1) TANGEMO, C., RONCHI, P., COLOMBELLI, J., HASELMANN, U., SIMPSON, J. C., ANTONY, C., STELZER, E. H. K., PEPPERKOK, R. & REYNAUD, E. G. 2011. A novel laser nanosurgery approach supports de novo Golgi biogenesis in mammalian cells. Journal of Cell Science, 124, 978-987.
2) GLICK, B. S. & LUINI, A. 2011. Models for Golgi traffic: a critical assessment. Cold Spring Harb Perspect Biol, 3, a005215.
3) LUJAN, P. & CAMPELO, F. 2021. Should I stay or should I go? Golgi membrane spatial organization for protein sorting and retention. Archives of Biochemistry and Biophysics, 707, 108921.
4) GOLDSTEIN, J. L., ANDERSON, R. G. W. & BROWN, M. S. 1979. COATED PITS, COATED VESICLES, AND RECEPTOR-MEDIATED ENDOCYTOSIS. Nature, 279, 679-685.
5) VONFIGURA, K. & HASILIK, A. 1986. LYSOSOMAL-ENZYMES AND THEIR RECEPTORS. Annual Review of Biochemistry, 55, 167-193.
6) DUNCAN, J. R. & KORNFELD, S. 1988. Intracellular movement of two mannose 6-phosphate receptors: return to the Golgi apparatus. J Cell Biol, 106, 617-28.
7) SEAMAN, M. N. J. 2005. Recycle your receptors with retromer. Trends in Cell Biology, 15, 68-75.
8) SEAMAN, M. N. J., MARCUSSON, E. G., CEREGHINO, J. L. & EMR, S. D. 1997. Endosome to Golgi retrieval of the vacuolar protein sorting receptor, Vps10p, requires the function of the VPS29, VPS30, and VPS35 gene products. Journal of Cell Biology, 137, 79-92.
9) DASILVA, L. L., TAYLOR, J. P., HADLINGTON, J. L., HANTON, S. L., SNOWDEN, C. J., FOX, S. J., FORESTI, O., BRANDIZZI, F. & DENECKE, J. 2005. Receptor salvage from the prevacuolar compartment is essential for efficient vacuolar protein targeting. Plant Cell, 17, 132-48.
10) DASILVA, L. L., FORESTI, O. & DENECKE, J. 2006. Targeting of the plant vacuolar sorting receptor BP80 is dependent on multiple sorting signals in the cytosolic tail. Plant Cell, 18, 1477-97.
11) FORESTI, O., GERSHLICK, D. C., BOTTANELLI, F., HUMMEL, E., HAWES, C. & DENECKE, J. 2010. A Recycling-Defective Vacuolar Sorting Receptor Reveals an Intermediate Compartment Situated between Prevacuoles and Vacuoles in Tobacco. Plant Cell, 22, 3992-4008.
12) PELHAM, H. R. 1988. Evidence that luminal ER proteins are sorted from secreted proteins in a post-ER compartment. Embo j, 7, 913-8.
13) DEAN, N. & PELHAM, H. R. B. 1990. RECYCLING OF PROTEINS FROM THE GOLGI COMPARTMENT TO THE ER IN YEAST. Journal of Cell Biology, 111, 369-377.
14) SEMENZA, J. C., HARDWICK, K. G., DEAN, N. & PELHAM, H. R. B. 1990. ERD2, A YEAST GENE REQUIRED FOR THE RECEPTOR-MEDIATED RETRIEVAL OF LUMINAL ER PROTEINS FROM THE SECRETORY PATHWAY. Cell, 61, 1349-1357.
15) LEWIS, M. J. & PELHAM, H. R. 1990. A human homologue of the yeast HDEL receptor. Nature, 348, 162-3.
16) LEWIS, M. J. & PELHAM, H. R. 1992a. Ligand-induced redistribution of a human KDEL receptor from the Golgi complex to the endoplasmic reticulum. Cell, 68, 353-64.
17) Tang, B.L., Wong, S.H., Qi, X.L., Low, S.H., and Hong, W. (1993). Molecular cloning, characterization, subcellular localization and dynamics of p23, the mammalian KDEL receptor. J. Cell Biol. 120: 325–338.
18) Li, J., Zhao-Hui, C., Batoux, M., Nekrasov, V., Roux, M., Chinchilla, D., Zipfel, C., and Jones, J.D.G. (2009). Specific ER quality control components required for biogenesis of the plant innate immune receptor EFR. Proc. Natl. Acad. Sci. USA 106: 15973–15978.
19) BOEVINK, P., OPARKA, K., CRUZ, S. S., MARTIN, B., BETTERIDGE, A. & HAWES, C. 1998. Stacks on tracks: the plant Golgi apparatus traffics on an actin/ER network. Plant Journal, 15, 441-447.
20) MAJOUL, I., STRAUB, M., HELL, S. W., DUDEN, R. & SOLING, H. D. 2001. KDEL-cargo regulates interactions between proteins involved in COPI vesicle traffic: Measurements in living cells using FRET. Developmental Cell, 1, 139-153.
21) CABRERA, M., MUÑIZ, M., HIDALGO, J., VEGA, L., MARTÍN, M. E. & VELASCO, A. 2003. The Retrieval Function of the KDEL Receptor Requires PKA Phosphorylation of Its C-Terminus. Molecular Biology of the Cell, 14, 4114-4125.
22) BRÄUER, P., PARKER, J. L., GERONDOPOULOS, A., ZIMMERMANN, I., SEEGER, M. A., BARR, F. A. & NEWSTEAD, S. 2019. Structural basis for pH-dependent retrieval of ER proteins from the Golgi by the KDEL receptor. Science 363, 1103-1107.
23) SILVA-ALVIM, F. A. L., AN, J., ALVIM, J. C., FORESTI, O., GRIPPA, A., PELGROM, A. J. E., ADAMS, T. L., HAWES, C. & DENECKE, J. 2018. Predominant Golgi-residency of the plant K/HDEL receptor is essential for its function in mediating ER retention. Plant Cell, 30, 2174-2196.
24) TOWNSLEY, F. M., FRIGERIO, G. & PELHAM, H. R. B. 1994. RETRIEVAL OF HDEL PROTEINS IS REQUIRED FOR GROWTH OF YEAST-CELLS. Journal of Cell Biology, 127, 21-28.
25) MONTESINOS, J. C., PASTOR-CANTIZANO, N., ROBINSON, D. G., MARCOTE, M. J. & ANIENTO, F. 2014. Arabidopsis p24 delta 5 and p24 delta 9 facilitate Coat Protein I-dependent transport of the K/HDEL receptor ERD2 from the Golgi to the endoplasmic reticulum. Plant Journal, 80, 1014-1030.
26) HSU, V. W., SHAH, N. & KLAUSNER, R. D. 1992. A brefeldin A-like phenotype is induced by the overexpression of a human ERD-2-like protein, ELP-1. Cell, 69, 625-35.
27) AOE, T., CUKIERMAN, E., LEE, A., CASSEL, D., PETERS, P. J. & HSU, V. W. 1997. The KDEL receptor, ERD2, regulates intracellular traffic by recruiting a GTPase-activating protein for ARF1. Embo Journal, 16, 7305-7316.
28) CONTRERAS, I., ORTIZ-ZAPATER, E. & ANIENTO, F. 2004a. Sorting signals in the cytosolic tail of membrane proteins involved in the interaction with plant ARF1 and coatomer. Plant Journal, 38, 685-698.
29) CONTRERAS, I., YANG, Y., ROBINSON, D. G. & ANIENTO, F. 2004b. Sorting signals in the cytosolic tail of plant p24 proteins involved in the interaction with the COPII coat. Plant Cell Physiol, 45, 1779-86.
30) SCHOBERER, J., KONIG, J., VEIT, C., VAVRA, U., LIEBMINGER, E., BOTCHWAY, S. W., ALTMANN, F., KRIECHBAUMER, V., HAWES, C. & STRASSER, R. 2019. A signal motif retains Arabidopsis ER-alpha-mannosidase I in the cis-Golgi and prevents enhanced glycoprotein ERAD. Nat Commun, 10, 3701.
31) GRANT, B. D. & DONALDSON, J. G. 2009. Pathways and mechanisms of endocytic recycling. Nat Rev Mol Cell Biol, 10, 597-608.
32) MACER, D. R. & KOCH, G. L. 1988. Identification of a set of calcium-binding proteins in reticuloplasm, the luminal content of the endoplasmic reticulum. Journal of Cell Science, 91, 61-70.
33) JACKSON, M. R., NILSSON, T. & PETERSON, P. A. 1990. Identification of a consensus motif for retention of transmembrane proteins in the endoplasmic reticulum. The EMBO journal, 9, 3153-3162.
34) PFEFFER, S. R. 2007. Unsolved mysteries in membrane traffic. Annu Rev Biochem, 76, 629-45.
35) Phillipson, B.A., Pimpl, P., Lamberti Pinto daSilva, P., Crofts, A.J., Taylor, J.P., Movafeghi, A., Robinson, D.G., and Denecke, J. (2001). Secretory Bulk Flow of Soluble Proteins Is Efficient and COPII Dependent. Plant Cell 13, 2005-2020.
36) COSSON, P. & LETOURNEUR, F. 1994. Coatomer interaction with di-lysine endoplasmic reticulum retention motifs. Science, 263, 1629-31.
37) LETOURNEUR, F., GAYNOR, E. C., HENNECKE, S., DEMOLLIERE, C., DUDEN, R., EMR, S. D., RIEZMAN, H. & COSSON, P. 1994. COATOMER IS ESSENTIAL FOR RETRIEVAL OF DILYSINE-TAGGED PROTEINS TO THE ENDOPLASMIC-RETICULUM. Cell, 79, 1199-1207.
38) PELHAM, H. R. B. 1994. ABOUT TURN FOR THE COPS. Cell, 79, 1125-1127.
39) Ito, Y., Uemura, T. & Nakano, A. 2018. The Golgi entry core compartment functions as a COPII independent scaffold for ER-to-Golgi transport in plant cells Journal of Cell Science 131, jcs203893. doi:10.1242/jcs.203893
40) APPENZELLER-HERZOG, C. & HAURI, H. P. 2006. The ER-Golgi intermediate compartment (ERGIC): in search of its identity and function. Journal of Cell Science, 119, 2173-2183.
41) SAITO, K., CHEN, M., BARD, F., CHEN, S., ZHOU, H., WOODLEY, D., POLISCHUK, R., SCHEKMAN, R. & MALHOTRA, V. 2009. TANGO1 facilitates cargo loading at endoplasmic reticulum exit sites. Cell, 136, 891-902.
42) SAITO, K., YAMASHIRO, K., ICHIKAWA, Y., ERLMANN, P., KONTANI, K., MALHOTRA, V. & KATADA, T. 2011. cTAGE5 mediates collagen secretion through interaction with TANGO1 at endoplasmic reticulum exit sites. Mol Biol Cell, 22, 2301-8.
43) RAOTE, I., ORTEGA-BELLIDO, M., SANTOS, A. J. M., FORESTI, O., ZHANG, C., GARCIA-PARAJO, M. F., CAMPELO, F. & MALHOTRA, V. 2018. TANGO1 builds a machine for collagen export by recruiting and spatially organizing COPII, tethers and membranes. eLife, 7:e32723.
44) SATO, K., SATO, M. & NAKANO, A. 2001. Rer1p, a retrieval receptor for endoplasmic reticulum membrane proteins, is dynamically localized to the Golgi apparatus by coatomer. J Cell Biol, 152, 935-44.
45) WANG, J., YAN, C., LI, Y., HIRATA, K., YAMAMOTO, M., YAN, N. & HU, Q. 2014. Crystal structure of a bacterial homologue of SWEET transporters. Cell Research, 24, 1486-1489.
46) XU, Y., TAO, Y., CHEUNG, L. S., FAN, C., CHEN, L.-Q., XU, S., PERRY, K., FROMMER, W. B. & FENG, L. 2014. Structures of bacterial homologues of SWEET transporters in two distinct conformations. Nature, 515, 448-452.
47) LEE, Y., NISHIZAWA, T., YAMASHITA, K., ISHITANI, R. & NUREKI, O. 2015. Structural basis for the facilitative diffusion mechanism by SemiSWEET transporter. Nature Communications, 6, 6112.
Methods References
48) CASADABAN, M. J. & COHEN, S. N. 1980. Analysis of gene control signals by DNA fusion and cloning in Escherichia coli. J Mol Biol, 138, 179-207.
49) KNIGHT, C.D., COVE, D.J., CUMING, A.C., QUATRANO, R.S. (2002) Moss gene technology. In: Molecular Plant Biology Vol. 2: pp. 285-299. Gilmartin PM, Bowler C (Eds) Oxford University Press.
50) CAINE, R. S., CHATER, C. C., KAMISUGI, Y., CUMING, A. C., BEERLING, D. J., GRAY, J. E. & FLEMING, A. J. 2016. An ancestral stomatal patterning module revealed in the non-vascular land plant Physcomitrella patens. Development, 143, 3306-3314.
51) GERSHLICK, D. C., LOUSA CDE, M., FORESTI, O., LEE, A. J., PEREIRA, E. A., DASILVA, L. L., BOTTANELLI, F. & DENECKE, J. 2014. Golgi-dependent transport of vacuolar sorting receptors is regulated by COPII, AP1, and AP4 protein complexes in tobacco. Plant Cell, 26, 1308-29.
52) GOODIN, M. M., ZAITLIN, D., NAIDU, R. A. & LOMMEL, S. A. 2008. Nicotiana benthamiana: its history and future as a model for plant-pathogen interactions. Mol Plant Microbe Interact, 21, 1015-26.
53) SPARKES, I.A., RUNIONS, J., KEARNS, A., AND HAWES, C. (2006). Rapid, transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants. Nat. Protoc. 1: 2019–2025.
54) BRANDIZZI, F., SNAPP, E. L., ROBERTS, A. G., LIPPINCOTT-SCHWARTZ, J. & HAWES, C. 2002. Membrane protein transport between the endoplasmic reticulum and the Golgi in tobacco leaves is energy dependent but cytoskeleton independent: evidence from selective photobleaching. Plant Cell, 14, 1293-309.
55) FRENCH, A. P., MILLS, S., SWARUP, R., BENNETT, M. J. & PRIDMORE, T. P. 2008. Colocalization of fluorescent markers in confocal microscope images of plant cells. Nat Protoc, 3, 619-28.
56) FORESTI, O., DASILVA, L. L. & DENECKE, J. 2006. Overexpression of the Arabidopsis syntaxin PEP12/SYP21 inhibits transport from the prevacuolar compartment to the lytic vacuole in vivo. Plant Cell, 18, 2275-93.
57) DENECKE, J., BOTTERMAN, J. & DEBLAERE, R. 1990. Protein secretion in plant cells can occur via a default pathway. Plant Cell, 2, 51-9.
58) CROFTS, A. J., LEBORGNE-CASTEL, N., PESCA, M., VITALE, A. & DENECKE, J. 1998. BiP and calreticulin form an abundant complex that is independent of endoplasmic reticulum stress. Plant Cell, 10, 813-24.