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Hutten9, Mark Frasier9, Hirotaka Iwaki10, Andrew Singleton10, Ken Marek11, Karen 
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Abstract  

The pathogenesis and clinical heterogeneity of Parkinson’s disease have been evaluated from 

molecular, pathophysiological, and clinical perspectives. High-throughput proteomic analysis 

of CSF has opened new opportunities for scrutinizing this heterogeneity. To date, this is the 

most comprehensive CSF-based proteomics profiling study in Parkinson’s disease (1103 

patients, 4135 proteins). Combining CSF aptamer-based proteomics with genetics we 

determined protein quantitative trait loci (pQTLs). Analyses of pQTLs together with summary 

statistics from the largest Parkinson’s disease genome wide association study (GWAS) 

identified 68 potential causal proteins by Mendelian randomization. The top causal protein, 

GPNMB was previously reported to be upregulated in the substantia nigra of Parkinson’s 

disease patients. 
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We also compared the CSF proteomes of patients and controls. The Parkinson’s disease cohort 

comprised not only LRRK2+ and GBA+ mutation carriers but also idiopathic patients. Proteome 

differences between GBA+ patients and unaffected GBA+ controls suggest degeneration of 

dopaminergic neurons, altered dopamine metabolism and increased brain inflammation. The 

proteins discriminating LRRK2+ patients from unaffected LRRK2+ controls, revealed 

dysregulated lysosomal degradation, as well as altered alpha-synuclein processing, and 

neurotransmission. Proteome differences between idiopathic patients and controls suggest 

increased neuroinflammation, mitochondrial dysfunction / oxidative stress, altered iron 

metabolism and potential neuroprotection mediated by vasoactive substances.  

Finally, we used proteomic data to stratify idiopathic patients into "endotypes". The identified 

endotypes show differences in cognitive and motor disease progression based on the use of 

previously reported protein-based risk scores. 

In summary, we: i) identified causal proteins for Parkinson’s disease, ii) assessed CSF 

proteome differences in Parkinson’s disease patients of genetic and idiopathic etiology, and. 

iii) stratified idiopathic patients into robust clinically relevant subtypes. Our findings not only 

contribute to the identification of new therapeutic targets but also to shaping personalized 

medicine in CNS neurodegeneration. 
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Introduction  

Parkinson’s disease is the second most prevalent neurodegenerative disorder.1 Parkinson’s 

disease patients experience selective degeneration and loss of dopaminergic neurons in the 

substantia nigra pars compacta. In most cases, Parkinson’s disease is classified as idiopathic, 

but a growing set of genetic variants increase Parkinson’s disease risk or accelerate its onset. 

Many of the identified genes are involved either in mitochondrial or endo-lysosomal biology.2 

The two most common Parkinson’s disease risk genes are leucine rich kinase 2 (LRRK2) and 

glucosidase beta acid (GBA). Mutations in these genes are linked to ~10% of sporadic cases 

and up to 30% in specific ethnic subgroups and familial disease.3 Some of the genetic variants 

in LRRK2 and GBA have been associated with specific clinical phenotypes.4,5 For both genes, 

the pathological mutations are thought to exacerbate the toxicity of alpha-synuclein, which – 

in an aggregated form – contributes to neuronal death and amplifies the neuroinflammatory 

response. 

Clinical heterogeneity of Parkinson’s disease has motivated many disease stratification efforts. 

Some of those have focused on clinical variables, mostly hypothesis-driven, while others have 

focused on molecular data, mostly hypothesis-free.6 An association between such strata and 

the Parkinson’s disease risk mutations remains elusive.7 

Proteins hold great potential as predictors, causal biomarkers and surrogates of disease 

progression and/or stratification. However, the biological and pathophysiological complexity 

of Parkinson’s disease, the difficulties of collecting standardized biological samples (especially 

CSF) from large cohorts throughout the course of disease, and the technical limitations of high-

throughput proteomic analyses hamper the identification of biomarkers at a proteomic level. 

The multicenter Parkinson Progression Marker Initiative (PPMI) was initiated to overcome 

some of these limitations, particularly in terms of number of samples and clinical data 8. In this 
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collaboration, 1103 baseline (not longitudinal) CSF samples from patients and control 

participants with known status of LRRK2 and GBA pathogenic variants were analyzed using 

the SomaScan® aptamer-based proteomics platform.9 There is also whole genome sequencing 

data from 804 patients out of the 1103, after quality control. To our knowledge, this is to date 

the largest proteomic and genetic data set for interrogating causal proteins for Parkinson’s 

disease in a neurologically relevant biofluid. 

The main goals of this study are summarized in Figure 1: i. Parkinson’s disease causal protein 

identification using mendelian randomization based on proteomics and genetics, ii. 

identification of differences between Parkinson’s disease patients and controls within and 

between subcohorts (LRRK2+, GBA+ and idiopathic), and iii. hypothesis-free stratification of 

idiopathic Parkinson’s disease patients into clinically relevant endotypes and then compared 

by means of protein-based risk scores reflecting cognitive and motor progression.10 

 

 

Materials and methods  

The clinical data and samples used in this study were obtained from the PPMI 

(http://www.ppmi-info.org/data) on October 1, 2020. PPMI samples were collected under a 

standardized protocol over 33 centers and includes clinical and imaging data as well as plasma 

and CSF samples. Study protocol and manuals are available online (http://www.ppmi-

info.org/study-design).  

This study was conducted in accordance with the Declaration of Helsinki and the Good Clinical 

Practice (GPL) guidelines after approval of the local ethic committees of the participating sites 

as also reported in Marek K. et al. 2018. 11 
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Separate subcohorts of patients with Parkinson’s disease and their respective controls were 

enrolled following inclusion and exclusion criteria.11 One subcohort is comprised of recently 

diagnosed, drug-naïve, idiopathic Parkinson’s disease patients and healthy controls, while the 

second and third subcohorts are comprised of Parkinson’s disease patients, carriers of a severe 

GBA or LRRK2 mutation, either Parkinson’s disease patients or unaffected controls. 

Parkinson’s disease patients from the genetic subcohorts had a higher disease duration, were 

partially under Parkinson’s disease medication (n = 203), were over-represented for individuals 

of Ashkenazi Jewish descent and differed by sex distribution from the idiopathic Parkinson’s 

disease patients (higher proportion of men among idiopathic). The study was approved by the 

Institutional Review Board at each site, and participants provided written informed consent. 

Genetic testing was done by the centralized PPMI genetic testing core. Non-manifesting 

carriers received pre-testing and post-testing genetic counselling by phone from certified 

genetic counsellors at the University of Indiana or site-qualified personnel. The LRRK2 genetic 

testing battery includes G2019S and R1441G mutations. GBA genetic testing includes N370S 

(for all participants), and L483P, L444P, IVS2+1, and 84GG (for a subset of participants) 

mutations. Dual mutation carriers (LRRK2 and GBA) were considered as LRRK2 carriers for 

simplicity (n = 1). 

Six patients were diagnosed as idiopathic Parkinson’s disease at enrolment but were re-

classified during follow-up (two patients were diagnosed as multiple system atrophy and four 

patients did not have a final diagnose but Parkinson’s disease had been excluded). These 

patients were removed from the analysis. Four patients were initially diagnosed as genetic 

Parkinson’s disease, but the diagnose changed to prodromal during follow up. These patients 

were considered as unaffected controls in their corresponding genetic subcohort (Five LRRK2+ 

unaffected controls and one GBA+ unaffected control). 
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One subject originally classified as healthy, but later shown to have an unclear health status, 

was removed from the analysis. Subjects recruited into the subcohort of idiopathic Parkinson’s 

disease patients and healthy controls but identified as carriers of a 

severe GBA or LRRK2 mutation, were moved to the corresponding genetic subcohort (GBA n 

= 15; LRRK2 n = 7).   

The genetic screening also detected GBA mutations of unknown or moderate risk: A459P, 

E365K, T408M. Carriers of these mutations were removed from analysis (n = 38). 

Finally, 10 carriers of a mutation in SCNA (eight Parkinson’s disease patients and two 

unaffected controls), were also removed due to lack of statistical power for analysis.  

The original data set was comprised of 1190 samples out of which 32 samples were pools, 

which were discarded for this study, and as described above, additional six Parkinson’s disease 

patients and one healthy control were removed due to change in diagnose, 38 subjects were 

removed due to non-severe GBA mutations and 10 patients were removed for being carriers of 

a mutation in SCNA. Hence, the final data set used for analysis was comprised of 1103 

proteomic samples divided into three subcohorts: no mutation (idiopathic Parkinson’s disease 

patients and healthy controls with no severe mutation in GBA or LRRK2), GBA+ (Parkinson’s 

disease patient carriers of severe GBA mutations and unaffected controls carrying the same 

mutations) and LRRK2+ (Parkinson’s disease patient carriers of severe LRRK2 mutations and 

unaffected controls carrying the same mutations). The exact composition is summarized in 

Table I.  

We make an explicit distinction between “healthy” and “unaffected” controls, because there is 

evidence of prodromal pathophysiology in LRRK2+ and GBA+ controls when compared to 

healthy controls that are non-mutation carriers.12 
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Proteomics 

Proteomic profiling was performed using SomaScan® in a platform version that is proprietary 

to Novartis and includes 4785 SOMAmers® (Slow off-rate modified aptamers) targeting 4135 

human proteins. SOMAmer levels were determined and standardized at SomaLogic Inc. 

(Boulder, US) including hybridization normalization (controls for variability in the readout of 

individual microarrays), plate scaling (accounts for plate-by-plate variation), median signal 

normalization (controls for total signal differences between individual samples) and calibration 

(removes the variation between assay runs within and across experiments).  

Relative fluorescence units are transformed to log2 scale, normalized to the median separately 

by dilution level across all plates. Finally, the data set is adjusted for batch effects between 

plates using an empirical Bayes method as implemented in the R package sva.13 

Genetics 

PPMI whole genome sequencing results were lifted over to hg19 coordinates. Biallelic SNPs 

on autosomes were extracted. Standard GWAS quality control (QC) was applied at both 

individual and SNP level. 22 patients with outlying heterozygosity and 93 patients with high 

identity-by-descent were excluded after QC. 306031 SNPs were removed due to missing 

genotype and 35907596 SNPs removed due to minor allele count less than 20. Finally, 9743041 

variants and 1264 subjects passed QC. 

pQTL calculation 

Among the 1264 subjects who passed QC for genetics and the 1103 who passed QC for 

proteomics, 804 subjects overlapped. Protein expression values were ranked and inverse 

normal transformed. For pQTL calculation, each protein level was regressed with each 

independent genetic variant (SNP; MAF  > 0.05), adjusted for age, sex, subcohort, protein 
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principal components 1-4 and genetic principal components 1-10 using R package 

MatrixEQTL.14 Cis-pQTLs were defined as SNPs located inside the +/- 1Mb region flanking 

the gene that encodes the given protein. A genome-wide threshold of P < 5×10-8 defined a 

significant cis-pQTL. 

Causal Analysis 

The two-sample mendelian randomization method implemented in the R package 

TwoSampleMR15,16 was applied to find causal proteins for Parkinson’s disease in CSF. 

Although PPMI is a well-controlled study with genetic data, to avoid weak instrumental 

variable bias and take the advantage of a larger Parkinson’s disease GWAS we relied on the 

meta-analysis from Nalls et al.17, which includes 17 datasets with Parkinson’s disease cases 

ranging from 363 to 33674 individuals, and healthy controls ranging from 165 to 449056 

individuals. Instrumental variables were selected for each SNP with MAF > 0.05, F-statistics 

larger than 10 and significant cis-pQTL P < 5×10-8. Shared SNPs in both cis-pQTL and 

Parkinson’s disease GWAS were harmonized and then clumped using a linkage disequilibrium 

(LD) threshold of either r2 < 0.01 or r2 < 0.3. The more stringent LD threshold of r2<0.01 

resulted in only one instrumental variable for most proteins, therefore the results we present 

are from the less stringent threshold of r2<0.3. The Wald ratio was used when only one 

instrument survived clumping, while the inverse variance weighted meta-analysis method was 

used when more than one instrumented SNP was available. Horizontal pleiotropy was tested 

using the R package MRPRESSO.18 

Colocalization probability was calculated using the R package coloc.19 Default priors of p1 = 

10-4, p2 = 10-4, and p12 = 10-5 were used, where p1 is the prior probability of a SNP being 

associated with Parkinson’s disease, p2 is the prior probability of a SNP being associated with 

CSF pQTL, and p12 is the prior probability of a SNP being associated with both Parkinson’s 
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disease and CSF pQTL. We considered PPH4 > 0.75 as strong evidence for colocalization. 

PPH4 is the posterior probability of one shared SNP being associated with both Parkinson’s 

disease and CSF pQTL.  

Clinical variables  

The clinical assessment battery is described on the PPMI website (http://www.ppmi-info.org). 

Parkinson’s disease status was assessed with the Unified Parkinson’s Disease Rating Scale in 

the revised version published by the Movement Disorder Society (MDS-UPDRS) scores 1, 2, 

and 3.20 Cognitive testing comprised screening with the Montreal Cognitive Assessment 

(MoCA).21 High resolution xy-weighted 3 tesla MRI was available for 545 Parkinson’s disease 

patients and 177 controls. Caudate, putamen and striatum thicknesses were calculated as the 

arithmetical mean between the right and left brain hemispheres. 

CSF was collected using standardized lumbar puncture procedures. Sample handling, shipment 

and storage were carried out as described in the PPMI biologics manual (http://ppmi-info.org). 

Besides the SomaScan analysis described earlier, data from immunoassay kits were also used 

for measuring CSF total alpha-synuclein, amyloid-beta 1-42, total tau and phospho-tau (p-tau 

181) protein as described previously.22,23 Phospho-tau was measured with the Elecsys® assay 

run on the fully automated Roche Cobas® system. 

Use of medications for Parkinson’s disease was recorded at each visit after baseline assessment. 

For simplicity, we used this as a binary variable (medication present / absent). 

Protein risk scores 

The Parkinson’s disease protein risk scores used in this study were generated as previously 

described.10 They were defined as "non-genetic Parkinson’s Disease-associated Proteomic 

Score (ngPD-ProS). 
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Statistical analysis  

We first compared the protein profiles of Parkinson’s disease patients with controls within each 

subcohort (idiopathic, GBA+ and LRRK2+). A linear regression model was applied using the 

Bioconductor R package limma.24 The model included the following covariates: age, sex, study 

center and proteomic principal components 1-4. The genetic subcohorts also included levodopa 

treatment (yes/no) as a covariate in the model to exclude treatment effects. This was skipped 

for idiopathic patients as they were drug-naïve.  

Additionally, a linear model with an interaction term was tested. The interaction term was 

between the disease status (case /control) and the mutation status (no mutation / GBA+ / 

LRRK2+). The covariates were the same as in the models above.  

Comparisons of clinical variables between endotypes of idiopathic patients were performed 

using a chi-squared test for categorical variables or a generalized linear model adjusted for age 

and sex for quantitative variables. To test differences in age between endotypes a Mann 

Whitney U-test was used. 

Predictive modeling for the idiopathic classes was performed using a partition tree with pruning 

as implemented in the R package rpart.25 The model was defined on a training set (70% of the 

idiopathic patients) and tested on an independent test set (30% of the idiopathic patients). The 

pruning was based upon a 10-fold cross validation, the default for rpart. 

All p-values were adjusted for multiple testing using false discovery rate (FDR). 

Cluster analysis 

Network analysis of the CSF proteome of idiopathic patients was carried out using the R 

package WGCNA.26 Co-expressed proteins (SOMAmers) were grouped into modules.  
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Consensus clustering as implemented in the R package ConsensusClusterPlus27 used the 

SOMAmer modules to identify idiopathic patient subclasses. To avoid confounders being 

responsible for the differences between patient subclasses, network analysis was performed on 

the SOMAmer residuals of a linear regression on age, sex and study center. 

Heatmaps were generated using the R package Heatplus.28 

Results  

Causal analysis 

Our analysis reported significant cis-pQTLs for 856 SOMAmers – corresponding to 744 unique 

proteins (Supplementary Table 5). From these 856 cis-pQTLs, we identified statistically 

significant evidence for causation for 68 proteins in CSF (Table 2). Out of those proteins, 

GPNMB, FCGR2A and FCGR2B also had a strong colocalization signal (see Methods), 

indicating the same SNP is both associated with protein level and Parkinson’s disease risk 

(Figure 2). The full tables with nominal P ≤ 0.05 are included in Supplementary Tables 1 and 

2 for less or more stringent clumping, respectively. 

Differential protein expression in subcohorts of Parkinson’s 

disease patients 

To identify proteins differentially expressed in Parkinson’s disease, we compared SOMAmers 

in each of the subcohorts (GBA+, LRRK2+ and idiopathic) to their corresponding controls. Our 

statistical analyses revealed six differentially expressed SOMAmers for GBA+ patients, seven 

SOMAmers for LRRK2+ patients and 23 SOMAmers for idiopathic patients. Directionality of 

the change and adjusted P-values for each of these markers are reported in Table 3. 
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For each subcohort, several identified markers confirmed previously reported proteins 

dysregulated in Parkinson’s disease. Interestingly, there was little overlap between proteins 

dysregulated in GBA+, LRRK2+ and idiopathic subcohorts (SEMG2 and DLK1 were shared 

by GBA+ and the idiopathic subcohort) though in each list there is a high percentage (4/6 in 

GBA+, 4/7 in LRRK2+ and 10/23 in the idiopathic subcohort) of markers previously reported 

in relation to Parkinson’s disease (Table 3). 

Only one protein, CTSB, passed the FDR significance threshold for the interaction between 

disease status and mutation status. As shown in Table 3, CTSB was also differentially 

expressed in the LRRK2+ subcohort. 

Additional analysis comparing all patient subcohorts with all controls, using subcohort 

membership (no mutation/GBA+/LRRK2+) and treatment status (yes/no) as additional 

covariates resulted in 129 SOMAmers, tagging 122 distinct proteins, passing FDR correction 

(Supplementary Table 3). 

Identification of subtypes of idiopathic Parkinson’s disease 

patients 

Identification of endotypes 

To determine if distinct endotypes were present in the idiopathic subcohort we performed a 

network analysis on the CSF proteome of idiopathic patients. Two modules of co-expressed 

proteins were identified. They comprised 889 and 600 SOMAmers, respectively. Applying 

consensus clustering on these two protein modules split the idiopathic subcohort (350 patients) 

in proteome-based patient endotypes 1 (85 patients) and 2 (165 patients) (Figure 3A). As seen 

in the tracking plot (Figure 3B) these endotypes suffer only negligible changes as the number 

of modeled subclasses increases. Moreover, a predictive model for the endotypes was built 
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based on clinical parameters, avoiding the re-use of the same proteomic data involved in the 

definition of the endotypes. Patients with CSF phospho-tau ≥ 11pg/mL (as measured with the 

Elecsys® assay) were enriched for endotype 2, and patients with CSF phospho-tau < 11pg/mL 

were enriched for endotype 1 (Figure 3C). The model accuracy in the training (244 patients) 

and in the independent test (106 patients) sets, was 0.82 and 0.73, respectively. The estimated 

area under the curve (AUC) for the test set was 0.77. 

Endotypes did not significantly differ in age or sex. There were neither significant differences 

in caudate, striatum or putamen thickness, nor in UPDRS score parts II and III or MoCA scores. 

Significant differences were found for UPDRS score part I (higher for endotype 2; P = 0.044), 

as well as CSF levels of amyloid beta (lower for endotype 2; P = 1.95×10-15.), phospho-tau 

(lower for endotype 2; P =1.25×10-15.), total tau (lower for endotype 2; P < 2×10-16.) and alpha-

synuclein (lower for endotype 2; P < 2×10-16). Endotypes also showed significant differences 

in ngPD-ProS scores (higher for endotype 2; P = 0.034).  

Proteins differentially expressed in endotypes (CSF SomaScan)  

To identify the unique proteins significantly dysregulated in each endotype, a linear model was 

used to identify the differences between each of these two endotypes and the healthy controls 

to the idiopathic subcohort. For endotype 1, five markers were significantly different compared 

to the control group (CNTFR, LPO, MMP10, RIPK2 and VEGFA). LPO, RIPK2 and VEGFA 

were also part of the differences between healthy controls and the whole idiopathic group (see 

above). Endotype 2, however, showed 200 differentially expressed SOMAmers, 197 unique 

proteins (see Supplementary Table 4). Among those proteins, AK1, CCL14, FRZB, GPI, 

HAMP, LPO, NETO1, PTPRR, RAB31, RELT, RIPK2, ROBO3, RSPO4, SHANK1, SPINK9, 

VEGFA and VIP were dysregulated for the whole idiopathic group as compared to healthy 
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controls. Differentially expressed SOMAmers between endotypes added up to 155, 153 unique 

proteins (see Supplementary Table 4). 

Discussion  

Causal analysis 

Independently of its etiology (genetic or idiopathic), multiple cellular and metabolic alterations 

(e.g. iron metabolism), inflammation, and oxidative stress underly neurodegeneration in 

Parkinson’s disease. In this regard, the identification of causal proteins not only enhances its 

understanding, but also assists the search for druggable targets. This study identified 68 CSF 

proteins as causal and GPNMB, FCGR2A, FCGR2B and CTSB were among the top ones.  

GPNMB - expressed by myeloid cells - is found at high levels in the substantia nigra of 

Parkinson’s disease patients.29 It has been suggested that GPNMB modulates immune response 

30,31 having primarily a protective role.32-35 CTSB cleaves alpha-synuclein fibrils with the 

potential for decreasing alpha-synuclein aggregation.36 FCGR2A and FCGR2B are involved in 

phagocytosis and modulate inflammatory responses.37 Supporting our findings, independent 

reports suggest that GPNMB, CTSB and FCGR2A are causal to Parkinson’s disease.38-40 

FCGR2B - aggregated alpha-synuclein interaction inhibits its microglial phagocytosis, 

promoting neurodegeneration.41 However, blockade of FCGR2B in neurons may suppress 

Lewy body-like inclusion body formation.42  

Genetic patients 

GBA and LRRK2 are enzymes involved in ceramide metabolism and lysosomal degradation 

of aggregated alpha-synuclein. Genetic variants of the GBA and LRRK2 genes are known risk 

factors for the development of Parkinson’s disease and dementia associated with accumulation 
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of Lewy bodies.43-45 To better understand the differences between diseased and unaffected 

mutation carriers we compared their CSF proteomes (see Table 3). 

Protein differences between GBA+ patients and unaffected GBA+ controls are related to brain 

dopaminergic neurons (DLK1), dopamine metabolism (CALCA, GCH1) and inflammation 

effector cells (IL17A). All these proteins have been previously linked to Parkinson’s disease, 

though not specifically to GBA+. DLK1 is coupled to both tyrosine hydroxylase expression 

and neurotrophic signaling.46 Significantly lower levels of DLK1 in GBA+ patients suggest 

increased degeneration of dopaminergic neurons. GCH1 and CALCA are involved in 

nigrostriatal dopamine synthesis,47 and dopamine release and metabolism,48,49 respectively. We 

found both elevated in GBA+ patients. GCH1 variants contribute to the risk and earlier age-at-

onset of Parkinson’s disease.50 Moreover, CALCA was reported as significantly elevated in the 

CSF of depressed Parkinson’s disease patients relative to major depressive disorder patients.51 

One of the  inflammatory mechanisms proposed for neurodegeneration in Parkinson’s disease 

involves Th17 cells.52 Our study found increased IL17A levels in GBA+ patients. It has been 

recently proposed that elevated IL17A plays a key role in neurodegenerative diseases.53 

Among the CSF proteins differentially expressed between LRRK2+ patients and unaffected 

LRRK2+ controls, several stood out for their relevance in Parkinson’s disease: ARSA, SMPD1, 

CTSB and TENM4.ARSA is a lysosomal chaperone that prevents alpha-synuclein aggregation, 

secretion and cell-to-cell propagation.54 We found ARSA elevated in LRRK2+ patients, which 

could be interpreted as a protection mechanism to prevent the formation of alpha-synuclein 

aggregates. CTSB (causal protein, see causal analysis) and SMPD1 play important roles in 

Parkinson’s disease autophagy and lysosomal degradation processes.55 CTSB and SMPD1 

genetic variants are known to be associated with Parkinson’s disease risk.55 In this study, higher 

CTSB and SMPD1 levels in LRRK2+ patients indicate dysregulation of autophagy-

endolysosomal pathway and potentially increased macroautophagy.56,57 Brain TENM4 is 
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involved in axon guidance and myelination.58 In our study, it was significantly reduced in 

LRRK2+ patients. Loss-of-function and missense variants in TENM4 are associated with early 

onset Parkinson’s disease and essential tremor, a potential risk factor for developing 

Parkinson’s disease.60-59  

Idiopathic patients 

Worldwide, ~90% of Parkinson’s disease cases are idiopathic. Proteome differences between 

idiopathic patients and controls comprise not only markers of inflammation, but also of 

mitochondrial dysfunction / oxidative stress, iron metabolism and other pathological processes 

(see Table 3). The AK1 kinase is expressed by neurons and astrocytes.60 At advanced 

Parkinson’s disease stages, AK1 is downregulated in the substantia nigra probably due to 

mitochondrial dysfunction and dopaminergic neuronal death.60 The observed elevation of CSF 

AK1 levels may be associated with Parkinson’s disease progression stages, frontal cortex 

primary alteration or compensation of altered purine metabolism.60 SHANK may be regulated 

by the mitochondrial kinase PINK1, for which variants are known to be causal for Parkinson’s 

disease.61 It has been reported that knockdown in neurons of PINK decreases PSD95 and 

SHANK1.61 SHANK1 was decreased in idiopathic patients suggesting impaired synaptic 

plasticity. TXN promotes cell proliferation, protection against oxidative stress and anti-

apoptotic functions in the brain, which makes it a good candidate for a neurodegeneration 

marker. Here we find TXN decreased in Parkinson’s disease patients. Iron dysregulation is 

associated with oxidative stress and lipid peroxidation.62 It has been proposed that LPO - heme 

peroxidase - in the substantia nigra is involved in neurodegeneration.63 Lower LPO levels in 

idiopathic patients found here contrasts with previously reported elevated CSF LPO levels.63 

The high CSF levels of HAMP could help explaining this discrepancy. HAMP reduces iron 

accumulation and neuroinflammation by decreasing mitochondrial dysfunction, oxidative 
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stress, and ultimately dopamine neuronal loss.64 Moreover, HAMP overexpression – as seen 

here – promotes alpha-synuclein clearance through autophagy.65 It has been also reported that 

dopamine and levodopa reduce LPO levels.63 Given that the idiopathic patients recruited were 

drug-naïve early Parkinson’s disease patients, dopamine levels in this subpopulation may have 

helped maintaining low levels of CSF LPO. The glucose metabolism enzyme GPI was elevated 

in idiopathic patients and may be protective. Its overexpression in dopaminergic neurons 

protects against alpha-synuclein-induced neurotoxicity.66 As seen in GBA+ patients, reduced 

DLK1 levels in idiopathic patients may suggest neurodegeneration. Lower levels of RAB31, a 

small GTPase involved in exosome biogenesis67 and potentially in alpha-synuclein spreading 

in Parkinson’s disease68 were observed, too. RIPK2, a LRRK2 substrate, is lower in idiopathic 

patients, which matches the fact that LRRK2 deficiency leads to reduced activation of RIPK2.69 

The neurotrophic factor VEGFA is neuroprotective and has genetic variant associated with 

Parkinson’s disease risk.70 VIP enhances striatal plasticity and prevents dopaminergic cell loss 

in parkinsonian rats.71 VEGFA and VIP at lower levels in idiopathic patients may reflect 

ongoing neurodegeneration. 

Heterogeneity of idiopathic patients 

Disease heterogeneity challenges the development of disease modifying therapies. In this 

study, we used proteomic data to stratify idiopathic patients into clinically relevant endotypes.  

The lack of differences in the CSF levels of causal proteins, suggests that endotype molecular 

differences may be downstream from causal effects and affect the specific characteristics of 

Parkinson’s disease phenotypes rather than Parkinson’s disease risk. And yet, those molecular 

differences can affect progression as reflected by differences in ngPD-ProS and might be the 

basis of personalized therapy approaches. 
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The endotype robustness was reflected by the identified patient cluster stability (Figure 3B) 

and the high performance of the endotype predictive model (see Figure 3C). The fact that CSF 

phospho-tau levels sufficed to predict endotypes, suggests that targeted assessment of CSF 

proteins may be appropriate for idiopathic patient stratification in a clinical setting.  

It is worth noting that, while in Tsukita et al. 10 the ngPD-ProS perform similarly for both the 

idiopathic and the combined genetic subcohorts, here we see little overlap in the differentially 

expressed proteins between the idiopathic and each of the genetic subcohorts separately. This 

apparent discrepancy could just be reflecting a common CSF proteomic signature rising from 

the combination of genetic subcohorts even though each genetic subcohort may have different 

etiology. Supporting this hypothesis, when we compared the proteomes of the combined 

genetic subcohorts (GBA+ and LRRK2+) with their respective controls (data not shown) we 

found seven proteins shared with the 55 in the ngPD-ProS (i.e. DLK1, LPO, NEFH, RIPK2, 

SEMG2, VIP and LRFN2). These seven proteins intersected almost completely with the ten 

proteins that overlapped between the 55 proteins in the ngPD-ProS and the proteins 

differentially expressed between idiopathic patients and controls (i.e. DLK1, LPO, NEFH, 

RIPK2, SEMG2, VIP, CCL14, HAMP, RSPO4, and TXN). This similarity between the 

idiopathic subcohort and the combination of the genetic subcohorts could help explaining the 

apparent discrepancy mentioned above. 

In summary, we: i) identified causal proteins for Parkinson’s disease, ii) assessed CSF 

proteome differences in Parkinson’s disease patients of genetic and idiopathic etiology, and. 

iii) stratified idiopathic patients into robust subtypes. Our findings not only contribute to the 

identification of new therapeutic targets but also to shaping personalized medicine in CNS 

neurodegeneration. 
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Figures 

Figure 1 Analytical Design 

  

 

Figure 1. Full analytical design: 1103 subjects were analyzed with SomaScan for 4135 unique 

proteins in CSF. The comparison between GBA+ PD patients and GBA+ unaffected controls 

(UC) retrieved six differentially expressed (DE) proteins. The comparison between LRRK2+ 

PD patients and LRRK2+ UC retrieved seven DE proteins. The comparison between idiopathic 

PD patients and HC non-mutation carriers retrieved 23 DE proteins. Patients and controls were 

also combined and compared, which retrieved 122 DE proteins. Idiopathic PD patients were 

further analyzed, and two endotypes were identified based on CSF proteomics. 1264 subjects 

were sequenced genome wide to detect a total of 9743041 SNPs. For the 804 patients that had 

both genomic and proteomic data, a pQTL analysis was performed that identified 744 unique 

proteins with a significant cis-pQTL. The pQTLs combined with a meta GWAS for PD 

performed by Nalls et al. (2019), led to the proposal of 68 unique CSF proteins presumed to be 

causal for PD.  
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Figure 2 Causal Analysis (best protein candidate) 

  

Figure 2. A: Locus visualization of GPNMB pQTL hits suggest a strong association between 

GPNMB SOMAmer levels and its cis-SNPs. Colors indicate the linkage disequilibrium (LD) 

correlation of other SNPs with chr7:23294144 (rs858275). B: Locus visualization of GWAS 

hits in the GPNMB locus for the risk of developing Parkinson’s disease. The y axis is the -

log10 nominal p-value of the GWAS results.   

A 

B 
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Figure 3 Idiopathic PD endotypes 

 

Figure 3. A: Heatmap of z-scores of the protein values as measured with SomaScan, 

corresponding to the two modules identified using Weighted Gene Co-expression Network 

Analysis (WGCNA). The proteins in these modules are used for cluster analysis using 

Consensus Clustering, which retrieves two clusters (endotypes) of idiopathic PD patients. 

Patients are shown in the x-axis, separated by endotype, while proteins are shown in the y-axis, 

separated by module. B: Tracking plot depicting how the idiopathic PD patients are assigned 

to specific endotypes by Consensus Clustering as the number of potential endotypes increases. 

C: Partition Tree predicting endotype membership of the idiopathic PD patients based on 

clinical variables only. One node suffices to separate patients into endotypes based on phospho-

tau levels (p-tau) in CSF as measured with a clinical assay, the cutoff being 11 pg/mL.  
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Tables 

Table 1 Parkinson’s disease subcohorts 

Subcohort Patients Controls 

GBA+ 65 162a 

LRRK2+ 154 196a 

Idiopathic 350 176b 

 

a “unaffected controls” in the main text  

b “healthy controls” in the main text 
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Table 2 Parkinson’s disease causal proteins from CSF 

Protein 
Nr of 
IVs Method β FDR 

Colocalization 
PP.H4.abf 

Horizontal Pleiotropy 
Test 

(MRPRESSO P-value) 

GPNMBa 11 IVW 0.14 1.17 × 10−17 0.94 0.65 

FCGR2B 17 IVW 0.07 5.11 × 10−14 0.96 0.49 

FCGR2A 18 IVW 0.07 2.70 × 10−12 0.95 0.26 

CTSB 12 IVW −0.11 2.63 × 10−10 0.22 0.47 

HLA-DQA2b 33 IVW −0.14 1.43 × 10−9 0.03 0.00 

CD38 1 Wald ratio −0.53 2.45 × 10−9 0.45 NA 

HP 19 IVW 0.06 2.01 × 10−6 0.01 0.60 

LTF 23 IVW 0.05 2.16 × 10−6 0.04 0.65 

HAVCR2 13 IVW −0.10 2.87 × 10−5 0.30 0.67 

BST1b 10 IVW 0.12 4.00 × 10−5 0.24 0.00 

CLEC3B 4 IVW −0.16 1.02 × 10−4 0.29 0.97 

HAPLN1 15 IVW 0.06 3.21 × 10−4 0.05 0.79 

MANEA 17 IVW 0.05 3.21 × 10−4 0.10 0.94 

NQO2 11 IVW 0.05 3.21 × 10−4 0.05 0.98 

ARSAa 5 IVW 0.13 6.82 × 10−4 0.58 0.62 

LGALS3 8 IVW 0.07 7.11 × 10−4 0.02 0.50 

IL1RL1 26 IVW 0.03 9.63 × 10−4 0.01 0.90 

PAM 12 IVW 0.09 9.63 × 10−4 0.08 0.47 

TPSAB1 8 IVW −0.06 0.0011 0.15 0.80 

HSP90B1 22 IVW 0.04 0.0011 0.03 0.19 

GLCE 14 IVW 0.05 0.0015 0.10 0.96 

MANSC4 18 IVW 0.05 0.0016 0.02 0.85 

RABEPK 10 IVW −0.05 0.0021 0.10 0.86 
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ICAM1 8 IVW −0.07 0.0021 0.32 0.74 

C4Bb,c 101 IVW 0.02 0.0021 0.00 0.00 

LCTb 25 IVW 0.04 0.0021 0.00 0.00 

SIRPB1 25 IVW −0.03 0.0023 0.01 0.60 

C4Ab,c 101 IVW 0.02 0.0023 0.00 0.00 

PCSK7 18 IVW −0.04 0.0028 0.02 0.98 

IL9 12 IVW 0.06 0.0028 0.05 0.96 

CLN5a 2 IVW −0.15 0.0028 0.38 NA 

AGT 4 IVW 0.12 0.0039 0.06 0.97 

CD274 16 IVW 0.08 0.0042 0.02 0.46 

RBP7 3 IVW 0.20 0.0047 0.09 NA 

PLA2G7 14 IVW 0.04 0.0061 0.05 0.57 

EGF 3 IVW −0.13 0.010 0.11 NA 

ASIP 3 IVW −0.13 0.010 0.17 NA 

TPSB2 10 IVW −0.05 0.011 0.15 0.27 

ACP1 15 IVW 0.04 0.011 0.04 0.88 

RNASE3 6 IVW 0.09 0.011 0.01 0.26 

A4GALT 2 IVW −0.21 0.012 0.11 NA 

DSCAM 3 IVW −0.30 0.015 0.19 NA 

COLEC11 8 IVW −0.05 0.016 0.03 0.61 

SPOCK2 8 IVW 0.08 0.017 0.03 0.98 

VWA2 5 IVW −0.11 0.018 0.04 0.76 

RPN1 10 IVW 0.08 0.020 0.02 0.57 

ADAMTS4 8 IVW −0.06 0.020 0.19 0.36 

PDCD1LG2 12 IVW −0.09 0.020 0.04 0.07 
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PRTN3 2 IVW 0.17 0.020 0.06 NA 

ADGRE2 10 IVW −0.05 0.020 0.01 0.87 

RNASE2 10 IVW 0.06 0.020 0.02 0.61 

MPIG6B 18 IVW −0.05 0.020 0.00 0.18 

SIGLEC9 19 IVW 0.03 0.020 0.02 0.99 

TAPBPL 10 IVW −0.03 0.020 0.03 0.50 

LRP12a 1 Wald ratio 0.73 0.023 0.66 NA 

DNAJC30 3 IVW −0.09 0.024 0.03 NA 

CCL15 3 IVW −0.08 0.024 0.12 NA 

VTN 22 IVW −0.03 0.028 0.01 0.75 

NUCB1 3 IVW −0.12 0.029 0.05 NA 

TRH 4 IVW −0.08 0.029 0.07 0.75 

POSTN 8 IVW −0.07 0.034 0.02 0.76 

PLXNB2a 36 IVW −0.02 0.034 0.08 0.09 

IL18R1 23 IVW 0.03 0.034 0.01 0.79 

IDUA 3 IVW 0.10 0.038 0.00 NA 

CFD 10 IVW −0.05 0.039 0.01 0.58 

GGHa 4 IVW 0.08 0.040 0.02 0.49 

FGFRL1 5 IVW 0.13 0.046 0.00 0.07 

LMAN2L 3 IVW −0.15 0.049 0.03 NA 

 

a PD protein marker in Supplementary Table 3 
b corrected by removing outliers by MRPRESSO 
c has homolog detected by the same SOMAmer 

744 proteins have a significant cis-pQTL 
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Table 3 SOMAmers differentially expressed between Parkinson’s disease patient vs. 

controls, divided by subcohort 

Subcohort  Gene Symbol 

PD change 

direction FDR 

GBA+ CALCA48,49,51 + 0.022 

CD2 + 0.025 

DLK146 ‒ 0.025 

GCH147, 50 + 0.025 

IL17A52, 53 + 0.025 

SEMG2 ‒ 0.022 

LRRK2+ ARSA54 + 0.023 

ACP7 + 0.043 

CA10 + 0.037 

CTSB36, 55, 38-40 + 0.037 

0.027a 

SIAE + 0.037 

SMPD155, 56 + 0.037 

TENM458,72,73 ‒ 0.037 

Idiopathic 

 

 

 

 

 

 

AK160 + 0.049 

CCL14 + 0.023 

DLK146 ‒ 0.032 

FRZB + 0.036 

GPI66 + 0.006 

HAMP64, 65 + 0.001 

LPO63 ‒ 1.5 × 10-6 
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LRRTM4 ‒ 0.023 

NETO1 ‒ 0.049 

NFH + 0.014 

PTHLH ‒ 0.029 

PTPRR ‒ 0.032 

RAB3168 ‒ 0.044 

RELT ‒ 0.046 

RIPK269 ‒ 4.6 × 10-5 

ROBO3 ‒ 0.049 

RSPO4 ‒ 0.029 

SEMG2 ‒ 0.029 

SHANK161 ‒ 0.023 

SPINK9 ‒ 0.040 

TXN ‒ 0.023 

VEGFA70 ‒ 0.006 

VIP71 ‒ 0.023 

 

a Interaction term. 

The change in PD represents (+) increased and (-) decreased in PD vs controls, respectively. The reference numbers close to the gene 

symbol correspond to literature positions that link those genes with PD. 
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