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Abstract

Background
It is reported that cancer patients are more susceptible to SARS-CoV-2 infection due to
immunocompromised immunity. To understand the long-term impact of SARS-CoV-2 in HNSC cancer, the
current study is designed to assess the status of two vital host molecules (ACE2 & TMPRSS2) for the
entry of virus in HNSC patients using computational methods.

Methodology
We used public databases such as TIMER, UALCAN, and GEPIA2 to assess the mRNA expression and
association of ACE2 and TMPRSS2 in HNSC. cBioPortal was used to assess the genetic alterations in the
ACE2 and TMPRSS2 protein sequences that are involved in HNSC development. The CTD database was
also used to identify the genes associated with COVID-19 and HNSC. Finally, the PANTHER online
platform was used to investigate the protein-protein interaction between COVID-19 and HNSC progression
genes collected from the CTD database.

Results
A differential expression of ACE2 (downregulated) and TMPRSS2 (upregulated) was noted in HNSC those
with human papilloma viral infections. A strong genetic alteration in the protein sequence of ACE2 and
TMPRSS2 supports their signi�cant role in HNSC disease progression. In addition, the protein-protein
interaction network revealed that genes associated with COVID-19 and HNSC are strongly involved in
binding activity, catalytic activity, and various cancer signaling pathways.

Conclusion
From our in silico analysis, we would like to conclude that ACE2 and TMPRSS2 are strongly associated
with disease progression in both pathological conditions (HNSC and COVID-19). So, it could serve as
potential biomarkers for the early prediction of disease outcomes in cancer patients with COVID-19
disease. Thus, further investigation is needed to evaluate the long-term impact of SARS-CoV-2 infection
on HNSC patients.

1. Introduction
Recently, Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2) caused a �erce mobilization of
clinicians and scientists to explore the etiology of Coronavirus Disease-19 (COVID-19). However, because
of the rapid spreading of different strains over the world, we still don’t know the serious consequence for
those who have been infected and recovered from SARS-CoV-2 (Martelli-Júnior et al. 2020). Despite the
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fact that COVID-19 vaccination is available, clinical outcomes of the patients with and without
comorbidities, as well as immunocompromised persons, must be monitored (Mahmood et al. 2021).
According to early research on COVID-19, patients with comorbidities such as cardiovascular disease,
carcinomas, diabetes, hypertension, and chronic kidney disease, are more prone to infections and disease
severity (Yang et al. 2020). Individuals with cancer, on the other hand, are thought to be more vulnerable
to COVID-19 than those with underlying complications due to suppressed and compromised immune
responses (Dai et al. 2020). While SARS-CoV-2 mediated morbidity and fatality are strongly associated
with respiratory and cardiovascular complications, oral complications have been reported in COVID-19
positive patients, with oral lesions as well as dysgeusia being the main clinical symptoms of recurrent
SARS-CoV-2 infection and leading to the development of head and neck carcinomas (HNSC) (Aranda
Romo et al. 2021; Carrillo-Larco and Altez-Fernandez 2020; Chen 2019). This may be related to the
binding of SARS-CoV-2 to angiotensin-converting enzyme-2 (ACE2), a known component of the renin-
angiotensin system (RAS), which is extensively expressed on the tongue surface and oral cavity (Xu et al.
2020). In addition, TMPRSS2 is involved in proteolytic cleavage and subsequent priming of spike (S)
proteins of SARS-CoV-2 (Sacconi et al. 2020). Thus, these molecules serve as a gateway for SARS-CoV-2
infection. Moreover, RAS components have been previously reported to be associated with oral cancer, a
type of HNSC.

HNSC is the eighth most frequent cause of cancer death and the sixth leading cancer by incidence
worldwide (Bonomi et al. 2014). Tumors in the head and neck region quickly double in volume within 1–3
months, irrespective of their size and site of origin (Jensen, Nellemann, and Overgaard 2007). Typically,
HNSC is characterized by a higher incidence of local recurrences, which occurs in 60% of the cases and is
a common cause of death in HNSC (Argiris et al. 2008; Sacconi et al. 2020). Though reports suggested
the possibility of suspending surgeries for a few cases, the current standard of care is surgery followed
by radiotherapy or chemotherapy (Brody et al. 2020). Perhaps, a delay in diagnosis and/or treatment of
HNSC impacts the overall survival rate of patients (Schutte et al. 2020). In support of this, recent
investigations suggest that the clinical outcome and survival rate are expected to be very adverse due to
delayed presentation, diagnosis, and treatment of HNSC patients during and after the COVID-19
pandemic (Tevetoğlu et al. 2021; Werner et al. 2020; Schutte et al. 2020; Kiong et al. 2021). Despite the
advancement in new medical and surgical therapies that have improved the quality of patients' life, the
survival rate is still 40–50%. Regrettably, it also failed to improve the overall clinical outcomes of the
disease, and thus, HNSC remains one of the major challenges for clinicians and physicians. Therefore,
the overall impact of COVID-19 on the HNSC needs further exploration. In this sense, we investigated
ACE2 and TMPRSS2 by in silico analysis in terms of expression, function, and mutations in HNSC to
assess their impact on the disease severity of COVID-19 with HNSC utilizing several freely available
public and online platforms/databases for effective screening of various genes and proteins associated
with these diseases at a molecular level.

2. Methodology
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2.1 Expression Analysis of ACE2 & its co-expressed Genes
(TMPRSS2)

2.1.1 Expression pro�le in HNSC
To explore the transcriptional pro�le of ACE2 and its co-expressed genes (TMPRSS2), we utilized a public
web tool Tumor Immune Estimation Resource (TIMER2.0) server (http://timer.cistrome.org/), a
comprehensive resource for the clinical relevance of tumor-immune �ltrations across various cancer
types. This comprehensive resource comprises six principal analysis catalogs which allow the users to
analyze the expression of genes and their interconnection with the immune-suppressed cancer cells (Li et
al. 2017).

2.1.2 In-depth Analysis of Gene expression in HNSC
We assessed the mRNA expression data of ACE2 and its co-expressed gene in HNSC through the UALCAN
website (http://ualcan.path.uab.edu/) using the TCGA (The Cancer Genome Atlas) datasets. UALCAN is a
user-friendly online platform used to study the gene expression of query genes and their association with
the clinical outcomes of 31 types of cancer using TCGA data (Chandrashekar et al. 2022).

2.1.3 Dependence Test of the targeted genes in HNSC
Gene Expression Pro�ling Interactive Analysis (GEPIA) 2 is a web-based tool widely used to evaluate the
transcriptional pro�le of different human cancer and normal tissue, via the TCGA database and the
Genotype-Tissue Expression (GTEx) projects. Besides this, it can be used to evaluate the gene-speci�c
correlation between various cancer types (Tang et al. 2017). So, we have assessed the correlation impact
of ACE2 with TMPRSS2 in HNSC through GEPIA2 2 web portal (http://gepia2.cancer-pku.cn/#index).

2.2 Functional Analysis of the Targeted Genes

2.2.1 Evaluation of Mutations and Copy Number Alterations
(CNAs) in the Targeted proteins
The genetic alterations of the targeted molecules were explored by cBioPortal
(https://www.cbioportal.org/), an interactive online portal for assessing the diverse datasets of cancer
genomics. This database is extensively used for molecular pro�ling of different types of cancer tissues
and cell lines, identi�cation of mutation frequencies, and other genomics alterations from various cancer
studies (Gao et al. 2013).

2.2.2 Protein-Protein Interaction Analysis
Genes associated with COVID-19 disease and HNSC were retrieved from the Comparative
Toxicogenomics Database (CTD) (http://ctdbase.org/). CTD is a public database used to understand the
chemical-gene/protein-interaction, chemical-disease, and gene-disease relationship (CJ et al. 2006). To
check whether the proteins are associated with COVID-19 disease and HNSC, we created a protein-protein



Page 5/24

interaction (PPI) among the targeted proteins via STRING software (https://string-db.org/) (Szklarczyk et
al. 2021).

2.2.3 Interpretation of functional role of Associated Genes
The list of genes retrieved from CTD was subject to the integrative and molecular assessment using
Protein Analysis Through Evolutionary Relationship (PANTHER) (http://www.pantherdb.org/), a tool that
categorizes the genes in terms of biological function, molecular function, and pathway (Mi and Thomas
2009).

3. Results

3.1 Expression analysis of ACE2 & its Co-expressed genes
We investigated the expression level of ACE2 and TMPRRS2 in a variety of patients’ malignancies using
the TIMER 2.0 web application. The �ndings illustrated that ACE2 expression was unaltered in both HNSC
(N-520) and normal tissues (N-44). Its expression was also reduced in HNSC with a positive status of
human papillomavirus (HPV) infection (Fig. 1A). In the case of its co-expressed gene, a signi�cant
downregulation of TMPRSS2 was noticed in HNSC when contrasted with healthy control in the TCGA
dataset. However, when compared to non-infected (N-421) HNSC, HNSC with HPV infection (N-97)
revealed a substantial elevation in TMPRSS2 mRNA expression (Fig. 1B). This suggests that during viral
infection, virus and/or viral factors may differentially in�uence the expression of ACE2 and TMPRSS2 in
cancer patients.

3.2 Expression dynamics and correlation analysis of ACE2 &
its co-expressed gene in HNSC
An interactive web-based platform called UALCAN was used to assess the mRNA expression of ACE2 and
TMPRSS2 based on TGCA datasets in terms of distinct study factors like gender, individual cancer
stages, variable age groups, and tumor grades. Compared to healthy tissues, the expression of ACE2 was
substantially upregulated in female HNSC cases (Fig. 2A). Although there were no signi�cant changes in
the ACE2 mRNA levels across the individual cancer stages, there was a signi�cant rise in the ACE2
expression in grade 2 tumors of HNSC (Fig. 2C & G). Furthermore, people aged 61–80 years old had
higher levels of ACE2 expression than other age groups and healthy controls (Fig. 2E). In all the study
parameters, the expression level of TMPRSS2 was entirely tapered off in HNSC when compared to
healthy control in the TGCA datasets (Fig. 2B, D, F & H).

3.3 Correlation Analysis of the targeted Genes
A scatter plot was developed using GEPIA 2 web tool, which depicts the association between ACE2 and
TMPRSS2 in HNSC based on their expression score. We found that ACE2 was positively correlated with
TMRPSS2 (R = 0.11; P = 0.014) in the HNSC condition (Fig. 3A). In addition to this, we created a heat map
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based on the expression score of targeted genes and found that all the targeted genes showed
differential expression when they were expressed on tumor cells in comparison with normal cells
(Fig. 3B).

3.4 Genetic alterations in ACE2 and TMPRSS2 associated
with HNSC
Using cBioPortal, we investigated genetic variations of ACE2 and TMPRSS2 to determine their functional
signi�cance in HNSC development. A meta-analysis of the ACE2 protein sequence from 12 studies (2
overlapping studies were not included) with a total sample size of 1130 HNSC patients pointed out 5
missense mutations with a somatic mutation frequency of 0.4% in the 805 amino acid long human ACE2
protein (Fig. 4A). We also looked into the frequency of genetic alterations in ACE2 and found that ACE2
was largely altered in HNSC, with a frequency of 3.21%, and a low rate of alteration in adenoid cystic
carcinoma (Fig. 4B). Further, we went on to analyse the expression level of unique types of genetic
alterations as part of our study. From this analysis, we discovered that the shallow deletion type in HNSC
causes the largest level of copy number alteration in ACE2 (Fig. 4C & D).

The genetic changes in TMPRSS2 in HNSC were investigated using a similar method. We found three
missense and one nonsense type mutation in TMPRSS2, with a somatic mutation frequency of 0.4%
(Fig. 5A). The mutations were located at 4 different locations throughout the 492 amino acid long
TMPRSS2 protein sequence (Fig. 5A). In the TMPRSS2 mRNA, the highest rate of genetic alteration
frequency was reported to be 1.7% (Fig. 5A). In TMPRSS2, shallow deletion was the most common kind
of copy number alteration, similar to ACE2 (Fig. 5C & D). Together, the functional characterization of
ACE2 and TMPRSS2 by utilizing various head and neck cancer studies uncovered some of the most
relevant evidence of their interconnection with head and neck cancer development.

3.5 Interaction of proteins associated with the progression
of COVID-19 and HNSC severity
Various numbers of genes are involved directly or indirectly in COVID-19 and HNSC progression. Using
CTD, we identi�ed 9,880 and 16,991 genes associated with COVID-19 disease and HNSC based on their
inference score. Each of these genes was either curated or associated with the disease
(marker/mechanism and/or therapeutic) or inferred associated via curated chemical interactions. From
this huge dataset, a set of 21 and 19 curated genes was determined as the biomarker or therapeutic
targets for COVID-19 and HNSC treatment, in which ACE2 and TMPRSS2 were included (Table 1). The
translated protein sequence of these genes was utilized for generating the PPI network through the
STRING database. Though the predicted edges were 20, 32, and 107 for COVID-19, HNSC, and both
(COVID-19 & HNSC) according to the information provided by the database itself, we found 123, 95, and
336 connecting edges among these selected proteins (Fig. 6A-C). This PPI indicates that proteins are
functionally interconnected more strongly than expected outcomes. We also found that ACE2 and
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TMPRSS2 proteins are interlinked with other protein molecules associated with COVID-19 as well as
HNSC disease progression.
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Table 1
List of Genes Directly associated with COVID-19 & HNSC

Gene Directly Interconnected with COVID-19 Disease

S. No. Gene Name Association Inference Score

1 CCL2 Biomarker 28.70

2 IL6 Biomarker 24.36

3 TNF Biomarker 23.78

4 CXCL8 Biomarker 22.61

5 IL10 Biomarker 21.97

6 IL1B Biomarker 20.74

7 IL2 Biomarker 18.05

8 AGT Biomarker 17.04

9 CCL3 Biomarker 12.08

10 CXCL10 Biomarker 11.73

11 IL7 Biomarker 8.38

12 MUC1 Biomarker 7.59

13 CCR2 Biomarker 6.96

14 ACE2 Biomarker & Therapeutic Target 6.74

15 CSF3 Biomarker 6.21

16 TMPRSS2 Biomarker 5.04

17 IL2RA Biomarker 4.75

18 CD209 Biomarker 3.55

19 IFNAR2 Biomarker 2.68

20 ICAM5 Biomarker 2.66

21 IL10RB Biomarker 2.54

Genes Directly Interlinked with HNSC

1 TP53 Biomarker 46.99

2 ABCC1 Biomarker 39.48

3 AKT1 Biomarker 38.38

4 CASP8 Biomarker 37.88
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Gene Directly Interconnected with COVID-19 Disease

5 CDK2 Biomarker 35.23

6 ABCB1 Biomarker 34.58

7 CDK4 Biomarker 33.12

8 STAT3 Biomarker 32.84

9 CTNNB1 Biomarker 32.03

10 CDK6 Biomarker 29.92

11 PTEN Biomarker 29.87

12 MGMT Biomarker 26.08

13 IL1A Biomarker 24.95

14 TNFRSF10B Biomarker 24.36

15 IGF1 Biomarker 22.65

16 PIK3CA Biomarker 13.72

17 IL1RAP Biomarker 11.83

18 YAP1 Biomarker 4.79

19 ING1 Biomarker 2.73

3.6 Functional Role of Associated Genes
To assess the functional role of genes associated with HNSC and COVID-19, we used the list of
previously retrieved genes (CTD) using the PANTHER database. First, we run a query using various
parameters to determine the molecular activity of genes associated with COVID-19 and HNSC. The
majority of the genes (33.9%) were involved in binding activity, according to the molecular function.
Furthermore, 19% of the genes were found to be involved in catalytic activity, particularly acting on the
proteins (Fig. 7A). In terms of biological processes, 18.74% of the genes were identi�ed to be associated
with cellular processes. We observed that the majority of the genes are involved in cell growth and cell
proliferation after a thorough investigation (Fig. 7B). In addition to this, we also found that these genes
were associated with cancer development and endothelial signalling pathway (Fig. 7C).

4. Discussion
SARS-CoV-2 infection become a new public health crisis across the world with the emergence and rapid
spread of coronavirus disease 2019 (COVID-19). Since cancer patients are known to be
immunocompromised, they are considered a distinct vulnerable population with a high risk of COVID-19-
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associated complications (Yang et al. 2020; Desai et al. 2021). For instance, SARS-CoV-2 infection led us
to reduce elective surgeries due to a lack of knowledge on the impact of COVID-19 disease on cancer
patients (COVIDSurg Collaborative 2020b). However, a major problem put forth by physicians/clinicians
is that a delay or cancellation of surgery may directly or indirectly result in poor outcomes and increased
fatality. For instance, reports have suggested that a delay in proper care for a patient with mild or less
aggressive forms of HNSC resulted in pulmonary complications associated with the SARS-CoV-2 virus
(COVIDSurg Collaborative 2020a). Though studies suggested the possibility of suspending surgery in a
few cases, the main therapeutic strategy for these tumors is surgery (Brody et al. 2020). In this view, the
potential impact of COVID-19 on the pattern of presentation of HNSC patients needs further exploration
to provide optimal care with e�cient treatment. Thus, we hereby investigated the possible explanations
for the increased susceptibility and mortality rate in HSNC patients infected with SARS-CoV-2.

First, we targeted the ACE2 and TMPRSS2 expression levels because they both play a vital role in viral
host entry and disease pathogenesis of SARS-CoV-2. Indeed, ACE2 and TRMPRSS2 are associated with
in�uenza, SARS-CoV, as well as SARS-CoV-2 in regulating viral entry into the host cell (Heurich et al. 2014;
Simmons et al. 2013). To note, it is demonstrated that the a�nity of the S1 spike protein of SARS-CoV-2
is 10–20 times higher towards ACE2 (Wrapp et al. 2020) and it is cleaved by TMPRSS2, thereby
activating the endocytic route of SARS-CoV-2 (Hoffmann et al. 2020). Numerous studies have recently
suggested that ACE2 and TMRPSS2 could be potential biomarkers for the early prediction of COVID-19
disease severity (Skarstein Kolberg 2020; Fagyas et al. 2022; Strope, PharmD, and Figg 2020; Rahbar
Saadat et al. 2021). With this background, we evaluated the mRNA expression of ACE2 and TMPRSS2 in
HNSC utilizing multidisciplinary parameters. We found that ACE2 expression was downregulated in HNSC
with HPV infection, suggesting higher shedding of membrane ACE2 from head and neck region,
particularly in sinuses, vocal cords, salivary gland and oral cavity, since these regions are known to
express higher levels of ACE2 (Descamps et al. 2020). On the other hand, though we observed reduced
expression of TMRPSS2 in HNSC, its mRNA levels were found substantially elevated in HNSC associated
with HPV. In reference to this, a recent study reported that the reduction of TMPRSS2 was more evidence
in HNSC patient with shorter survival as well as those with HPV negative status. (Sacconi et al. 2020).
This indicates the virus or any viral factors/viral-induced host mediators could be involved in modulating
TMPRSS2 expression, which leads to higher expression of TMPRSS2 and aids in priming of S protein for
host viral entry as well as increased disease severity.

Since both the genes mediate sex-speci�c effects (Baratchian et al. 2021), we explored their expression
levels in terms of gender. A differential expression of ACE2 in males and females indicates sex different
expressions of ACE2 due to the effect of sex hormones, thereby contributing toward gender disparity in
morbidity and mortality from COVID-19 disease. In contrast, TMPRSS2 expression was completely
downregulated in both male and female HNSC cases. Thus, studies regarding the impact of sex
hormones on the sex-speci�c expression of these genes need further validation as suggested by Majdic,
2020 (Majdic 2020). Furthermore, ampli�ed expression of ACE2 expression in individual cancer stage-2
and age group (61–80) suggests that this patient needs effective management during SARS-CoV-2
infection because early studies have reported that people over the age of 40 are at high risk for HNSC
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(Schantz and Yu 2002). In alignment with this, our results showed an ampli�ed expression of ACE2,
particularly in individual cancer stage-2 and age group (61–80) compared to normal. However, the lack of
TMPRSS2 expression in all cancer stages and age groups suggests that other host proteases may be
involved in the proteolytic cleavage of the S protein of SARS-CoV-2 infection. In support of this, new
scienti�c �ndings have reported the involvement of various other host proteases (furin, matriptase,
cathepsin B, cathepsin L) in proteolytic cleavage of coronavirus spike proteins (Jaimes, Millet, and
Whittaker 2020; Papa et al. 2021; Strope, PharmD, and Figg 2020). To note, furin, as well as cathepsin, are
a few upregulated proteins associated with carcinoma invasion and progression in oral cancer patients
(López de Cicco et al. 2002; Kawasaki, Kato, and Mizuno 2002). In reference to this, an in silico analysis
by Zhong et al 2020 demonstrated that SARS-CoV-2 could invade the oral mucosal cell via the ACE2
receptor and interact with the cell membrane through the activation of furin protease (Zhong et al. 2020).
From this, we could speculate that oral mucosa tissue is more susceptible to SARS-CoV-2, thereby
enhancing the disease severity in HNSC patients. Though ACE2 and TMPRSS2 expression were
downregulated in HNSC cases compared to normal, our correlation analysis showed a signi�cant positive
association between ACE2 and TMPRSS2 in HNSC patients, which emphasizes the importance of these
molecules in the disease severity of HNSC and/or COVID-19 patients. This initial assessment provides a
piece of primary evidence that differential expression of ACE2 and TMPRSS2 is one of the plausible
explanations for the higher susceptibility and mortality rate of HNSC patients with COVID-19.

To provide strong evidence, we further investigated the functional assessment of ACE2 and TMPRSS2. In
this, we developed a protein-protein interaction network among the topmost signi�cant 40 proteins
associated with COVID-19 as well as HNSC, which includes ACE2 and TMPRSS2. We observed 40 nodes
of interaction, where the major interaction of nodes was noted with ACE2 and TMRPSS2. This indicates
the functional involvement and substantial role of ACE2 and TMPRSS2 in the disease progression of
HNSC patients with SARS-CoV-2 infection. Besides, we also characterized the mutation and copy number
alteration in their respective protein sequences based on 12 studies. In total, we noted 5 mutations at �ve
different locations of the ACE2 protein, where the highest frequency of alteration is 3.21%. Whereas, 4
mutations at 4 different locations were determined against the TMPRSS2 protein sequences, where the
maximum level of alteration frequency was 1.7%. Importantly, shallow deletion was the most frequent
type of CNA observed in both protein sequences. This result supports the signi�cant involvement of ACE2
and TMRPSS2 in HNSC and COVID-19 disease progression.

Finally, we assessed the functional and molecular activities of various genes associated with HNSC and
COVID-19. We found that 19% of genes were associated with catalytic activity, indicating TMPRSS2 and
other host protease enzymes may be involved in proteolytic cleavage of S protein of SARS-CoV-2 for host
viral entry as well as active shedding of membrane/cellular bound ACE2. This could be a possible
explanation for direct release and elevated levels of ACE2 in circulation, which is shown to be strongly
associated with COVID-19 disease severity (Fagyas et al. 2022). Besides TMPRSS2, other enzymes such
as TMPRSS11D, HNP/TMPRSS1, ADAM17, and ADMA10 are also shown to cleave the ACE2 receptor
(SENAPATI et al. 2021; Jia et al. 2009). In terms of cellular function and pathway, most of the genes were
associated with cell growth, cell proliferation, in�ammation, and various cancer signaling (P53, PI3K, RAS,
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EGFR, JAK/STAT, angiogenesis, interleukin mediated, Wnt signaling) pathways, indicating the higher
possibility of HNSC progression. This was ascertained in early studies, which reported the potential
involvement of underlying signaling pathways in HNSC (de Bakker et al. 2021; Thomas et al. 2015;
Alamoud and Kukuruzinska 2018; Mock et al. 2021). Additionally, studies have described pro-
in�ammatory mediators as a crucial factor for HNSC development (Bonomi et al. 2014; Astradsson et al.
2019). Moreover, genes associated with in�ammation and vascular functions show that elevated levels
of pro-in�ammatory mediators accompanied by hyper-in�ammatory responses may be directly or
indirectly involved in epithelial/endothelial dysfunction, which ultimately destroys the pulmonary
endothelial cells as well as the oral cavity, leading to multi-organ failure and death, as observed in COVID-
19 patients (Pelaia et al. 2020; Jin et al. 2020; Fodor et al. 2021). Hence, further investigations are
required to ascertain the role of ACE2 and TMPRSS2 as biomarkers or therapeutic targets for HNSC
patients to provide effective treatment and triage.

5. Conclusion
Based on our in silico analysis, we would like to summarize that both ACE2 and TMPRSS2 are generally
downregulated in HNSC but their expression levels are differentially regulated during the pathological
condition, particularly during the viral infection. In addition, our mutation and PPI analysis revealed a
strong functional role of ACE2 and TMPRSS2 in HNSC development with SARS-CoV-2 infection.
Therefore, ACE2 and TMPRSS2 could serve as robust biomarkers for early prediction of clinical outcomes
in HNSC patients infected with SARS-CoV-2. Thus, further investigations are urged to study the long-term
effect of SARS-CoV-2 in HNSC patients.
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Figures

Figure 1

Expression Level of ACE2 and TMPRSS2 in HNSC and other cancers. (A) Expression Level of ACE2 (B)
Expression level of TMPRSS2. *** Indicates P ≤ 0.001 compared to Normal



Page 19/24

Figure 2

mRNA levels of ACE2 and its co-expressed genes in terms of Gender, Individual Cancer Stage, Age group,
and Tumor grade. (A & B) mRNA levels of ACE2 and TMPRSS2 based on Gender. (D & C) mRNA levels of
ACE2 and TMPRSS2 based on the individual cancer stage. (E & F) mRNA levels of ACE2 and TMPRSS2
based on different age groups. (G & H) mRNA levels of ACE2 and TMPRSS2 based on tumor grades.
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Figure 3

Association between ACE2 and TMPRSS2. (A) Correlation between ACE2 and TMPRSS2. Spearman’s Rho
Correlation was performed to assess the association between ACE2 and TMPRSS2. (B) Heatmap based
on the expression score of ACE2 and TMPRSS2. P ≤ 0.05 is considered statistically signi�cant. 
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Figure 4

Mutation and CNAs in ACE2 Protein Sequence. (A) Types of Mutations in ACE2. (B) Frequency of Genetic
Alterations in ACE2. (C & D) Various types of copy number alterations in ACE2.
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Figure 5

Mutation and CNAs in TMPRSS2 Protein Sequence. (A) Types of Mutations in TMPRSS2. (B) Frequency
of Genetic Alterations in TMPRSS2. (C & D) Various types of copy number alterations in TMPRSS2.



Page 23/24

Figure 6

Protein-Protein Interaction Network with various proteins associated with COVID-19 and HNSC. (A) PPI
analysis among the genes associated with COVID-19. (B) PPI analysis among the genes associated with
HNSC. (C) PPI analysis among the genes associated with COVID-19 & HNSC.
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Figure 7

Functional role of genes associated with COVID-19 and HNSC. (A) Molecular Activity of genes associated
with COVID-19 and HNSC. (B) Biological processes of genes associated with COVID-19 and HNSC. (C)
Signalling pathways of genes interconnected with COVID-19 and HNSC.


