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Abstract
Only 30–40% of advanced melanoma patients respond effectively to immunotherapy in clinical practice,
so it’s necessary to accurately identify the response of melanoma patients to immune therapy pre-
clinically. Here we developed the KP-NET, a deep learning model whose structure is sparse by the KEGG
pathways, which can accurately predict melanoma patients’ response to immunotherapy using
information at the pathway level that is enriched from gene mutations and copy number variations data
prior to immune therapy. The KP-NET demonstrated the best performance on predictive melanoma
response to anti-CTLA-4 and anti-PD-1 treatment with corresponding AUROC values of 0.889 and 0.867,
and selected some relevant biomarkers, genes such as PLCB2, FGFR4, RHEB and CCNB2, pathways such
as In�ammatory mediator regulation of TRP channels, Notch signaling pathway, mTOR signaling
pathway and TNF signaling pathway, etc. In conclusion, deep learning model guided by biological
information enables accurate prediction of the response of melanoma patients to immunotherapy and
relevant biomarkers before clinical treatment, which may be helpful in melanoma precision medicine.

Introduction
Immune checkpoint inhibitors (ICIs) include monoclonal antibodies targeting the immune inhibitory
proteins programmed cell death protein 1 (PD-1) and cytotoxic T lymphocyte-associated antigen 4 (CTLA-
4)[1]. While ICIs have resulted in durable clinical response in melanoma, only 30–40% of patients
generate objective clinical response[2, 3]. Therefore, biomarkers and models that accurately predict ICIs
treatment response in melanoma patients are necessary. Using these biomarkers and models, we can
screen patients for the best response to immunotherapy, maximizing patients’ bene�ts and minimizing
the costs.

A number of biomarkers associated with immunotherapy response have been identi�ed, such as tumor
mutational burden (TMB) and neoantigen load[4–6] and alternative survival and proliferation pathway[7].
Nevertheless, these biomarkers have some drawbacks, for example, non-standardized cut-off value,
relatively high cost-effectiveness, unsatisfactory predictive power restrict their clinical application, and
their predictive contributions to response or resistance of ICIs remain largely uncharacterized[8]. Due to
the limitations above, some genomic studies suggest that mutations and copy number variations (CNVs)
affecting particular genes and signaling pathways have additional ability to predict response of ICIs[9–
13]. Therefore, we need a predictive model using patients’ mutation and CNVs pro�les that not only
exhibits good predictive performance, but also can screen some important biomarkers.

Although several predictive models have been proposed in previous studies, many of them face
challenges of trade-off between model interpretability and accuracy. For example, linear models such as
logistic regression usually has good interpretability but poor predictive performance, whereas deep
learning model such as fully connected neural network (FNN) often has less interpretability but higher
predictive performance, and it is computationally expensive and tends to over�t[14–16]. In order to
overcome the limitations above, Ma et al.[17] developed Dcell based on visible neural network to model
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the effect of gene interaction on cell growth in yeast, and Kuenzi et al.[18] proposed DrugCell, an
interpretable deep learning model to predict drug response and synergy. Hao et al.[19] built PASNet, a
pathway-associated sparse deep neural network to predict prognosis of Glioblastoma multiforme. The
sparsi�cation of PASNet not only reduced the number of model parameters to avoid over�tting, but also
took advantage of biological knowledge. Elmarakeby et al.[20] developed a sparse network (P-NET)
based on pathways from Reactome and further calculated importance score for each gene and pathway
using DeepLIFT[14] method.

Here, we built a KEGG pathway neural network (KP-NET) to predict advanced melanoma patients’
response to ICIs treatment. The most distinct innovative aspects of KP-NET proposed are as follows: (1)
Based on our limited knowledge, our study is the �rst to predict immune response using somatic
mutations and CNVs data which obtained from pre-immunotherapy tissue. (2) We use the KEGG
pathways which is simpler to sparse neural network, signi�cantly reducing the number of model
parameters and avoiding over�tting while utilizing biological information. (3) To further avoid over�tting,
we add batch normalization layer and dropout layer to the KP-NET. (4) The KP-NET can accurately predict
the response of melanoma patients to anti-PD-1 and anti-CTLA-4 treatment and identify relevant
biomarkers to provide some insights for clinical immunotherapy.

Materials And Methods

Clinical Cohorts
We collated clinical information, mutations and copy number data of melanoma patients therapied with
ICIs from previous published articles. A total of 122 advanced melanoma patients treated with anti-CTLA-
4 inhibitor and whose tissue was obtained before immunotherapy were selected from Dana-Farber
Cancer Institute[21], we named it as anti-CTLA-4 Data Set, and the exclusion criteria is shown in Fig. 1. In
addition, a total of 144 metastatic melanoma patients treated with anti-PD-1 inhibitor between January
2013 and June 2016[22] were also included, excluding one patient whose tissue was taken after anti-PD-
1 therapy and 9 patients who had received more than 2 remaining treatments prior to anti-PD-1 inhibitors,
we selected 134 patients as anti-PD-1 Data Set.

Melanoma patients’ best response to anti-CTLA-4 or anti-PD-1 inhibitor was assessed according to
RECIST criteria v1.1, patients achieving complete response (CR), partial response (PR) or stable disease
(SD) / mixed response (MR) were grouped as responders, whereas patients showing progressive disease
(PD) were referred to as non-responders.

For somatic mutations data, only non-silent mutated genes were included in our following analysis. In
order to avoid the bias of low mutation ratio genes on KP-NET model’s prediction performance, we further
excluded genes whose mutated rate was less than 5%.
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For copy number data in anti-CTLA-4 Data Set, CNVs were considered ampli�ed or deleted if the 
|log2(copy ratio)| exceeded 0.5, genes were annotated with R packages ‘CNTools’, and genes in which
variation rate less than 10% were excluded. The copy number data in anti-PD-1 Data Set was
preprocessed as in Liu et al. [22], it was inspected visually and manually for focal ampli�cations and
deletions, and genes were annotated with Oncotator[23]. Furthermore, only genes whose variation rate
exceeded 5% were retained in anti-PD-1 Data Set.

Kp-net Model
The KP-NET is a biologically informed sparse neural network, which could accurately predict response of
ICIs therapy in patients with melanoma using their genomic pro�les. Inspired by the KEGG Pathway
Maps[24], every node in KP-NET represents a biological entity, such as genes and pathways, each edge
encodes a known relationship between the corresponding entities (Fig. 2). The architecture of KP-NET is
composed of �ve layers, the nodes in input layer represent patients’ genomic features, including mutation,
copy number ampli�cation and copy number deletion. The second layer represents genes of interest,
each node in this layer is exactly connected to the input layer. The remaining three layers represent
pathways from KEGG, and higher layers represent more abstract and complex biological processes.
Combining KEGG pathway information with deep learning, KP-NET not only signi�cantly reduces the
number of parameters, but also demonstrates the state of different biological entities.

Sparse connections between inputs and genes or genes and pathways are encoded using a mask matrix 
M, which multiplies the weights matrix W to zero-out all the connections that not exist. The output of
each sparse layer is calculated as

ŷ = (M ⊙ W)Tx + b

,
where M is mask matrix, W is weights matrix, x is input matrix, b is bias vector, and ⊙  represents
Hadamard product. Each sparse layer in KP-NET is paired with batch normalization layer, ReLU activation
function and dropout layer. The �nal output layer is paired with a softmax activation function to
transform outcomes of KP-NET into class probabilities.

DeepLIFT is a backpropagation-based attribution method, which can calculate a sample-level importance

score for each node in our KP-NET. Given a sample s and its input features xs = (xs
1, …, xs

i , …, xs
n),

where n also is the number of nodes in the KP-NET’s input layer. we can gain the predicted value ŷs by
feeding its features into the KP-NET, that is,

ŷs = f xs( )
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where f represents the KP-NET. If we set the reference of xs as xs
0 = (xs

10
, …, xs

i0
, …, xs

n0
), we also can

obtain the reference of ŷs by

ŷs
0 = f xs

0

Then, an importance score Cs
i  of the i-th feature in sample s is calculated based on the difference in

target activation Δŷs = ŷs − ŷs
0, and Δŷs equals sum of all features’ importance scores. That is,

Δŷs = ∑ n
i=1Cs

i

To obtain the �nal sample-level importanceCi, we aggregated the score Cs
i  over all the ns samples

Ci = ∑ ns
s =1Cs

i

In this way, we can calculate the importance score of each node in the KP-NET. Usually, nodes with more
connected edges are more likely to have larger importance scores. So, we use di that is the number of
edges connected with node i to adjust its score Ci,

AdjCi =

Ci
di

, di > μ + 2σ

Ci, otherwise

where μ and σ are the mean and standard deviation ofdi, respectively.

Kp-net Training And Evaluation
In order to check out the utility of KP-NET, we train it to predict response states (responder/non-responder)
of melanoma patients to anti-CTLA-4 or anti-PD-1 ICIs. For anti-CTLA-4 Data Set and anti-PD-1 Data Set,
we randomly split each of them into a discovery set (80%) and a target set (20%). When we perform
hyperparameter optimization for KP-NET, the discovery set is further divided into a training set (60% of
discovery set), a validation set (20% of discovery set) and a test set (20% of discovery set). We use the
validation set for early stopping while training KP-NET, but concatenate it into training set for other
methods which do not need a validation set. The test set is used to select the optimal set of
hyperparameters. When we perform 5-fold cross-validation, the discovery set is only partitioned into a
training set (80% of discovery set) and a validation set (20% of discovery set) for each cross-validation
fold, and the validation set in each fold is not overlapped.

( )

| |

{
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When training the KP-NET model, Adam optimizer with an initial learning rate of 0.01 and weight decay of
1 × 10 −5 is used. The learning rate is decayed by λγ after every nstep epochs for a smooth

convergence. The epoch number of early stopping is 50 and the size of mini-batches is set to 8. Besides,
we further perform a grid search to optimize (1) learning rate decay ratio (λγ ∈ [0.95, 0.9]), (2) learning
rate decay step size (nstep ∈ [20, 30]), (3) dropout probability (pdrop ∈ [0.1, 0.2, 0.3]).

Meanwhile, we also perform hyperparameter optimization for baseline methods. For random forest (RF),
we optimize the trees’ number (NRF ∈ [100, 200, 500, 1000]). For the support vector machine (SVM),
we optimize the regularization strength parameter (C ∈ 10k, ∀k ∈ [ − 3, − 2, − 1, 0, 1]). For the
AdaBoost, the number of decision tree (NAB ∈ [50, 100, 200, 500]) is optimized.

The statistical analysis of clinical characteristics between the discovery set and the target set is
performed using R 4.1.0. The deep learning models are implemented using PyTorch modules (version
1.7.1). The baseline methods are performed using scikit-learn modules (version 0.24.2). The source code
is available at https://github.com/0219zhang/KP-NET.

Result

Response to anti-CTLA-4 treatment
The clinical characteristics including age, gender and histology between anti-CTLA-4 treatment discovery
set (n = 97) and target set (n = 25) were not signi�cantly different. There were 60 (61.86%) patients
with PD after anti-CTLA-4 therapy in discovery set, which was not signi�cantly different with 16 (64%) PD
patients in target set in terms of clinical characteristics. The details were shown in Table 1.

For predicting response to anti-CTLA-4 treatment of patients in the target set, compared with baseline
methods, such as RF, SVM, logistic regression, decision tree and AdaBoost, the KP-NET showed best
performance (area under the receiver operating characteristic curve (AUROC) = 0.889, area under the
precision-recall curve (AUPR) = 0.933, accuracy = 0.76, F1-score = 0.842) (Fig. 3a and 3b), which indicates
that the KP-NET can extract better biological features by integrating KEGG pathways while having the
nonlinear �tting ability of deep learning model .

In order to evaluate whether sparse model had different performance compared with dense fully
connected model. We trained a dense model named Dense1 which had the same number of nodes and
layers as KP-NET, and another dense model named Dense2 with the same number of parameters as KP-
NET, both of them achieved inferior performance (Fig. 3a and 3b), indicating that sparsi�cation of deep
learning model using biological knowledge can indeed improve its predictive performance. Meanwhile,
the trained KP-NET model exactly classi�ed 100% of the responders and 72.73% of the non-responders
with anti-CTLA-4 ICIs, demonstrating the potentials of the KP-NET for clinical applications (Fig. 3c).
Moreover, the AUROC, AUPR, accuracy and F1-score of �ve-fold cross-validation showed that the KP-NET
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model had a stable predictive performance, with a mean AUROC of 0.856, where its standard deviation
was just 0.041 (Fig. 3d).

In order to understand the interactions between input features, genes and pathways that contributed to
predictive performance and display the information �ow from the inputs to outcomes, we visualized the
trained KP-NET model with fully interpretable layers. Due to the large number of genes and pathways, we
only showed the top 10 nodes with the highest importance scores in each layer of the KP-NET (Fig. 4).

Clearly, mutation data provided more information than copy number variants when we predicted response
to anti-CTLA-4 inhibitor in melanoma patients. Among the 10 most important genes selected by KP-NET,
we could see that PLCB2, ADCY1 and MAPK8 genes were enriched in In�ammatory mediator regulation
of TRP channels, the most important pathway selected. There were also other important genes including
FGFR4, COL1A2, GANI1 and so on. Meanwhile, in the most important pathways screened by the KP-NET,
there was a well-known tumor-related pathway, Notch signaling pathway. We noticed that genes with
higher scores tend to be enriched in pathways with higher scores, indicating the reasonableness of the
integration of the KP-NET and DeepLIFT.

Response to anti-PD-1 treatment

In this dataset, the gender and histology between the discovery set and the target set also were not
signi�cant difference. There were 49 (45.79%) patients with PD after anti-PD-1 therapy in the discovery
set and 12 (44.44%) PD patients in the target set (P>0.05 ). The clinical characteristics are detailed in
Table 2.

Compared to baseline methods, the KP-NET model still showed best performance when predicted
response to anti-PD-1 therapy, that AUROC = 0.867, AUPR = 0.834, accuracy = 0.76, F1-score = 0.842 (Fig.
5a and 5b), and exactly classi�ed 85.71% of the melanoma responders with anti-PD-1 ICIs and 76.92% of
the non-responders (Fig. 5c). The result of 5-fold cross-validation further demonstrated the stability of KP-
NET model (Fig. 5d). The results demonstrated the promising applicability of the KP-NET in predicting
response to immunotherapy, either for anti-CTLA-4 or anti PD-1 ICIs, in melanoma patients.

The information �owing and entities importance for predicting anti-PD-1 response were interpretable
visualized in Fig. 6. The CNVs data was more informative than mutations when employed to predict anti-
PD-1 response, which was different from anti-CTLA-4 ICIs. Among the 10 most important genes, the �rst
gene RHEB was connected with AMPK signaling pathway and mTOR signaling pathway, and the second
gene CREB3L1 was enriched in AMPK signaling pathway and TNF signaling pathway. All these pathways
above were well-known for their association with tumor. Besides, some of the other pathways, such as
NF-kappa B signaling pathway and TGF-beta signaling pathway, were with high importance scores. We
can also �nd a strong connectivity between genes and pathways with high importance scores, which is
consistent with the results of the KP-NET in predicting response of anti-CTLA-4 ICIs.

Discussion
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The KP-NET is a deep neural network with structured sparsi�cation using KEGG pathways information
which has a relatively simple structure. The sparsi�cation process guided by KEGG pathways can
signi�cantly improve the prediction capability of the KP-NET by reducing the number of trainable
parameters in the KP-NET while using biological information to enrich gene information to the pathway
level. Meanwhile, we add batch normalization layer and drop out layer to the KP-NET to improve its
robustness. Due to the strong feature extraction capability of the KP-NET, we can accurately predict the
response to immunotherapy in melanoma patients using their pre-treatment multi-omics data. In the two
case studies of predicting response to anti-CTLA-4 and anti-PD-1 inhibitors in melanoma, the KP-NET
demonstrated the best prediction performance, signi�cantly outperforming baseline methods such as RF
and SVM, as well as FNNs with same number of nodes, layers and parameters as the KP-NET,
demonstrating the feasibility and accuracy of integrating KEGG pathways information. Moreover, the KP-
NET screens some biomarkers of response to immunotherapy in melanoma by combining with DeepLIFT
algorithm, which may be helpful in clinical practice.

Among the genes and pathways screened by the KP-NET in the mission of predicting response to anti-
CTLA-4 therapy in melanoma, In�ammatory mediator regulation of TRP channels with the highest
importance score includes genes PLCB2, ADCY1 and MAPK8. Studies have found that all these genes
could contribute to the transition of in�ammation and immune response and further affect response to
anti-CTLA-4 ICIs[25], and these three genes were also identi�ed as potential prognostic biomarkers for
melanoma[26–29]. The other genes including FGFR4, GNAI1, CD36 and FLT1 could alter the tumor
microenvironment and further impact ICIs’ clinical e�cacy, combination their inhibitors and ICIs might be
better for melanoma[30–33]. Khunger et al.[34] found that COL1A2 was associated with cancer
development and progression, and patients with melanoma were more likely to be bene�t from anti-CTLA-
4 inhibitors when COL1A2 was highly expressed. Moreover, for the Notch signaling pathway, Cho et al.
[35]found that it could affect activation of cytotoxic T cells, in�ammatory immune microenvironment,
in�ammatory expression pro�le and immunogenicity, and Li et al.[36] reported that patients with non-
small cell lung cancer (NSCLC) treated by ICIs could own longer survival time if they had high-mutated
Notch signaling. These results suggest that the genes and pathways screened by the KP-NET combined
with DeepLIFT are credible to predict response to immunotherapy in melanoma patients.

Similarly, the candidate genes selected by the KP-NET are biologically signi�cant in predicting the
response of melanoma to anti-PD-1 inhibitor. For example, genes RHEB and CREB3L1 enriched in mTOR
signaling pathway and AMPK signaling pathway not only contributed to predict response to anti-PD-1
inhibitor, but also could regulate PD-1 expression, increase expansion of effector T cells, reduce the
emergence of immune escape and display antitumor effect in murine tumor models[37–39]. Among the
remaining genes, Chen et al.[40] found that CCNB2 could serve as a marker to predict response to anti-
PD-1 therapy in NSCLC patients, suggesting that CCNB2 might also be a predictor of response to anti-PD-
1 treatment in melanoma. For another important gene TNFRSF11A, also named RANK, a clinical trial
combining its monoclonal antibody and Immune checkpoint inhibitors for the treatment of melanoma
were already underway[41]. The other genes such as IFNA13, ACTG1 and PPP2R1B all involved in
immune-regulatory activities, playing distinctive roles in melanoma cells’ focal adhesion and motility[42–
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45]. Therefore, the proposed KP-NET may have a great potential on discovering important biomarkers in
immunotherapy of advanced melanoma.

There also are some limitations in our study. The sample size of both datasets used in our research is not
particularly large, more samples would be used in our future study to verify the predictive ability of the
KP-NET. In addition, the biological relationships we used were obtained from KEGG pathway database, we
will further explore the in�uence of other pathway databases, such as Gene Ontology, to guide network’s
architecture.

In conclusion, our KP-NET model could not only accurately classify response versus non-response for
immunotherapy to melanoma patients, but also reveal related biological mechanism.
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Tables
Table 1. Clinical characteristics of anti-CTLA-4 discovery set and target set
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  Total 
 (n=122)

Discovery 
 (n=97)

Target 
 (n=25)

z/χ2 P

Age M(Q1, Q3) 62(45.5,73) 65(47,73) 54(42.75,71.5) 1.37 0.1707

Gender n(%)       0.27 0.6054

female 34(27.87) 26(26.8) 8(32)    

male 88(72.13) 71(73.2) 17(68)    

Histology n(%)       0.01 0.9069

cutaneous/mucosal 101(82.79) 81(83.51) 20(80)    

other 21(17.21) 16(16.49) 5(20)    

RECIST n(%)       - 0.7891

CR 8(6.56) 7(7.22) 1(4)    

PR 20(16.39) 17(17.53) 3(12)    

SD 18(14.75) 13(13.4) 5(20)    

PD 76(62.3) 60(61.86) 16(64)    

The number of melanoma patients with given characteristic is shown, the number in parentheses
representing the corresponding percentage. - represents Fisher’s exact test 

Table 2. Clinical characteristics of anti-PD-1 discovery set and target set
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  Total
 (n=134)

Discovery
 (n=107)

Target
 (n=27)

χ2 P

Gender n(%)       0.83 0.362

female 55(41.04) 46(42.99) 9(33.33)    

male 79(58.96) 61(57.01) 18(66.67)    

Histology n(%)       0.09 0.7638

cutaneous/mucosal 107(79.85) 86(80.37) 21(77.78)    

other 27(20.15) 21(19.63) 6(22.22)    

RECIST n(%)       - 0.5087

CR 16(11.94) 14(13.08) 2(7.41)    

PR 35(26.12) 25(23.36) 10(37.04)    

SD 22(16.42) 19(17.76) 3(11.11)    

PD 61(45.52) 49(45.79) 12(44.44)    

The number of melanoma patients with given characteristic is shown, the number in parentheses
representing the corresponding percentage. - represents Fisher’s exact test

Figures



Page 16/21

Figure 1

The process of screening samples for the anti-CTLA-4 Data Set
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Figure 2

Schematic diagram of KP-NET. The nodes in different layers encodes different biological entities, such as
features from patient genomic pro�le, genes and pathways. The edges between adjacent layers are
biologically customized to show the information �ow from inputs to outcome
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Figure 3

Prediction performance of KP-NET on anti-CTLA-4 Data Set. a ROC curve of eight methods. b PR curve of
eight methods. c confusion matrix using KP-NET model to classify the target set. d Metrics of 5-fold
cross-validation of KP-NET, which also are represented by mean±standard deviation
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Figure 4

Sankey diagram interpreting KP-NET on anti-CTLA-4 Data Set. Visualization of the whole KP-NET shows
the relative importance of nodes in each layer. Darker color’s nodes are more important, while grey nodes
which named ‘Residual’ show the residual importance of the others nodes in each layer. The value in
parentheses indicate the total number of nodes included in the category, for example, there are 2744
genes categorized as ‘Residual’. TRP, transient receptor potential
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Figure 5

Prediction performance of KP-NET on anti-PD-1 Data Set. a ROC curve of eight methods. b PR curve of
eight methods. c Confusion matrix using KP-NET model to classify the target set. d Metrics of 5-fold
cross-validation of KP-NET, which also are represented by mean±standard deviation
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Figure 6

Sankey diagram interpreting KP-NET on anti-PD-1 Data Set. Visualization of the whole KP-NET shows the
relative importance of nodes in each layer. Darker color’s nodes are more important, while grey nodes
which named ‘Residual’ show the residual importance of the others nodes in each layer. The value in
parentheses indicate the total number of nodes included in the category


