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Abstract 

The epidemic curve of COVID-19 for the first two years of the pandemic clearly shows a sequential 

peak structure with a constant half width, despite various levels of preventive measures implemented 

in many countries and various infection strengths of each coronavirus variant. However, previous 

epidemic models have not been able to explain this phenomenon. Here we show the mechanism 

causing this peak structure and the universality of the half width of the peak by means of a self-

consistent approach that we have developed. Comparison with the data of all peaks observed in 15 

countries strongly suggests that convergence of the epidemic peak is achieved when all susceptible 

people estimated by the self-consistent approach are infected. This directly causes the universality of 

the half width. The present approach also provides a method to quantitatively evaluate the effects of 

various prevention measures and has the ability to predict the peak position and height from the data 

of the strength of infection in the initial stage of each pandemic peak. 

 

Introduction 

Figure 1 shows the daily confirmed cases with a 7-day moving average in Japan (blue line) [1] for the 

first two years of the COVID-19 pandemic. In the same figure, those of Germany, India, Spain, the 

United States and the world (red line) [2] are also plotted by scaling these absolute values to 

approximately fit Japan’s value. In Figure 2, we compare the peak shapes of the first wave, the Delta 

variant, and the Omicron variant for several countries, each of which is scaled to that of Japan (blue 

lines) in terms of peak position and height. 

 

These figures clearly show two important facts. First, each wave of the COVID-19 variant in each 

country is rising synchronously throughout the world, and all peaks converge in a certain period of 

time. The synchronization is understandable because the infectivity of the COVID-19 variant is strong 

and the movement speed of human flow is very fast worldwide. However, the fact that the peak shape 

remains even on a global average is not easy to understand.  

 

The second point is the width of each peak. The Figure 2 shows that the half width (FWHM: full width 

at half maximum) of each peak is almost the same at approximately 30 days, independent of the height 

of the peaks caused by each Covit-19 variant. Figure 1 shows that the peak height of the Delta variant 
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is 42 times larger than that of the first wave and that of the Omicron variant is 167 times larger than 

that of the first wave for the case of Japan. These two facts suggest the existence of a peculiar 

mechanism of the spread and convergence of COVID-19 infection, which exceeds the influence of 

various types of preventive measures and various infection strengths of each coronavirus variance. 

However, previous epidemic models have not been able to explain the mechanism of this phenomenon. 

 

Figure 1 Daily confirmed cases for these two years of the COVID-19 pandemic. 

The data of Japan is indicated by blue line. Those of Germany, India, Spain, the United States and the 

world (red line) are also plotted by scaling these absolute values to approximately fit Japan’s value. 

 

Figure 2 Wave shapes of the first wave, the Delta variant, and the Omicron variant. 

The first wave (left-hand), the Delta variant (middle), and the Omicron variant (right-hand) for 

several countries are shown by scaling them to that of Japan (blue lines) in terms of peak position 

and height. 
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Method 

Here, we introduce a self-consistent approach, which is an extension of the SIR model [3] (the model 

and the mathematical framework are described in full detail in the supplementary material). Although 

the actual numerical solutions have been done in the Monte Carlo method [4] based on the Boltzmann 

equation for the one-body phase space distribution function, the detail of the self-consistent approach 

is explained by using the terminology of the SIR model shown below, because the expression is 

simpler than the explanation by using the Boltzmann equation and because the SIR equations can be 

straightforwardly derived from the Boltzmann equation. 

 

The simplest expression of the SIR equations for the susceptible S(t), infectious I(t) and recovered R(t) 

fractions with the transmission coefficient β and the recovered rate λ are given as 

𝑑𝑆(𝑡)
𝑑𝑡 = −𝛽𝑆(𝑡)𝐼(𝑡),	
𝑑𝐼(𝑡)
𝑑𝑡 = 𝛽𝑆(𝑡)𝐼(𝑡) − 𝜆𝐼(𝑡),	

𝑑𝑅(𝑡)
𝑑𝑡 = 𝜆𝐼(𝑡). 

The naive application of this SIR model, in which the total number of people is set as the initial value 

for susceptible people S0, is obviously inappropriate, considering that the total number of infected 

people at the time of the Delta variant in Japan is 920 thousand, which is only 0.7% of the population. 

At this ratio, the scenario in which a susceptible person is infected and gains immunity, thereby 

suppressing the spread of infection, does not work at all. This problem is certainly due to the 

assumption that individual sensitivities are uniform, as many have pointed out [5]. In fact, as Britten 

et al. [6] show, the introduction of age and activity heterogeneities significantly lowers the threshold 

of herd immunity. Therefore, it is essential to take the heterogeneity of individual susceptibility into 

account in the theory. However, it is highly uncertain and practically difficult to quantitatively evaluate 

this nonuniformity and incorporate it into the model, since the heterogeneity of individuals might come 

from not only the distribution of the susceptibility of individuals, but also the variation in the contact 

rate by region, and many other elements. 

 

Therefore, we propose another macroscopic approach below, which does not explicitly consider the 

heterogeneity. We first define the “burnup rate” κ instead of setting S0 as follows. 

𝜅 = 	 𝐼0𝑆0		, 
where I0 is the cumulative infectious defined by 

(1)	

(2)	
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𝐼0 =	3 𝛽	𝑆(𝑡′)
5

0
𝐼(𝑡′)𝑑𝑡6 .	

The reason for using the terminology "burnup" here is that the mechanism leading to convergence in 

the SIR model is the reduction of susceptibility due to the progress of infection itself, which is the 

same as in the general burnup problem. In fact, the equations dealing with the reactor burnup problem 

have the same structure as those of the SIR model. The word “burnup” is used here because of this 

similarity. 

 

Next we define the “burnup factor” Υ(𝑡), which is a time-dependent indicator showing the degree of 

suppression of infection due to the decrease in susceptibility, as follow, 

Υ(𝑡) = 1.0 −	 1𝑆0 	3 𝛽	𝑆(𝑡′)
9

0
𝐼(𝑡′)𝑑𝑡′ 

By using the burnup factor Υ(𝑡), 𝑆(𝑡) is expressed as 

𝑆(𝑡) = 𝑆0	Υ(𝑡) 
The burnup factor Υ(𝑡) changes according to the progress of infection, whose asymptotic value is 

one at t = 0 and 1.0 − κ for t = ∞, that is characterized by the burnup rate κ. The second equation of 

the SIR model given in Eq.(1) can be rewritten as follows by using the burnup factor Υ(𝑡) defined 

by Eq.(4).  

𝑑𝐼(𝑡)
𝑑𝑡 = 𝛽𝑆0Υ(𝑡)𝐼(𝑡) − 𝜆𝐼(𝑡),	

We solve the SIR equations (Eq.(1)) with the initial condition (κ, β) instead of (S0, β). As a result, the 

SIR equations become equations in which the solution to be obtained includes itself, that is, a so-called 

self-consistent equation. We solve the self-consistent equations by the sequential imputation method, 

i.e., repeat the imputation until the solution converges.  

 

Figure 3 Solutions of the self-consistent equation.  

The left-hand side is a result for κ=1.0, and the right-hand side is for κ=0.8. 

 

(3)	

(4)	

(5)	

(6)	
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Figure 3 shows the self-consistent solutions for the initial conditions of κ=1.0 (left graph), κ=0.8 (right 

graph), and β, which is characterized by the basic reproduction number R0. The value of R0 is chosen 

to reproduce the height of the Delta wave of Japan shown in the same graph. If R0 is changed with the 

same κ, the height of the peak is changed but the half width of the peak does not change. 

 

Figure 4 shows the self-consistent solutions with different values of R0 for κ =1.0 (left graph) and for 

κ =0.8 (right graph). Both cases denote that the values of R0 change the height of the peak but do not 

affect the half width of the peak, which is more strictly shown by the Figure 5. In Figure 5, we scale 

each peak with different R0 in Figure 4 to the peak position of the experimental data. These figures 

clearly show that each result with different R0 value indicates the same half width for the same κ value. 

 

Figure 4 R0 dependence on the self-consistent solution. 

The left-hand side shows the results for κ =1.0, while the right-hand side shows the results for κ 

=0.8. 

 

Figure 5 Half width dependence on the different R0 value.  

The left-hand side shows the results for κ =1.0, while the right-hand side shows the results for κ 

=0.8. Each peak is scaled to the peak position of the experimental data.  
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These results indicate the unique one-to-one relationship between the burnup rate 𝜅 and the half 

width of the peak and suggest that the shape of the burnup factor Υ(𝑡) (red lines in Figure 3 show 

S0Υ(𝑡)) might determine the half width of the peak. 

 

Conclusion 

This method is applied to all peaks observed in 15 countries. Here, the result of Japan is shown in 

Figure 6 (the results of the other 14 countries and the details of the methodology and the model are 

shown in the supplementary material).  

 

Figure 6 Daily cases (red is all, green is above 60 years old) and deaths of Japan from 

March 2020 to the present. 

 

For each wave for Japan, the value of R0 is fixed at the base point of the arrow indicated in Figure 6. 

After the fixed point, β is not changed and the position and height of the peak are automatically 

determined by the self-consistent solution. The half width of all waves can be fitted by the condition 

of κ=1.0. In addition, the comparison with the data of all peaks in another 14 countries also supports 

the condition of κ=1.0. This suggests that the convergence of the COVID-19 epidemic peak is achieved 

when all susceptible people evaluated by the self-consistent approach are infected. This might be a 

reason that the COVID-19 pandemic always shows a constant half width in its epidemic peak, Thus, 

the half width of the peak does not depend on the strength of the preventive measures or the strength 

of the infection of each COVID-19 variant. This is an important conclusion obtained by the self-

consistent approach, which we call “self-consistent burnup theory”, and the condition κ=1.0 is the 
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“complete burnup condition”. It should be noted that the complete burnup condition is not assumed a 

priori in this theory but is determined by comparing with experimental values. 

 

Applications 

This self-consistent approach can also apply to the quantitative evaluation of the effects of various 

prevention measures. If the effects of the prevent measures are constant in time during the epidemic 

wave, the self-consistent approach can apply the wave without explicit treatment of the prevent 

measures, since all information of the effects are already included in the initial condition of β. For the 

case that the strength of the prevent measures is changed in the period, the information of the time-

dependent effects should be included in the simulation in the same time as the burnup factor Υ(𝑡), 
and the sequential imputation method of the self-consistent approach is performed to reproduce the 

data. By using this result, we can estimate the effects of the prevention measures by removing the 

effect from the simulation or by shifting the period of the prevention measures in a virtual way.  

 

Figure 7 Effects of the preventive measures. 

The left graph shows the effects of the suppression of people flow, and the right graph 

shows the effects of the vaccination. 

 

Figure 7 shows two examples of the estimation of the effects of the preventative measures, the 

suppression of people flow (left graph) and the vaccination (right graph).  

 

From the data on time changes in the population staying in downtown of Tokyo, we assume the time 

change of the suppression factor, and the maximum is 15% globally, denoted by the red line in the left 

graph of Figure 7. Taking this time-dependent suppression factor into the simulation, we perform the 

self-consistent calculation to reproduce the Delta peak in Japan and obtain the result (red line in the 

lower part of the left-hand of Figure 7). We then perform the calculations for three cases, by removing 

the suppression factor (orange line), by sifting it to a 20-day delay (purple line), and shifting it to 20 
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days advance (cyan line). These results show that the suppression of people flow reduces the infection 

by 40% for the real situation, 8 % reduction for the 20-days delay case, and 60 % reduction for the 20-

days advance case.  

 

These results show that the preventive measures are very effective if they are performed before the 

peak position but less or almost zero after the peak. It should be noted that the suppression factors at 

the peak position are almost the same between the delay and advance cases in Figure 7. However, the 

reduction effect of the delay case is only 8%, while the advance case is 60%. This is because actual 

infection events peak two weeks before the cases are confirmed. In other words, the preventive 

measures are expected to be effective up to 2 weeks before the peak of positive individuals. 

 

The next example is the effects of the vaccination (right graph of Figure 7). In the same period of the 

Delta variant, vaccination has progressed rapidly up to an approximately 70 % vaccination rate in 

Japan. From these data, we set the time-dependent suppression factor by assuming two things: a 2-

week delay in revealing the vaccination effect and 70% efficiency against the infection, shown by the 

red line in the right graph of Figure 7. As in the previous example, we derive the self-consistent 

solution (red line), which reproduces the data and four additional results obtained by eliminating the 

vaccination effect, and shifting the period of the vaccination. These results indicate that the vaccination 

reduces the infection by 66% for the real situation, 33% reduction for the one month delay case, 85% 

reduction for the one month advance case, and 92% reduction for the two month advance compared 

with the no-vaccination case. The conclusions obtained by this example are almost the same as those 

of the previous example.  

 

Commonly, for both cases, the half width of the peak is not changed by the strength of these prevention 

measures, which is consistent with the facts observed in Figures 1 and 2. 

 

Validation 

Finally, we should mention the predictive performance of the self-consistent approach. Compared with 

the SIR model, the initial condition κ=1.0 employed in this approach is a strict condition that restricts 

the available solution space of the SIR model by the condition of the fixed width of the epidemic peak. 

Due to this condition, the epidemic curve, the peak position and height, can be predicted once we set 

the initial strength of the transmission coefficient β. Therefore, this condition should be verified from 

past data, which are partly shown in this paper, and from future predictions. 

 

We started the predictions based on this approach from the beginning of 2022 for 15 countries (full 

data are shown in the supplementary materials); here, the results of four European countries are shown 
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in Figure 8. 

 

We predicted the first Omicron peak by using the data up to the end of December 2021, which are 

shown by purple dashed lines in the graph, and the second Omicron peak by using the data up to 20th 

of May 2022 shown by the red dashed lines. The purple and red solid lines indicate the calculation 

results obtained after the data became available. Regarding the height of the peak, it is shown that 

predicting at a point closer to the peak increases the accuracy, and the smoother the data in the initial 

stage of the peak, the more accurate the prediction is. In any case, the peak position and width are well 

predicted by this approach, which strongly suggests that the assumption of κ=1.0 is appropriate. 

 

 

Figure 8 Predictions of the self-consistent approach. 

The graphs show the predictions (dashed lines) and the calculated values (full lines) 

corrected with reference to the data for four European countries from the end of last 

year to the present. 

 

As shown in Figures 6 and 8, we have divided the epidemic into several peaks and analyzed each 

component. However, we have not examined the details of the relationship between each peak and 

real COVID-19 variants, or the interference problem between waves. We assume that all waves are 

independent. These are the issues to be further investigated in the future 
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Supplementary Information is available in the online version of the paper. 
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