-APSK and 128-APSK
and resulting in a low classification rate. In the end, when the classification
rates of the classifiers are considered as their weighted votes, 64-APSK will be
correctly classified in C2 with a high rate.

In Figure 6, the comparison of the performances of the traditional (Trad)
classification and the hierarchical (Hier) classification model for 4-ASK, M-
APSK (with M=16,64,128), and M-QAM (with M=16,64) modulation schemes
are shown. It should be noted that the proposed hierarchical classifier provides
a significant improvement for each of the modulation schemes with a short
training time (approximately less than 3 hours).

Figure 7 shows the comparison of the overall classification accuracies for
traditional and the proposed hierarchical classifier. The classification accuracy
is increased from 85% to 95%, on average, by using the proposed hierarchical
classifier structure.
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Finally, a high-level overview of the methods and their classification per-
formances in the literature are presented in Table 2
work. When the publications in the table are examined, it can be concluded

that

¢ Some consider either only low order modulation schemes [14, 16, 26, 37, 41,
45] or limited number of modulation schemes [5, 10, 12, 14, 18, 26, 41].
e Some [11, 16, 18, 26, 34, 41, 45, 54] use synthetic channel effects with
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¢ Hierarchical based classifications [11, 21, 37, 41, 45] generally achieve 90-
100% accuracy at high SNR values (i.e. >10 dB) but only for limited number
of modulation classes, and/or under the synthetically simulated channel
effects i.e. AWGN. Also, when the SNR level drops, accuracy decreases
dramatically.

® In general, high performances are achieved only for limited number of mod-
ulation schemes, at high SNR values (10 dB) compared with our work (5
dB).

4 Conclusions and Future Work

This study presents an improved classifier structure for automatic classifica-
tion of wide range of modulation schemes including SSB, DSB and FM as well
as OOK, M-ASK, M-PSK, M-QAM and M-APSK (up to the order of 128).
The proposed hierarchical classifier structure is based on the confusions and
constellations of respective modulation schemes, in particular, higher-order
modulation schemes when the traditional classifier is utilized. Some well-known
classifiers are also evaluated initially for choosing the most appropriate clas-
sifier for use in the proposed hierarchical classifier structure. The feature set
consists of HOS (a vector of 41 features).

It should be noted that the classification performance is highly dependent
on the constellation structure of the modulation types. Higher the modulation
order, more complex the constellation diagram which makes the classification
more difficult. One way to handle this is to use a simple hierarchical classifi-
cation model based on the modulation type and then the order. However, this
requires many classifier stages. This leads to high complexity as well as time
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Table 2 Comparison of Classification Performances

Ref. Dataset (Modulation Types) Method Acc.  SNR
(Classifier /Features) (%) (dB)
(5] BPSK,QPSK,8PSK,16QAM,64QAM Blind modulation ~85 5
classification, ALRT
[10] BPSK,QPSK,8PSK,16QAM,64QAM CSS-SVM,MR-CSS- ~80 5
(multipath fading-real propagation) SVM,frequency
offset
[11] M-PSK(2,4,8),M-QAM(16,64,256) Hierarchical 86.52 5
(AWGN-slow flat fading-computer polynomial classifier,
generated) cumulants
[12] QPSK,16QAM,64QAM (OTA signals) Deep neural network 95 10
Random forest 93
Decision tree 90
[14] 2FSK,4FSK,8FSK,QPSK,BPSK(UWA- ANN, spectral features ~93 10
non-cooperation underwater acoustic
communication signals)
[16] 2ASK,2FSK,2PSK,4ASK,4FSK 4PSK, SVM fuzzy network, ~99 5
16QAM,MSK,OQPSK(AWGN- wavelet packet
computer generated) transform modulus
maxima matrix
(18] BPSK,QPSK,8PSK,16QAM,64QAM SVM- 56.40 5
(computer generated fading channel) C40,C41,C42,C63
features
[21] FSK,2ASK,4ASK,8ASK,QPSK,8PSK, Naive 97.29 16
16QAM,64QAM SVM 98.65
Hierarchical-local 100
density
[26] 2FSK,4FSK,8FSK(computer K-means 100 10
generated) clustering,spectral
centroid feature
[34] BPSK,QPSK,8PSK,4QAM,16QAM, Quadratic SVM- 97.2 5
64QAM (multipath  fading,computer- moment,cumulant
generated)
[37] BPSK,QPSK,0QPSK,QPSK,MSK, Blind modulation ~96 10
16QAM(fading channel,real classification,
propagation) hierarchical hypothesis
test
[41] BPSK,PAM,QAM,8PSK Hierarchical 70 5
(AWGN,computer generated) classification,
cumulant-based
[45]  2ASK, 4ASK,8ASK,BPSK,QPSK, Hierarchical,decision 96 10
8PSK(AWGN-computer generated) tree,higher-order
cumulants
[54] 4ASK,8ASK,2PSK,4PSK,8PSK,Star- Hierarchical SVM, 96 3
8QAM,V29,32QAM,64QAM higher order moments
(AWGN,computer generated) and cumulants
This OOK,4ASK,8ASK,M-PSK(2,4,32),M- Hierarchical SVM, 95 5
work APSK(16,32,64,128),M- HOSs

QAM(16,64),SSBSC,DSBSC,
FM,GMSK,OQPSK(OTA signals)
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consumption and impracticability. Also, when the literature is examined, the
number of modulation types to be classified is limited and the channel effects
are not realistic in general.

The hierarchical classification model proposed in this study resolve this
complexity and time consumption with two basic stages and achieves high
accuracy (>95% at 5 dB or more) for wide range of modulation types, from
basic analog modulations to higher-order digital modulations. As a future
work, by extending the dataset size and modulation classes, the classification
structure can be improved.
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