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Abstract

Most mainstream methods mainly regard lane detection as a pixel-by-pixel segmentation task,
resulting in high computational cost and time-consuming, and the accuracy is influenced by
severe occlusion and extreme lighting conditions. To tackle these issues, we propose a novel
Attention-based Row Selecting Networks(ARS-Net), which utilizes the row selecting method based
on global features to detect lanes, greatly improves the detection speed. At the same time,
channel and spatial attention mechanisms are integrated into ResNet as the backbone to focus
on important features and suppress unimportant ones, so as to adjust feature weights and
reduce information loss. Besides, group normalization is employed to replace batch normaliza-
tion, which enhances the stability of accuracy. We carry out immense amounts of experiments
on two international public datasets TuSimple and CULane, the experimental results show that
our method achieves the state-of-the-art performance in both accuracy and speed and significantly
outperforms other methods for real-time and efficient lane detection in real-world applications.

Keywords: Lane detection, Attention mechanism, Group normalization, Deep learning

1 Introduction

With the improvement of living standards, auto-
mobiles have become a very common transporta-
tion means, while the incidence of traffic accidents
is also increasing year by year. According to rel-
evant surveys, about half of traffic accidents are
related to lane deviation. Research shows that if
the driver’s reaction time is improved by 0.5s,
at least 60% of rear-end crashes, 50% of cross
collisions and 30% of head-on collisions can be

avoided[1]. Therefore, improving the lane detec-
tion technology and the Intelligent Driver Assis-
tance Systems(IDAS) that provides assistance to
drivers is of great significance to reduce the inci-
dence of traffic accidents and ensure the safety of
driving.

As a fundamental task of autonomous driv-
ing, lane detection based on computer vision has
been widely applied in Adaptive Cruise Con-
trol(ACC), Blind Spot Monitoring(BSM), Lane
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Departure Warning(LDW) and other driver assis-
tance systems[2]. In real driving scenarios, the
road environment is complex and changeable,
affected by weather, light conditions, lane wear,
road shadow, and lane occlusion by passing vehi-
cles, many lane detection methods have the prob-
lems of high false and missed detection rate and
low accuracy, as well as large amounts of compu-
tation and long time consuming.

To deal with these issues, many scholars
have carried out extensive research. At present,
there are two mainstream lane detection meth-
ods, which are traditional methods and deep
learning methods. Traditional methods exploit
hand-designed features to detect lane, such as
grayscale[3], color[4], texture[5], edge gradient[6],
and visual vanishing point[7], which are sensi-
tive to environmental changes such as light and
weather. When the driving environment changes
significantly, the effect of lane detection becomes
worse.

With the development of deep learning, deep
neural networks have shown superiority in object
detection due to their great representation and
learning ability. Compared with traditional meth-
ods, feature extraction based on deep learning can
gain richer information, and have been widely used
in lane detection. DeepLanes[8] utilized a deep
convolutional neural network for feature extrac-
tion, and performed pixel-wise classification of
lane and background to achieve end-to-end lane
detection. SegNet[9] proposed an improved seg-
mentation network, which adopts convolution and
pooling operations to extract lane features, and
exploits connected domain constraints to achieve
accurate segmentation of binary lane images.
However, its structure is complex and real-time
performance is poor. LaneNet[10] proposed an
instance segmentation method, which can cluster
each lane in training stage rather than the post-
processing stage, greatly improving the running
speed. LSTR[11] developed a transformer-based
network for end-to-end lane detection with a
self-attention mechanism to capture slender struc-
ture of lanes and rich global context information,
achieving high accuracy and speed.

The above methods all detect lane pixel-by-
pixel, requiring high computing cost. Qin et al.[12]
regarded lane detection as a row-based selecting
problem using global features. Instead of segment-
ing every pixel of image, the location of lane was

selected at predefined rows of the image, which
significantly reduces the computational cost. It
achieved ultra fast speed and solved the no-visual-
clue problem. Inspired by it, we proposes an effi-
cient new method for lane detection. The ResNet
integrated with the channel and spatial attention
mechanisms is used as backbone to extract the
global features of the image. Then, the row-based
selecting method based on global features is used
to select the lane position to achieve real-time and
accurate detection. Our main contribution can be
summarized in four parts:

• We propose a new Attention-based Row
Selecting Networks(ARS-Net) for lane detec-
tion, which integrates the Convolutional Block
Attention Module(CBAM) into ResNet to
adjust feature weights, so as to reduce infor-
mation loss by paying attention to important
features and suppress unnecessary ones.

• Group normalization is used to replace batch
normalization, which improves the stability of
accuracy.

• We demonstrate the effectiveness of our model
by conducting extensive ablation studies.

• We experiment on two public datasets TuSimple
and CULane and compare with other methods,
verifying that the proposed method achieves the
state-of-the-art performance in terms of both
accuracy and speed.

2 Related Work

Attention mechanism. Attention mechanism
tells network where to focus, it enhances the
representation power of network by focusing on
important features and suppressing unimportant
ones. In recent years, some scholars have tried
to incorporate attention mechanism into CNN to
improve its performance. Hu et al.[13] introduced
a Squeeze-and-Excitation block(SE) to focus on
the relationship between channels and exploited
global average pooling features to selectively
emphasize informative features and suppress less
useful ones, thus improving the representation
power of the network. However, Woo et al.[14] val-
idated that adopting both spatial attention and
channel attention is superior to just using channel
attention. A new Convolutional Block Attention
Module(CBAM) is proposed, which sequentially
applies channel and spatial attention module to
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extract features and learn ‘what’ and ‘where’ to
pay attention to by mixing channel and spatial
information together. In this paper, CBAM is inte-
grated into CNN to adjust the feature weights of
input images to enhance classification capability.
Normalization. Normalization has been widely
used in deep networks as normalizing the input
data makes training faster. AlexNet[15] proposed
Local Response Normalization(LRN), which nor-
malized the convolution results of adjacent depths
at the same spatial position and slightly improve
the generalization ability of the model. Batch
Normalization(BN)[16] normalizes the features by
calculating mean and variance within a batch,
which enables very deep networks to converge and
benefits generalization. However, BN is heavily
dependent on batch size, too small batch size will
result in performance degradation. In addition,
the batch dimension may be different during train-
ing and testing, which will lead to inconsistency
problem.

Several normalization methods have been
proposed to avoid using the batch dimension.
Layer Normalization(LN)[17] normalizes each fea-
ture map along the channel dimension. Instance
Normalization(IN)[18] normalizes within each
channel for each image. However, the accuracy of
LN and IN is not so good as BN in many visual
recognition tasks. Wu et al.[19] proposed Group
Normalization(GN), it divides the channels into

groups and normalizes within each group. GN is
comparably good with BN and its accuracy is
more stable than BN in a wider batch range as its
calculation is independent of batch size. Hence, we
adopt GN to normalize.

3 Method

The overall architecture of proposed Attention-
based Row Selecting Networks(ARS-Net) is shown
in Figure 1. The ResNet integrates with the
Convolutional Block Attention Module(CBAM) is
regarded as the backbone for the extraction of
global image features, then the row-based select-
ing method based on global features is utilized to
classify the predefined row anchors and predict the
lane position. In addition, an auxiliary segmenta-
tion branch is added during training, which are
composed of multiple convolution, group normal-
ization, and ReLU activation layers, to aggregate
global and local features. Auxiliary segmentation
is only worked during training and is removed dur-
ing testing. In this way, the running speed will not
be affected while the multi-scale features are well
aggregated for lane segmentation.

3.1 CBAM-ResNet

In order to pay more attention to important
features of images, we add channel and spatial

Fig. 1 Overall Architecture.The feature extractor is illustrated in the blue box, the classification prediction of lanes is
shown in the green box. The group classification is conducted on each row anchor.
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attention mechanisms(CBAM) between each two
convolution layers to adjust feature weights.

For the channel attention mechanism, first
input feature map F , perform both global average-
pooling and max-pooling operations based on
width and height to aggregate spatial information
of the feature map, generating Favg and Fmax.
Then, both Favg and Fmax are forwarded to two
shared fully-connected(FC) layers, the first FC
layer compresses C channels into C/r channels
to reduce parameter overhead, r is the reduction
ratio, followed by ReLU activation function, the
second FC layer increases the dimension to return
to C channels. The output features are merged
by element-wise summation, and the final channel
attention feature FC is generated by the sigmoid
activation function. At last perform element-wise
multiplication of the channel attention feature FC

and the input feature F to generate F ′ as the input
feature of the Spatial attention module. In short,
the channel attention mechanism learns “what” to
pay attention to, which is computed by:

FC = σ (FC2 (FC1(AvgPool(F)))

+ FC2 (FC1(MaxPool(F)))

= σ (W2 (W1 (Favg)) +W2 (W1 (Fmax))) (1)

where σ refers to the sigmoid function, W1 and
W2 denotes the FC shared weights.

For the spatial attention mechanism, input
feature F ′, first perform channel-based global
average-pooling and max-pooling, and then con-
catenate the two generated features F ′

avg and
F ′

max. Then reduce the dimension to 1 channel
by a standard convolution layer. Finally, the spa-
tial attention feature FS is obtained by a sigmoid
function. And the final refined output feature F ′′

is calculated by element-wise multiplication of the
spatial attention feature FS and the input feature
F ′. In a word, the spatial attention mechanism
learns “where” to pay attention, which can be
expressed as:

FS = σ (f7×7 ([AvgPool (F
′) ; MaxPool (F ′)])

= σ
(

f7×7

[

F ′

avg ; F ′

max

]))

(2)

where f7×7 represents a convolution operation
with the filter size of 7×7.

The overall CBAM attention process can be
summarized as:

F ′ = F ⊗ FC

F ′′ = F ′
⊗ FS (3)

where ⊗ denotes element-wise multiplication.
By plugging CBAM module after each non-

linear layer following convolution of ResNet, the
CBAM-ResNet can learn which information to
emphasize and which to suppress, help to adjust
the feature weights of the input image and capture
non-local contextual information to compensate
for the missing details of lanes, efficiently improve
the performance of lane detection.

3.2 Row-based selecting method for

lane detection

Like[12], we exploit the row-based selecting
method for lane detection. Firstly is gridding, the
image is divided into several rows and judged
whether each row anchor has lanes according to
the global features extracted by CBAM-ResNet.
Predefined row anchors are those rows with lanes,
each row is further divided into multiple cells, and
lane detection is to select specific cells as lane
positions on predefined row anchors.

Suppose the input image size is H×W , the
maximum number of lanes is C. Let h represent
the number of predefined row anchors, and w
be the number of grid cells. It is obviously that
h << H and w << W , that is, the number of pre-
defined row anchors is far less than the height of
image and the number of grid cells is far less than
the width of image. In this way, the segmentation
method needs to carry out H×W classifications
that are (C+1)-dimensional, while ours only needs
to conduct C×h classifications that are (w + 1)-
dimensional. The extra dimension indicates the
absence of lane. C×h×(w + 1) is much less than
H×W×(C+1), hence the amount of computation
is drastically reduced.

Compared with the traditional pixel-by-pixel
segmentation method, our method which selected
the lane position based on the predefined row
anchors whose number and gridding size are far
less than the size of the original image greatly
reduces the calculational cost, so the detection
speed is extremely fast. At the same time, our
method uses global features as input, having a
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larger receptive field than segmentation methods,
which is beneficial to solve the problem of no
visual clue of lanes by supplementing contextual
information for the missing details of lanes under
occlusion or severe weather and light.

3.3 Group Normalization

Group normalization(GN) is to normalize each
group. It divides the channels into multiple
groups, and normalize the features by calculating
the mean and variance within each group. The
calculation formula for GN is:

y =
x− E(x)

√

V ar(x) + ε
× γ + β (4)

where E(x) and V ar(x) denote the mean and
variance, ε is a small constant, γ and β are
trainable parameters representing scale and shift.

In the case of two-dimensional images, the fea-
ture dimension is [N,C,H,W ], where N is the
batch axis, C is the channel axis, and H and
W are the spatial height and width axes[19].
Batch Normalization(BN) normalizes along batch
dimension, the normalized dimension is [N,H,W ].
Layer Normalization(LN) and Instance Normal-
ization(IN) avoids the batch dimension and the
normalized dimensions are [C,H,W ] and [H,W ]
respectively.

GN combines the advantages of LN and IN, it
reshapes the feature dimension from [N,C,H,W ]
to [N,G,C/G,H,W ] and the normalized dimen-
sion is [C/G,H,W ]. Here G is the number of
groups, which is a predefined hyper-parameter.
C/G is the number of channels per group.

GN’s computation is independent of batch
sizes, which avoids inconsistency problem of batch
dimension using BN during training and testing,
and its accuracy is comparable to that of BN
which is better than LN and CN in many visual
recognition tasks while more stable than BN in a
wide range of batch sizes, thus we exploit GN to
replace BN for feature normalization.

4 Experiments

4.1 Datasets

We experiment on two widely-used public lane
detection datasets, TuSimple[20] and CULane[21].

The TuSimple dataset is collected on the high-
way in the daytime, consisting of 6408 video clips,
each clip has 20 frames and the last frame is
annotated. It is divided into training set of 3268
frames, validation set of 358 frames and test set
of 2782 frames. The image resolution is 1280×720
pixels and marking up to 5 lanes. The CULane
dataset has a total of 133235 frames, which are
divided into 88880 frames for training, 9675 for
validation and 34680 for testing. It consists of
nine different scenarios: normal, crowded, night,
no-line, shadow, arrow, dazzle light, curve, and
crossroad, with a size of 1640×590 and marking
up to 4 lanes.

4.2 Evaluation metrics

The evaluation metrics of TuSimple dataset are
accuracy, false positive rate (FPR) and false neg-
ative rate (FNR). Generally speaking, the higher
the accuracy, the lower the FPR and FNR, the
better the lane detection effect. Accuracy is calcu-
lated by:

Accuracy =
∑

im

TPim

GTim

(5)

where TPim is the number of true prediction
points of the image, and GTim is the number
of ground truth points[11]. FPR and FNR are
formulated as follows:

FPR =
FP

FP + TN
(6)

FNR =
FN

TP + FN
(7)

where TP is the true positive, FP is the false
positive, TN is the true negative and FN is the
false negative. FPR represents the proportion of
all negative samples that are wrongly predicted to
be lane. FNR is the proportion of all real lanes
that are not predicted.

F1-measure is taken as the evaluation metric
of CULane dataset and calculated by:

Fl −measure =
2× Precision×Recall

Precision+Recall
(8)

here,

Precision =
TP

TP + FP
(9)

Recall =
TN

TP + FN
(10)
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Precision represents the proportion of true
positive in all predicted positive samples. Recall
means the proportion of all positive samples that
are correctly predicted.

4.3 Implementation Details

Experimental platform. Operating system
Windows 10×64, processor Intel(R) Core(TM) i9-
10900K CPU @ 3.70GHz 3.70 GHz, graphics card
NVIDIA GeForce RTX 3080Ti, all experiments
are run based on the deep learning framework
Pytorch.
Parameter setting. The row anchors defined by
TuSimple dataset range from 160 to 710, and the
counterpart of CULane dataset range from 260 to
530. Set the number of grid cells to 100 on TuSim-
ple and 200 on CULane. The input images are
resized to 288×800 and the batch size is 32. The
network is optimized by Adam optimizer with the
learning rate of 4×10−4, the momentum of 0.9, the
weight decay of 1×10−4. The iteration epoch is set
to 100 for TuSimple dataset and 50 for CULane
dataset.
Data augmentation. To prevent over-fitting,
the raw data are augmented by rotating, crop-
ping, horizontal and vertical shift. Furthermore,
the lanes are extended to the boundary of the
image to preserve the lane structure.

4.4 Ablation Study

In order to verify the effectiveness of the pro-
posed modules, we conduct ablation experiments
based on ResNet-18 backbone with different mod-
ule combinations. The experiments are carried out
under the same training settings and the quanti-
tative results on TuSimple and CULane datasets
are shown in Table 1 and Table 2.

Table 1 shows the experimental results of
the proposed modules on TuSimple dataset with
ResNet-18 backbone. It can be seen that inserting
channel attention mechanism into the backbone
can improve the detection effect, the accuracy is
increased, and the false positive rate and false
negative rate are decreased. What’s more, adding
the spatial attention mechanism further gains per-
formance improvement, so it is better to utilize
both channel and spatial attention mechanism.
For normalization, it can be seen that the detec-
tion performance is also enhanced by changing the
batch normalization to group normalization from
the original ResNet18 backbone. Ultimately we
achieve the best performance by employing both
channel and spatial attention and group normal-
ization, verifying the effectiveness of the proposed
modules.

Table 2 shows the F1-measure experiment on
CuLane dataset. We can see that the addition

Table 1 Experiments of the proposed modules on Tusimple dataset with ResNet-18 backbone.

Backbone Normalization Accuracy(%) FPR FNR

ResNet18[12] BN 95.81 0.1905 0.0392
ResNet18+channel BN 95.87 0.1886 0.0367
ResNet18+channel+spatial BN 95.91 0.1881 0.0365

ResNet18 GN 95.88 0.1882 0.0366
ResNet18+channel+spatial BN 95.94 0.1875 0.0356

Table 2 Experimental results of F1-measure on CULane dataset based on ResNet-18 backbone with different module
combinations.

Backbone Norm Normal Crowd Night
No-
line

Shadow Arrow
Dazzle
light

Curve Total

ResNet18[12] BN 87.7 66.0 62.1 40.2 62.8 81.0 58.4 57.9 68.4
ResNet18+channel BN 88.9 67.7 63.7 40.1 61.1 81.9 56.3 57.6 69.4
ResNet18+channel+spatial BN 89.3 68.1 64.3 40.6 65.4 84.1 58.6 58.5 70.3

ResNet18 GN 89.2 68.2 64.0 40.7 63.8 83.7 60.4 58.1 70.1
ResNet18+channel+spatial GN 89.4 68.1 64.5 40.9 67.5 85.0 60.7 59.3 70.8
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of channel attention mechanism can enhance the
detection performance in most scenarios, except
for shadow and dazzle light scenes, which may be
due to the channel attention is not robust enough
for the change of light conditions. Besides, both
adding both channel and spatial attention and
exploiting group normalization can boost the F1-
measure of all scenarios. The same as TuSimple
dataset, adopting both channel and spatial atten-
tion and changing batch normalization to group
normalization can achieve the best performance.
Compared with the original method, our method

significantly enhances the performance for lane
detection, which corroborates its effectiveness.

4.5 Results and Comparisons

The visualization of our lane detection results are
given in Figure 2. It can be seen that our method
can accurately identify the position of lanes in
various challengeable scenarios such as curve, daz-
zle light, crowded, shadow, no-line, night and so
on. Moreover, the lanes occluded by passing vehi-
cles and pedestrians can also be well detected (as
shown in Figure 2(d) and (f)).

Fig. 2 Visualization of lane detection results. The first row are the results on TuSimple dataset, and the rest are on
CULane dataset.
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Figure 3 and Figure 4 shows the qualita-
tive comparison of our method and UFS[12] with
the same ResNet-18 backbone on TuSimple and
CULane datasets respectively. It is observed that
the detection performance of our method is signif-
icantly superior to that of UFS, which can primely
capture the structure of lanes and greatly improve
the phenomenon of false detection (Figure 4 row
1, column 2 and 3) and missed detection (Figure 4
row 3, column 1) of UFS. We attribute this to
the fact that the attention mechanism we added is
capable of capturing non-local information, sup-
plementing contextual information for the missing
details, which helps to catch the structure of
lane. Subsequent quantitative comparison further
confirms the effectiveness of our method.

Table 3 shows the quantitative compari-
son of detection accuracy and speed between
our method and other 7 state-of-the-art lane

detection methods on Tusimple dataset, includ-
ing SCNN[21], Seg[22], LaneNet[23], SAD[24],
FastDraw[25], PolyLaneNet[26] and UFS[12]. In
these experiments, ResNet-18 and ResNet-34 are
used as backbone.

It can be seen that our method achieves com-
parable performance with state-of-the-art meth-
ods while our speed is the fastest, with an average
runtime of 2.4ms, reaching 414.3 FPS, which is
56 times faster than that of the SCNN. Our
ARS-Res18 outperforms the Seg-Res18 by 3.25%
accuracy and runs 10.5 times faster, as well as
in the Res34 case, which demonstrates that our
row-based selecting method superior to the seg-
mentation method. Compared with the state-of-
the-art method ENet-SAD, ours is only 0.7% lower
in accuracy but runs 5.6 times faster. Compared
to UFS with the same backbone, our method can

Fig. 3 Qualitative comparison with UFS on TuSimple. The first row visualize the predicted results by UFS, and the rest
visualize our predictions.

Table 3 Quantitative comparison with state-of-the-art methods on Tusimple. The runtime is the average time for 100
runs, and the calculation of runtime multiple is based on the slowest method SCNN.

Method Accuracy(%) Runtime(ms) FPS Multiple

SCNN[21] 96.53 133.5 7.4 1.0x
Seg-Res34[22] 92.84 50.5 19.8 2.6x
Seg-Res18[22] 92.69 25.3 39.5 5.3x
LaneNet[23] 96.38 19.0 52.6 7.0x
ENet-SAD[24] 96.64 13.4 74.6 10.0x
FastDraw[25] 95.20 11.1 90 12.1x

PolyLaneNet[26] 93.36 8.7 115 15.5x
UFS-Res34[12] 95.87 5.9 169.4 22.6x
UFS-Res18[12] 95.81 3.2 312.5 41.7x

ARS-Res34(Ours) 96.02 4.6 217.4 29.4x
ARS-Res18(Ours) 95.94 2.4 414.3 56.0x
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Fig. 4 Qualitative comparison with UFS on CULane. The odd-numbered rows visualize the predicted results by UFS, and
the even-numbered rows visualize our predictions.

achieve both better performance and faster speed,
which corroborates the effectiveness of our atten-
tion mechanism and group normalization module.

For CULane dataset, the comparisons of F1-
measure and runtime are shown in Table 4. It is
observed that our method achieves the best per-
formance in terms of both accuracy and speed.
The F1-measure of our ARS-Res34 is the high-
est in most scenarios, with the total F1-measure
of 72.1, an improvement of 1.4 compared to that

of SAD-Res34 and UFS-Res34 with the same
backbone. Meanwhile, our ARS-Res18 gains the
fastest detection speed among all methods, reach-
ing 409.3 FPS, which is 55.6 times faster than
that of the second-best SCNN. In summary, our
method significantly outperforms the state-of-the-
art methods with the fastest detection speed and
much higher accuracy, hence has enormous mobile
deployment capability.
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Table 4 Quantitative comparison of F1-measure and runtime on CULane.

Scenario
SCNN
[21]

SAD-Res18
[24]

SAD-Res34
[24]

UFS-Res18
[12]

UFS-Res34
[12]

ARS-Res18
(Ours)

ARS-Res34
(Ours)

Normal 90.6 89.8 89.9 87.7 89.4 89.4 90.0
Crowded 69.7 68.1 68.5 66.0 69.3 68.1 69.8

Night 66.1 64.2 64.6 62.1 65.1 64.5 66.5

No-line 43.4 42.5 42.2 40.2 41.1 40.9 42.7
Shadow 66.9 67.5 67.7 62.8 62.6 67.5 69.9

Arrow 84.1 83.9 83.8 81.0 84.9 85.0 85.4

Dazzle light 58.5 59.8 59.9 58.4 58.6 60.7 62.2

Curve 64.4 65.5 66.0 57.9 58.7 59.3 63.2

Total 71.6 70.5 70.7 68.4 70.7 70.8 72.1

Runtime(ms) 133.5 25.3 50.5 3.1 5.7 2.4 4.7
FPS 7.5 39.5 19.8 322.5 175.4 409.3 213.4

Multiple 1.0x 5.3x 2.6x 43.0x 23.4x 55.6x 28.5x

5 Conclusion

In this work, a novel lane detection method,
Attention-based Row Selecting Networks(ARS-
Net), is proposed, in which channel and spatial
attention mechanisms are integrated into ResNet
as backbone to adjust feature weights and reduce
information loss. The position of lane is identified
by row selecting method based on global fea-
ture, which vastly improves the detection speed.
And group normalization is exploited instead
of batch normalization to enhance the stability
of accuracy. We verify the effectiveness of the
proposed modules by conducting extensive abla-
tion experiments on two public datasets Tusimple
and CULane. Compared with other methods, our
method achieves state-of-the-art performance in
terms of accuracy and speed, which is capable of
practical application.
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