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Abstract
Porcine Reproductive and Respiratory Syndrome (PRRS) is one of the most challenging and costly viral
infectious diseases impacting the swine industry. The disease transmission pathways for PRRS are very
complex, requiring a combined approach of intensive surveillance (i.e., testing), biosecurity, and
vaccination for control and eradication. This study builds a proactive framework to forecast the risk of
having a PRRS outbreak on a farm. This forecasting allows for early detection of disease outbreaks and
could direct risk-based, and thus more cost-effective, interventions. Machine learning algorithms were
trained using multi-scale data (pig group-, farm-, and area-level data). For the �rst time, on-farm, between-
farm, and environmental variables, including farm location, pig movements, production parameters,
diagnostic data, and climatic information, were combined for the prediction of PRRS outbreaks. Multi-
scale datasets were merged via feature extraction, followed by the wrapper and �lter feature selection, to
�nd those feature subsets with the best forecasting performance. The predictive value of each feature
selection mechanism was evaluated in terms of its stability. Numerical results demonstrate good
forecasting performance in terms of area under the ROC curve.

1 Introduction
The livestock industry capitalizes on the production of the highest quality animals through the most
economically e�cient means. The success of a given producer relies on their ability to maintain the
health of their herds through good management practices, and the capacity to prevent, detect and control
both endemic and epidemic diseases.

The US is the world’s second largest pork producer and the second largest meat exporter (North American

Meat Institute, 2016). Within the US, most pigs are raised within multi-site swine production systems (i.e.
separate facilities by pig type and age), allowing for specialized housing and feed. However, this multisite
system intrinsically requires the frequent movement of live animals between sites, providing a source of
disease movement and introduction. Further, these intensive production systems create environments of
high pig density, which increases the risk of disease spread. Porcine Reproductive and Respiratory
Syndrome Virus (PRRSV) is currently the most challenging and costly viral infectious disease in the US
swine industry, accounting for over $660M in losses annually [1]. Among these outbreaks, 55% are
associated with growing pigs and 45% with breeding farms. The high viral mutation rate seen in PRRSV
results in high levels of sequence variability, making vaccine development and implementation a
challenge [2]. The high cost of diagnostic screening tests, biosecurity (e.g., air �ltration) and vaccination,
as well as the direct losses associated with outbreaks, highlight the need to develop forecasting models
to help identify farms at highest risk of having an outbreak. Such models allow more cost-effective and
e�cient disease mitigation efforts, with risk-based surveillance, vaccination and outbreak response
strategies.
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The current approach to PRRSV control includes the maintenance of high biosecurity, routine disease
surveillance via diagnostic testing, and the use of standard vaccine protocols [3]. Serologic and molecular
diagnostic tests are available for use on blood, oral �uids, and tissue samples from live and dead pigs [4].
The shedding (using PCR) and exposure (using ELISA) status of a herd can be determined based on the
results of these tests. For breeding herds (sow and nursery farms) there are four disease status
categories: (I) positive unstable, (II) positive stable, (III) provisional negative and (IV) negative [5]. Growing
herds (�nishing herds) are classi�ed as either positive or negative status. The challenge is that untested
farms have uncertain status and cannot be easily categorized as positive or negative. Some farm
managers accept the risk of an outbreak rather than continuously running tests. Therefore, the level of
diagnostic information, as well as the biosecurity and vaccination protocols, may vary by farm.

The aim of this study is to examine different machine learning models and to explore those variables or
features that would most effectively forecast and enable the early detection of PRRSV outbreaks [6]. This
is a study based on multi-scale data (pig group-, farm-, area- level data). On-farm, between-farm, and
environmental variables, including farm location, pig movements [7], production parameters, diagnostic
data, and climatic information are evaluated. The ability to forecast high risk farms can inform strategies
for more e�cient testing and targeted mitigation plans to reduce the impact of PRRSV on the swine
industry. This study focuses on �nishing farms, which currently have the lowest frequency of disease
screening and the lowest standards of immunization and biosecurity. Finishing farms could greatly
bene�t from a system that helps to forecast outbreaks. Importantly, improving health outcomes at
�nishing farms would contribute to reducing the burden of disease transmission to breeding herds, thus
improving the health status of the entire system.

PRRSV transmission can occur by both direct and indirect contacts. The two main modes of PRRSV
between-farm transmission are 1) the transportation of infected live pigs and 2) airborne transmission
from nearby infected farms [8]. Other indirect routes of transmission include the use of infected semen,
contaminated personnel, tools or materials, or insects which can act as mechanical vectors. In this study,
we just considered the two main pathways for disease transmission: direct transmission through the
reception of pigs from other farms, and indirect airborne transmission from nearby farms.

Different features are created to represent these disease pathways and other risk factors that may
contribute to PRRSV epidemics. In general, adding additional features potentially increases the accuracy
of a forecasting model. However, using a large number of features with comparably few data samples
can result in over�tting to training data, and consequently, decreases the generalization of the model to
new data samples [9]. To combat this issue, feature selection methods are used. Feature selection is the
process of selecting a subset of relevant features that are useful for predicting response variables. In this
work, �lter method feature selection based on correlation [10], and wrapper method based on recursive
feature elimination (RFE) [11–13], are used to �nd the most relevant features in�uencing PRRSV
outbreaks. Furthermore, to compare the robustness of each feature selection algorithm with respect to
different training data samples, stability analysis using Tanimoto distance is performed [14].
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Overall, this work examines multiple machine learning models for outbreak forecasting and early
detection in �nishing farms using a combination of diagnostic, production, and pig trade data. This work
demonstrates the strength of these techniques and provides the basis for future real-time dashboards
that can allow producers to actively monitor and respond to shifting disease dynamics on their farms.

2 Data And Feature Generation
In this section, the data source and structure, data pre-processing steps to build the features, and
methods to forecast the probability of having a PRRSV outbreak are explained.

2.1 Data Sources
This study is conducted based on one large-scale swine production system with multiple sow, nursery,
and �nishing farms in the midwest of the United States.

For the time period 2006–2019, a rich database from this system provided information on the movement
of pigs between farms, production of the farms, and PRRSV testing results. During this period, there were
over 230,000 movement records to or from farms within the production system. For each movement
entry, the source and destination, the farm type, the number of shipped pigs, the total weight of the
shipped pigs, and the date of the movement are available.

At each �nishing farm, the period of time from the �rst pig entering the farm to the last one leaving the
farm is de�ned as Finishing Period (FP). Lab results demonstrate that 620 out of the 3770 FP during our
study period experienced at least one outbreak. In practice, most of the farms are tested only when there
is evidence of health problems on the farm. Thus the lab results are positive for almost all submitted
samples and negative samples are not statistically representative of the negative class. To build a
machine learning model that can classify negative and positive samples, samples for both classes are
needed. In this study, domain knowledge expertise is used to de�ne criteria for an assumed negative
classi�cation. A farm is assumed to be negative if it meets two conditions: the mortality rate is in the
lowest 10 percent (i.e., in the 10th percentile), and the percentage of exiting pigs with weight in the
standard range is in top 10 percent (i.e. at 90th percentile). This results in 5 percent of FPs being
negative.

For each farm, climate information was obtained from the closest weather station. The data was
obtained using the R package ‘riem’, which queries the data from an online interface to obtain weather
information. The location of the weather station is not reported for data con�dentiality. Temperature ( ),
relative humidity ( ), wind speed ( ) and altitude ( ) are considered for this study, where refers to
the feature  in the Supplementary table.

2.2 Data Pre-Processing

2.2.1 Data Cleansing
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Identi�cation and correction of inaccurate data is an important step of data analysis. Using incomplete or
inaccurate data samples in the training procedure may lead to poor model performance. Hence, the data
were extensively analyzed to correct incomplete or inaccurate data samples. Some �elds, such as
weather information, were missing for several records. Missing �elds were assigned the average value of
the same period of time in the previous years. Weather related missing �elds associated with each
location (farm) are replaced with the average taken over previous years of the same period of time (e.g.,
month). Due to discrepancies in the naming system in production data and lab results we could not
associate some production data to the health status of the farm. Records with such inconsistencies were
removed from the dataset. Moreover, inaccurate and invalid records were removed by applying a set of
rational range constraints. Speci�cally, in some records the number of dead and survived pigs did not add
up to the number of pigs entering the farm. Also, some weights of the pigs were out of the reasonable
range for that type of a farm. These records were removed.

2.2.2 Feature Engineering
Machine learning can provide good predictions if it can extract the relevant information from the data.
This means that its success depends on both the goodness of the model and the data representation, the
transformation of the raw data into feature vectors. The better the data representation, the simpler the
deployed model can be for the same performance metrics, meaning less chance of over-�tting and better
generalization. Feature engineering is the manual construction of features from raw data. The
importance of data representation and feature engineering becomes clearer when the number of data
samples are small compared to the model complexity required to capture the relationship between
dependent and independent parameters. The feature engineering step is the most time-intensive step of
this work.

Domain knowledge is key to the construction of relevant features. One key contribution of this work is to
construct features that represent those factors that affect the risk of having an outbreak on a farm. This
paper combines data across different scales for better forecasting. After the construction of different
features, feature selection methods can be used to evaluate whether a feature is improving the
forecasting performance or not. For example, to incorporate the effect of temperature, features
representing different seasons ( ) and average temperature ( ) were created based on the
expectation that the spread of PRRSV would follow different patterns in warm [15] versus cold [16]
temperatures.

First Pathway (Direct Contact) Features

To model the PRRSV transmission through direct contacts, different risk factors were considered. Most
pigs are able to clear PRRSV infection after getting infected, but some become persistently infected and
can then act as carriers, spreading the virus if that pig is transferred to another farm. To capture this
effect, a feature () was created representing the number of entering pigs that are coming from a farm that
has had an outbreak during the lifetime of that pig on the farm, i.e. if the nursery that the pig is coming
from had an outbreak during that pig’s lifetime. In addition, the total number of times that pigs enter a

f57−60 f5
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farm during a given FP (), and the total number of different sources that pigs are coming from (), are
additional risk factors. The total number of pigs on a farm () was also considered.

Second Pathway (Airborne) Features

The second pathway is through airborne transmission from nearby farms. To model this pathway, the
vicinity of the farm was de�ned as the circular area around the farm within a de�ned distance. For each
farm, the total number of movements () and number of pigs (), entering or exiting the vicinity were
calculated. In addition, different neighborhood sizes (vicinity diameters) of 5km, 10km and 20km were
examined in this study. Figure 1 depicts the neighborhood for farm F1 at the center of the circle. The
dashed red arrows show the movements that the model counts for airborne effect. The solid red arrows
represent direct contact movements.

Each movement feature has two versions based on time period: 1) from the start of the FP up to its
forecasting date (all features indicated with FP in the FP/H column in the Supplementary table), and 2)
the historical equivalent of this feature for the one year prior to FP start date (all features indicated with H
in the FP/H column in the Supplementary table). These two sets of features are highly correlated, but
together can indicate how the current FP movements are different from what is expected on average for
the farm’s neighborhood. Each of the features for current FP were normalized by dividing the feature
value by the period of time for which they were calculated.

A farm with a higher density of neighboring farms ( ) is at higher risk for having an outbreak. More
importantly, the number of outbreaks happening in the neighborhood of the farm one year prior to the
start of FP, represent how risky the area is ( ).

Figure 1: The two main PRRSV pathways for farm F3:1) Airborne effect from neighboring farms
(movements (orange color) with source or destination to farms that are located in the circle), 2) direct
reception of pigs (blue colors). Other movements (grey) and farms are assumed to have no effect.

Production Features

Production data include total feed consumed and exiting weight at the end of the FP. This information
cannot be used for the purpose of forecasting an outbreak for that same FP because it will violate
causality. However, such data can be used for the evaluation of future FPs, because it is a good indicator
of the overall performance/management practices/risk of a farm. Thus, features for historical production
data for each farm were built (). The total number of pigs (), and the average weight of pigs entering a
farm (), are two features that can be used for the current FP.

The following features based on historical data were used for each FP. Based on the weight of existing
pigs, the percentage of sub-standard pigs ( ) was calculated by dividing the number of surviving pigs
that were not within the standard weight range by the total number of survived pigs. In addition, the
average weight of sub-standard pigs on that farm was determined ( ). Similarly, the percent ( ) and
average weight of exiting pigs falling within the standard range ( ) were calculated. The total net
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weight survived is the weight difference of survived pigs from entrance to exit and is divided by the
number of survived pigs to obtain average net weight survived. Total pig days is the number of days pigs
spend on a farm. The total net weight survived can be divided by the total pig days to obtain Average
Daily Gain (ADG) ( ). Similarly, the Average Daily Feed (ADF) ( ) was calculated as the ratio of total
consumed feed and total pig days. Next, the ratio between ADG and ADF ( ) provides the net weight
survived per one pound of food consumed. From the information on the number of days on-farm the
following features were calculated for dead and survived pigs: the total live pig days ( ) is the number
of days that survived pigs were alive; total dead pig days ( ) is the total number of days that pigs were
on-farm before their death. The total live pig days and total dead pig days were divided by the number of
survived pigs and the number of dead pigs, respectively ( ). All these are used as features.

Other Overall Management Practices/Performance Features Additional features that can demonstrate the
general management practices of a farm were created. Good management practices include the
disinfection of the farm before the start of each FP. Additionally, receiving new animals all together within
a few days of the start of the FP (i.e. all-in all-out), is considered a better practice than to allow continual
additions throughout the FP. The continuous reception of pigs, versus a single time point population of
the farm, results in a staggered cycle of animals leaving the farm at different time points, meaning there
is no time at which the entire farm can be disinfected, allowing for the possible retention of infection from
previous FPs. To represent this risk factor, a feature was created for the number of days between the �rst
and last reception of new pigs. The percentage of time that a farm has had an outbreak ( ) in the past
is a mixed indicator of all of the above mentioned historical factors.

Climate Features In addition to wind speed, relative humidity, and altitude provided in the climate data,
the average and lowest temperature of the past 15, 30, 45, 60 and 90 days prior to the forecasting date
were built. It was not deemed necessary to have exact temperature measurements for every time point
given the expected variability between true on-farm temperature values versus those recorded by weather
stations due to on-site thermoregulation, distance from the weather station, and data collection in
windows of a minimum of 15 days. Missing weather data were removed, and the average temperature for
the past 60 days ( ) was selected as the best temperature feature for the model. The season of the FP
was de�ned as the season of the forecasting day. It is a categorical feature and was represented using
one hot encoding. In other words, four binary features were created, and a single value was assigned to a
given FP based on the corresponding season for a given forecasting day.

3 Machine Learning Methods
In this section, the machine learning methods that were used to forecast the PRRSV outbreak probability
are explained. As in the other classi�cation problems, the goal was to �nd the discriminator function that
most e�ciently mapped features to target labels.

3.1 Standard Machine Learning Models
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Various machine learning algorithms including: Logistic Regression (LR), Support Vector Machine (SVM),
Gradient Boosting (GB), and Random Forest (RF) were trained to forecast the PRRSV status of a farm.
The probability of each farm being classi�ed as positive for PRRSV is obtained from the output of each
of these models. A farm is identi�ed as positive by the model if its probability of infection is higher than a
given threshold. Thus, metrics such as accuracy, sensitivity and speci�city are dependent on this
threshold. The Receiver Operating Characteristic (ROC) does not have this issue as it can be computed for
every possible threshold. ROC curve shows how true positive rate (sensitivity) changes with false positive
rate (1- speci�city) for different thresholds. Therefore, the Area Under Curve (AUC) of the ROC is a good
metric for comparing different models and is used here.

3.2 Cross Validation and Hyper-parameter Tuning
Given the past and the present observations on the health status of a farm and its features, the goal of
this work is to predict the future health status of the farm. Therefore, all data about events that occur
chronologically after the time of forecasting should be withheld and not used for prediction. The data
were therefore split temporally into two non-overlapping parts for training and testing. The �rst portion
was used for model training, while the second half was reserved for performance evaluation of the
model.

Each model has different hyper-parameters that govern its complexity. We tuned hyper-parameters,
namely, learning rate, tree depth, etc., to �nd the best �t model, i.e., to prevent the model from both
over�tting and under�tting. To achieve this, the training data were further divided temporally into two
chunks. The �rst chunk included 80 percent of the training data and was used to train the models with
different sets of hyper-parameters; the remaining 20 percent of training data was used to test these
models and �nd the best hyper-parameters values. First, hyperparameter-tuning was performed using the
training data by performing a grid search over a range of values for the hyperparameters in different
types of models. Speci�cally, each of these models was trained using eighty percent of the training data,
and then tested over the remaining twenty percent for each collection of values of the hyperparameters to
�nd the best hyper-parameters values. Using these best hyper-parameters values, a performance
evaluation was then carried out by repeatedly training the model using a randomly selected subset (60%)
of the training set and reporting the area under the receiver operator characteristic curve (AUC-ROC) on a
randomly selected subset (80%) of the test set. Note that this approach for model validation was chosen
so that all the points used for testing come chronologically after the ones used in training as the standard
K-fold cross validation is not appropriate for time series data.

3.3 Feature Selection
The process of selecting features with the highest contribution towards forecasting the output is called
feature selection. Having a high-dimensional feature space can cause the training algorithm to have
impaired learning performance, be prone to over�tting, and become computationally cumbersome. The
main goal of feature selection is either: 1) to �nd the subset of features that minimizes generalization
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error, or 2) to select the smallest possible subset of features that satis�es the performance criterion and
allows for better model interpretability. The main approach in this work is the latter.

Prior to the feature selection, we used hierarchical clustering based on within the feature correlation
matrix to observe the degree to which the features are correlated. Hierarchical clustering groups the
features such that the features constituting one group have more similarity among themselves than
features in the other groups.

Feature selection methods are categorized into wrapper, �lter and embedded methods. In this study, we
used �lter and wrapper methods as explained below:

Filter Methods

The �lter method performs a feature selection procedure regardless of the type of learning model. A
scoring measure based on data characteristics such as distance, information, or correlation, is used as
the metric to �lter those features that seem more relevant to the response variable. The �ltering in this
work was done based on Pearson correlation and mutual information.

Pearson correlation measures the similarity between two variables. In a univariate method, the correlation
between each feature and the response variable is obtained, and feature selection is done based on the
correlation with the response variable (target). Another popular �lter method is a mutual information-
based feature selection [17] which uses mutual information as the entropy measure to choose the subset
of important features. Mutual information is a measure between two random variables, e.g., each input
feature and the response variable, that quanti�es the amount of information obtained about one, through
the other. The drawback of these two approaches is that they do not take the correlation between features
into account (only that between the feature and response variable), and may thereby choose two highly
correlated features such that one is redundant in presence of the other. To solve this problem, we
proposed a metric based on Pearson correlation and mutual information, described in Algorithm 1, to �nd
the desired subset of features. Speci�cally, the metric, in Eq. 1, denoted as is directly proportional to
the mutual information  and to the correlation with target PTarget. It is, however, reversely proportional
to the correlation with the previously selected features , as we want to avoid selecting highly
correlated features and choose features that can contribute to the classi�er accuracy with different
information. We convert the proportionality to equality as:

 , Eq. (1)

where  and are hyperparameters that control the dependency of the metric  to feature correlation 
 and correlation with response variable . High ratios of  will eliminate the dependency

of  on  and high values of  removes the dependency of the M on . We performed a grid-
search over the range of values 1, 10 and 100 for both and  to determine their optimal value.

Algorithm 1

M

MI

PFeat

M =
(MI×PTarget)

α+βPFeat

α β M

PFeat PTarget α/β

M PFeat α PTarget

α β
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Algorithm for proposed �lter method

Input

Training set T,

Set of p features F = (f1,f2,...,fp),

Target label ,

Mutual information of features with target

The number of features to be selected k

Output

Final subset of features Fselected = (f1,f2,...,fk)

1: Fselected = ()

2: for j = 1 to k do:

3: scores = {}

3: for  in F = {f1,f2,...,fp} do:

4: =

5: =

6:

7: M = PTarget )/( PFeat)

8: scores[f] = M

9: end for

10: scores.sorted(key = M)

11:  = feature with highest M score

12: Fselected ← add  to the set

13: ←

14: end for

y

MI(T , f, y)

f

PFeat ρFeat(T ,Fselected, f)

PTarget ρTarget(T , f, y)

MI = MI(T , f, y)

(MI∗ α + β

f
∗

f
∗

F F − f
∗
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15: return Fselected

The Pearson's correlation function  takes the training set  computes the Pearson's
correlation of feature  with all the features in set  and returns the maximum within feature
correlation over features in set . The function  computes the Pearson's correlation

of feature  with target . Finally, the function  take the training set  and computes the
Mutual information of feature  with the target .

Wrapper Methods

Wrapper methods merge feature selection and learning steps allowing the learning algorithm to interact
with the bias of the feature selection step, decreasing the total bias. Thus, using wrapper methods, a
subset of features that result in better prediction performance will be selected. The Recursive Feature
Elimination (RFE) method [13] is a commonly used wrapper model. It is a recursive algorithm that ranks
features according to some measure of their importance. For example, SVM-RFE ranks the features based
on SVM, (Sanz et al., 2018). In this paper, we use LR-RFE, SVM-RFE, GB-RFE and RF-RFE to eliminate and
rank features.

3.4 Stability of Feature Selection
Many feature selection algorithms have been successful at improving the forecasting accuracy of
learning models while reducing feature-space dimensionality and model complexity (Khalid et al., 2014).
Beyond high accuracy, the stability of feature selection is another important attribute of these algorithms.
The stability of a feature selection algorithm is de�ned as the robustness of the feature set it produces to
differences in training sets drawn from the same generating distribution P(X,C), where C is the class label
for X. Here we use the stability measure proposed in (Kalousis et al., 2007) to compare several feature
selection methods, informing selection of the one that best �ts our dataset and performance needs.
Similarity between two subsets of features using a straightforward Ss takes values in [0,1] with 0
meaning there is no overlap between the two sets and 1 that the two sets are identical. To empirically
estimate the stability of a feature selection algorithm for a given dataset, the distribution P(X,C) from
which the training sets are drawn is simulated by using a re-sampling technique

 Eq. (2)

where Ss takes values in [0,1] with 0 meaning there is no overlap between the two sets, and 1 that the two
sets are identical.

To calculate the stability, K data subsets were created by randomly shu�ing the data and dividing it into
folds. A small K does not produce a robust estimation of the variance for stability estimation as there are
few instances of its measurement. A large K, on the other hand, decreases the number of data points in
each fold, and as a result does not yield a reliable AUC-ROC score. Therefore, as a compromise between

ρFeat(T ,Fselected, f) T

f Fselected

Fselected ρTarget(T , f, y)

f y MI(T , f, y) T

f y

Ss(s, s') = 1 −
|s|+|s'|−2|s∩s'|

|s|+|s'|−|s∩s'|
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accuracy for AUC-ROC and stability, we chose K = 5 folds. For each fold, the selected features are
computed according to the feature selection method. Then, the similarity of each pair of selected
features, i.e. K(K − 1)/2 pairs, is computed using the similarity measure.

4 Results
In this section, the performance analysis, in terms of test ROC-AUC and stability of the feature selection,
regarding the four predictive models on the extracted features are presented.

4.1 Performance and Stability Results
We used 196 data points for the method training and evaluation. Speci�cally, the training set consists of
157 data points (80%), and the remaining 39 data points (20%) constitute the testing set. A performance
evaluation was conducted by repeatedly training the model using 94 randomly selected data points (60%
of the training set) and reporting the AUC-ROC on 31 randomly selected data points (80% of the test set).

The various hyper-parameters for each model, alongside the related AUC-ROC score for N = 10, 20, 40
features, are presented in Table 1. The hyper-parameters that we investigated for each of the classi�ers
are as follows. For the SVC classi�er, we assumed a linear kernel and investigate the in�uence of , the
regularization parameter. The parameter  would control the effect of outliers in your model. A large 
enforce the model to choose a smaller-margin hyperplane while attempting to classify all the training
points correctly. On the other hand an small  will encourage a larger-margin separating hyperplane
while allowing for some outlier points to be misclassi�ed. For the LR classi�er, we investigated two
regularization techniques: (i)  regularization that penalizes the sum of absolute values of the weights,
and  regularization that penalizes the sum of squares of the weights. We also considered different
value for inverse regularization parameter , which controls the strength of our regularization. A high
value of C encourages the model to trust the training data and decreases the weight of the complexity
penalty. In the RF classi�er, we perform a grid-search over the number of trees in the forest (estimators)
and the maximum depth of the trees. Finally for the GB classi�er, we optimize for the learning rate and
the maximum depth of the trees. Learning rate controls how fast the model learns and the slower learning
rate helps the model to generalize better.

C

C C

C

L1

L2

C
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Table 1
Hyper-parameter tuning for the four classi�ers used for PRRSV outbreak prediction. The ROC-AUC for
each set of hyper-parameters is reported for different feature sizes N = 10, 20, 40, and the best set is

shown in bold font.
Models   Parameters AUC-ROC

SVC   Kernel C   N = 10 N = 20 N = 40

  linear 0.1   0.82 ± 0.014 0.85 ± 0.014 0.81 ± 0.016

  linear 1   0.83 ± 0.014 0.86 ± 0.014 0.81 ± 0.018

  linear 10   0.85 ± 0.014 0.86 ± 0.012 0.83 ± 0.013

LR   Penalty C   N = 10 N = 20 N = 40

  L1 0.1   0.84 ± 0.010 0.84 ± 0.011 0.82 ± 0.010

  L1 1   0.86 ± 0.014 0.85 ± 0.011 0.83 ± 0.013

  L1 10   0.84 ± 0.013 0.85 ± 0.014 0.82 ± 0.012

  L2 0.1   0.86 ± 0.007 0.87 ± 0.009 0.86 ± 0.010

  L2 1   0.83 ± 0.021 0.86 ± 0.014 0.85 ± 0.013

  L2 10   0.83 ± 0.019 0.84 ± 0.019 0.84 ± 0.014

RF   Estimators Maximum depth   N = 10 N = 20 N = 40

  50 4   0.82 ± 0.017 0.86 ± 0.010 0.87 ± 0.009

  50 8   0.82 ± 0.010 0.86 ± 0.008 0.86 ± 0.010

  50 16   0.82 ± 0.020 0.86 ± 0.019 0.86 ± 0.019

  50 32   0.83 ± 0.017 0.87 ± 0.019 0.87 ± 0.008

  100 4   0.82 ± 0.013 0.86 ± 0.012 0.86 ± 0.010

  100 8   0.83 ± 0.018 0.87 ± 0.013 0.88 ± 0.003

  100 16   0.83 ± 0.012 0.87 ± 0.006 0.88 ± 0.015

  100 32   0.83 ± 0.014 0.87 ± 0.011 0.88 ± 0.013

GB   Learning rate Maximum depth   N = 10 N = 20 N = 40

  0.01 3   0.84 ± 0.016 0.84 ± 0.014 0.84 ± 0.012

  0.01 5   0.86 ± 0.014 0.85 ± 0.011 0.83 ± 0.013

  0.1 3   0.85 ± 0.021 0.86 ± 0.019 0.86 ± 0.020

  0.1 5   0.84 ± 0.014 0.86 ± 0.011 0.86 ± 0.013
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The best hyper-parameter that achieves higher AUC-ROC score, while introducing less complexity in terms
of the number of parameters is indicated with bold font. An example of hyper-parameter tuning for the
support vector classi�er for features length ranging from 1 to 60 can be seen in Fig. 2. A range of three
values for the regularization parameter (C) were considered, where the strength of the regularization is
inversely proportional to C.

For each model, Fig. 3, demonstrates the AUC-ROC and stability measure mean and standard deviation
across the folds. This �gure shows the performance of each of these models together with the stability of
the corresponding RFE-based feature selection method in terms of AUC-ROC score. According to the
results, the two non-linear models, GB and RF, have better AUC-ROC scores than the linear models, SVC
and LR (Fig. 3a). In Fig. 3b, it can be seen that the non-linear models, GB and RF, are not as stable as the
linear models in selecting a robust subset of features.

Since the tree-based models (GB and RF) have a higher AUC-ROC, we used them as the base classi�ers to
assess other �lter-based feature selection methods (see Fig. 4). In Fig. 4a-b, we show the performance
assessment of different feature selection methods using GB as the classi�er. Speci�cally, we compared a
RFE-GB feature selection method and three other �lter-based feature selection methods: correlation with
target, Mutual Information (MI), and our proposed algorithm (Algorithm 1). Similarly, in Fig. 4c-d, we
showed the performance assessment of these feature selection methods using RF as the classi�er. As
demonstrated in these two �gures, the �lter-based feature selection methods had higher stability, but
lower ROC-AUC, in comparison with the RFE-based methods. Algorithm 1 surpassed the stability of RFE-
based feature selection methods, while showing a comparable ROC-AUC performance.

4.2 Feature Selection
To identify highly correlated features, hierarchical clustering was performed as shown in Fig. 5. The
features are clustered according to correlation-based similarity value between features and the cluster
value, shown as a distinct color in the horizontal bar plot. Each feature belonging to a speci�c cluster is
representative of that cluster and has relatively the same contribution in terms of classi�cation
performance.
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Table 2
Subsets of selected features using Recursive Feature Elimination + Gradient boosting classi�er to

forecast PRRSV outbreaks as evaluated by AUC-ROC. Historical is de�ned as a period of one year prior to
the start of the current �nishing period.

AUC-
ROC

Features

0.64
1) Pig population ( )

0.70
1) Pig population ( )

2) Historical average number of days dead pigs lived in a farm divided by the number of

surviving pigs ( )

0.73
1) Pig population ( )

2) Historical average number of days dead pigs were alive divided by the number of

surviving pigs ( )

3) Historical average number of days dead pigs were alive divided by number of dead pigs

( )

0.80
1) Pig population ( )

2) Historical number of living days of dead pigs ( )

3) Historical number of dead pigs ( )

f1

f1

f31

f1

f31

f32

f1

f27

f28
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AUC-
ROC

Features

0.80
1) Pig population ( )

2) Historical average number of days dead pigs were alive divided by the number of

surviving pigs ( )

3) Historical average number of days dead pigs were alive divided by number of dead pigs

( )

4) Historical average daily gain ( )

5) Average daily feed ( )

According to these sampled selected feature subsets, it was found that the average 60 prior days was the
best temperature feature when combined with other features for forecasting, thus these values were used
in the model. The prior 60 day average temperature and wind were selected more frequently than relative
humidity and altitude. Seasonal features were not selected when a temperature feature was chosen. In
addition, it was found that the number of movements in the neighborhood for different radii (the number
of movements to/from any farm located in 5km, 10km and 20 km) can be used together to improve
prediction. The 20km radius features were more frequently selected than those of the 5km and 10km
vicinity. In general, the number of movements were more important than the number of animals being
shipped in a given movement. The total number and weight of incoming pigs, and the percent of existing
pigs with substandard weight were important. The number of dead pigs and the average number of days
that dead pigs have lived on the farm are also important predictive features. Moreover, average daily feed,
past outbreak frequency in the farm, and the number of outbreaks in the neighborhood during the current
�nishing period, were amongst the most important features.

f1

f31

f32

f35

f39
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Table 3
Subsets of selected features using Recursive Feature Elimination + Support vector Classi�er to forecast

PRRSV outbreaks as evaluated by AUC-ROC. Historical is de�ned as a period of one year prior to the start
of the current �nishing period.

AUC-
ROC

Features

0.70
1) Pig population ( )

0.71
1) Pig population ( )

2) Number of shipments in any farm located within 20km ( )

0.72
1) Pig population ( )

2) Number of shipments in any farm located within 20km ( )

3) Number of shipped pigs in any farm located within 20km ( )

0.79
1) Total weight of the pigs ( )

2) Historical total number of days dead and surviving pigs lived in farm ( )

3) Historical total number of days surviving pigs lived in farm ( )

4) Historical total number of dead pigs ( )

5) Past outbreak frequency in the farm (total number of �nishing periods with recorded
outbreaks divided by total number of �nishing periods — since beginning to the current

�nishing period) ( )

5 Discussion
This study incorporates swine farm- and area-level data in the forecasting of the farm-level PRRSV
outbreaks. Using a uniquely rich real-world dataset, obtained from our industry collaborators, we included
a level of detail that, to the best of our knowledge, has not been previously considered in the prediction of
PRRSV outbreaks. We integrated production data, movement data, and climate information for our
predictions. Further, we demonstrate the generation of new features from standard industry variables that

f1

f1

f53

f1

f53

f48

f13

f25

f26

f28

f42
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better represent farm-level management practices and risk for use in forecasting models. In this manner,
we have addressed the two main PRRSV transmission pathways, direct contact and airborne, as well as
onsite disease history and management practices, and the role of near-farm status, on outbreak risk.

Based on the AUC-ROC and stability results, the two tree-based models have superior AUC-ROC scores in
comparison with the linear models when used as classi�ers. This is expected as the tree-based models
are non-linear in nature and, therefore, can capture the nonlinearities in the data. However, due to their
inherent randomness, they do not show a reasonable stability when used as RFE-based feature selection
methods. As observed in the results section, �lter-based feature selection methods demonstrated
considerable stability and, hence, were used as the basis for developing a new feature selection
algorithm. By combining Algorithm 1 for feature selection, which inherits the superior stability of the �lter-
based feature selection, and a tree-based model as classi�er, we achieve high predictive performance and
stability.

Considering Tables 2 and 3, we observe that all different types of data, i.e., shipment, diagnostic, and
production, play an important role in improving the prediction performance of the model. Based on the
feature selection results, the most predictive feature in the dataset is the pig population. As the most
frequently selected features across different methods, features representing movements in a
neighborhood during the current FP are strong predictive features. Features related to pig movements
to/from farms located in a 20 km neighborhood is a strong predictive feature to capture the effect of
airborne disease transmission pathway. Features representing the number of dead pigs and the number
of days they lived can represent the magnitude and impact of the PRRSV infection (and associated co-
morbidities) on the farm. The historical features, which are the averages over the past measurements, are
important because they provide the model with the information about the biosecurity and management
practices of the farm over the time, while the current FP features are informative in terms of the recent
events. The superior performance of the 60-day climatic period may be due to the fact that it captures
seasonality; or, it may outperform other time periods because more shipments happen during the 60 days
prior to the forecasting day and thus this average may best represent the temperature that pigs were
exposed to during shipment.

Different subsets or combinations of features can yield the same performance. This is due to the fact
that a feature in a given subset may be substituted with another feature that is highly correlated with it.
This gives �exibility to those wanting to generate their own models. The clusters presented in Figure. 5,
and on the list and description of features included in each cluster (Supplement 1), provide alternative
features for use in forecasting when all the data �elds used in this work are not available. In general,
selecting 4 features, one from each of the �rst 4 clusters in Figure. 5 should provide high predictive power.

6 Conclusion
To the best of our knowledge, this is one of the �rst attempts to apply multiple machine learning models
for PRRSV forecasting using multi-level data. We have demonstrated the strength of these methods for
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disease prediction in the swine industry, and believe they could be readily adapted for use on other
diseases and for additional livestock species. This approach could save the swine industry millions of
dollars through the improved e�ciency and reduced economic burden provided by early, targeted, risk
mitigation strategies. This work uses a rich, multi-scale (pig group-, farm-, area-level data) feature set -
assessing on-farm characteristics at a level previously unreported for farm health analysis in the swine
industry. Additionally, the integration of historical data with current cycle data to improve forecasting
accuracy is a novel approach applied in this work. Generating an expansive set of features, ranging
across farm level, time and space, allowing the evaluation of multiple disease transmission pathways,
environmental factors, and management practices as risk factors for disease occurrence, resulted in
improved outbreak forecasting ability. Stable feature selection allowed us to identify and represent the
most important risk factors for PRRSV outbreaks. These variables can now be further explored by the
industry and research community as points for future intervention. These approaches offer a strong basis
for ongoing work, and we hope the adaptation of these methods into dynamic dashboards within the
Disease BioPortal (https://bioportal.ucdavis.edu) will provide industry users with near real-time
information for improved health management decisions.
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Figures

Figure 1

Demonstration of the two main PRRSV transmission pathways for farm F1: airborne and direct contact.
The red dashed-arrows P4 and P5 are the airborne effect of the farm F1, thus they are indirect
transmission pathways for the farm F1. The solid dashed arrows P2 and P3 are the source of pig
shipment to F1 and can transmit disease directly to it. The green dashed arrow P1 is the shipment with
no risk factor on F1 as both source and destination of the shipment are outside of the de�ned area.
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Figure 2

(a) Stability score for different regularization parameters (C) in Support Vector Classi�er (SVC) for
different sizes of feature sets. (b) the area under the ROC curve (AUC-ROC) score for different
regularization parameters for different sizes of feature set. The strength of the regularization is inversely
proportional to regularization parameter C. The regularization C=10 yields the best AUC-ROC but the
regularization C=1 has better stability (equivalent to part of the table 1).

Figure 3
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Performance assessment of Recursive Feature Elimination (RFE) merged with different classi�ers for
PRRSV outbreak prediction in terms of: (a) the area under the ROC curve (AUC-ROC), and (b) Stability
score for different size features sets. Each graph is labeled according to the classi�er used in the RFE
feature selection algorithm. 

Figure 4
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Performance demonstration of different feature selection methods (wrapper and �lter methods) merged
with the Gradient Boosting (GB) and Random Forest (RF) as classi�er for PRRSV outbreak prediction in
terms of: (a and c) The area under the ROC curve (AUC-ROC), and (b and d) Stability score for different
size features sets. Each graph is labeled according to its feature selection method (on the left of dash)
and its classi�er method (on the right of dash) in the legend.

Figure 5
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Feature similarity grouped by hierarchical clustering. Hierarchical clustering is used to analyze the
similarity between features in terms of their correlation. The darker colors are representative of higher
correlations among features. The formed blocks are indicative of the clusters of similar features. The
exact margins are shown by the horizontal bar at the top where each color represents a cluster. The
description of each feature number can be found in Table 1 of Supplement 1. 
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