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Abstract

We modeled biological growth using a random differential equation
(RDE), where the initial condition is a random variable and the growth
rate is a suitable stochastic process. These assumptions let us to obtain
a model that represents well the random growth process observed in na-
ture, where only few individuals of the population reach the maximal
size of the species and the growth curve for every individual behaves
randomly. Since, we assumed that the initial condition is a random vari-
able, we assigned a priori density and we performed Bayesian inference
to update the initial condition’s density of the RDE. Karhunen-Loeve
expansion was then used to approximate the random coefficient of the
RDE. Then, using the RDE’s approximations, we estimated the den-
sity f(p, t). Finally, we fitted this model to the biological growth of
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2 Modeling the biological growth with a random differential equation

the giant electric ray (or Cortez electric ray) Narcine entemedor. Sim-
ulations of the solution of the random logistic equation were performed
to construct a curve that describes the solutions’ mean for each time.
As a result, we estimated confidence intervals for the mean growth
that described reasonably well the observed data. We fit the proposed
model with a training dataset and the model is tested with a different
dataset. The model selection is performed with the square of the errors. .

Keywords: Biological growth, bayesian inference, random logistic
differential equation, Data assimilation, simulations.

MSC Classification: 34F05 , 62M20 , 62P10 , 62F15 , 92B05

1 Introduction

In this article, we present a stochastic model that takes into account the indi-
vidual variability of the organisms along the time. The proposed model allows
to the individuals to growth at random levels of intensity that changes along
time. In addition, in the stochastic model not all the individuals reach the
maximal expected growth size, which agrees with what is observed in nature.

The model and methodology studied in this article can be applied to sev-
eral species of the animal kingdom. Here to illustrate the use of the model, we
will focus on marine animal literature and data. Traditionally, the individual
growth models that are applied to marine organisms have been based on
length-at-age data, describing the average growth of the individuals in a pop-
ulation. However, this approach ignores the intrinsic individual variability of
the organisms, which can be influenced by genetic differences in growth rate
potential [1], food availability [2], or differences in physiological stress [3] and
length dependence of growth rate [4]. This phenomena can be observed when
there is differential access to food and dominant organisms interfere with
feeding of subordinates, and consequently dominant individuals show better
growth rates [5]. Recognizing that the length-at-age data are highly variable,
two accepted hypotheses have been proposed: a) growth compensation, which
is observed when the length-at-age variability decreases with time or age [2],
[3]; and b) growth depensation, which is observed if length-at-age variability
increases with age [6], [7]. The parameterization of the individual growth
models have used ordinary sum of squares or likelihood functions, assuming
different probabilistic density functions, such as: normal, log normal, gamma,
mixture distribution or log skew-t distribution [8], [9], [10].

The variability in length-at-age data has also been modeled from
stochastic approaches based on transition matrices, where the von Berta-
lanffy growth model is assumed in the growth matrix, according to:
∆̄t = (L∞ − lk)(1− exp−k), where ∆̄t represents the mean growth increment,
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lk is the midlength of the length-class l, L∞ is the asymptotic length, and k
is the growth parameter.

A gamma distribution with parameters αl and β could also describe the
variation of the mean growth increment [11, 12], [13]:

g(x | αlβ) =
1

βl
αlΓ(αl)

xαl−1 exp
−x

β
, (1)

where x represents ∆l = lt+1 − lt, denoting the growth increment in the
length-class l. The mean change in length is E(∆l) = αlβ and the variance is
σ2
l = αlβ

2. The probability of an individual growing (Pl,l′) from length-class
l to length-class l′ can be estimated by integrating over the length-classes, as
follows:

Pl|l′ =

∫ l′

l′
g(x | αlβ)dx. (2)

The survival matrix is represented as: S(l,t) = exp−Zl,t , where the number
of individuals in the length-class l surviving to the start the time t′ is reduced
by mortality, considering that Zl,t = Fl,t +Ml,t, where M is natural mortal-
ity and F is the fishing mortality. Finally, Pl,l′ matrix can be estimated as:
Nl,t = Pl,l′ exp

−Zl,t .

The inclusion of this stochastic approach partially improves estimates of
individual growth. However, the final estimate requires an estimation of the
survival matrix, which is usually not easy to estimate from length-at-age
data. Consequently, its use is limited in individual growth modeling. Given
the limitations for modeling the individual differences in growth from length-
at-age data, a new proposal must be developed from the stochastic approach
to improve the estimation of parameters and to increase the realism of the
theoretical model.

2 Our contribution

We modeled the biological growth with a random differential equation (RDE).
RDEs have been applied in a wide range of disciplines such as: biology,
medicine, population dynamics and engineering (see, [14]).

A RDE is essentially an ordinary differential equation where one or more
of their coefficients are stochastic processes. Given that differential equations
are very dynamic and also given the randomness of their coefficients, RDE’s
are able to describe the individual differences in growth. We also use Bayesian
inference to update the probability density function of the random initial
condition of the RDE with new data. With the posterior density, we were
able to obtain confidence intervals for the RDE’s solution.
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More precisely, we have to numerically compute the density probability
function f(p, t) of the solution of the random logistic equation with a random
initial condition. We used the Wiener process and the Ornstein-Uhlenbeck
(OU) process as random coefficients. Therefore, we need to compute or sim-
ulate the random coefficients of the RDE. The Wiener process is easier to
simulate than the OU process because it is the solution of stochastic differen-
tial equations (SDEs) (see, for instance, [15]).

Numerical methods for SDEs (e.g., the Ornstein-Uhlenbeck process, Geo-
metric Brownian motion, etc.) have been developed for the last few decades,
such as the Euler-Maruyama method, stochastic Itô-Taylor expansions,
Runge-Kutta approximations, Monte Carlo methods and its multiple varia-
tion; see for instance the classical book [16].

Recently, spectral methods have been applied to the probability space to
solve numerically SDEs. The Wiener-Chaos expansion of the probability space
is a spectral method that allows us to write any square-integrable random
variable as a Fourier-Hermite series (see, for instance, Chapter 5 in [17] and
the references therein). Another option is the Karhunen-Loeve expansion.
In this approach, any square-integrable random variable is decomposed as a
Fourier expansion using as a basis the eigenfunctions of a suitable operator
(usually the covariance operator of a nice stochastic process) via Mercer’s
Theorem (see, for example, Chapter 4 in [18] or Section 37.5 in [19]). The
former approach converges faster than the latter, but is more complicated to
compute. In this paper, we use the Karhunen-Loeve expansion to numerically
estimate the Wiener process and the Ornstein-Uhlenbeck process. After that,
we approximate the solution of the RDE (5) following [20].

This paper is organized as follows. In section 3, we introduce the random
logistic differential equation and its Karhunen-Loeve expansion. In section 4,
we briefly review Bayesian theory, particularly the Beta-Binomial model. A
model description for the biological growth is discussed in section 5, we also
describe the data used in this paper in this section. In sections 6 and 7, we
apply the RDE model with Wiener and Ornstein-Uhlenbeck processes as its
random coefficient and with a Beta random variable as prior distribution of
the initial condition. Our conclusions and a discussion of the model and its
numerical applications are given in section 9. Finally, in the two appendices we
provide a proof of the solution of the RDE and a description of the heuristic
method that we use to fix the parameters of the Ornstein-Uhlenbeck process.

The procedure described above can accomplish the characteristics of data
assimilation definition. In our case, we applied to RDEs and we updated the
state of the system with new observations just one time. Data assimilation
is the set of techniques that allow us to optimally combine observations of a
physical system with numerical models and prior information of that system.
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Finally, an updated estimate of the state of the system is obtained see, e.g.
[21].

3 A random logistic differential equation

The classical logistic differential equation has been applied to model bounded
growth, for instance, tumor growth in medicine, reaction models in chem-
istry, population dynamics and Fermi distribution in physics, and so on. These
problems are formulated via the Initial Value Problems (IVP) [20, for instance.]

p′(t) = rp(t)
[

1− p(t)
]

, t0 < t

p(t0) = p0, p0 ∈ (0, 1)
,

}

(3)

with solution:

p(t) =
p0

p0 + (1− p0)e−r(t−t0)
. (4)

Where r is the intrinsic growth rate and p0 and p(t), in our case, denote the
size proportion at time instant t0 and t.

We are interested in a model where both parameters r and p0 are stochas-
tic and therefore p(t) is also stochastic. Therefore, this model will take into
account the intrinsic variability of the growth rate r and the value of p0. We
introduce a modification of the logistic model, as follows:

P ′(t, ω) = A(t, ω)P (t, ω)
[

1− P (t, ω)
]

, t0 < t < T, ω ∈ Ω

P (t0, ω) = p0(ω).







(5)

A(t, ω) is a stochastic process and p0(ω) is a bounded absolutely continuous
random variable p0(ω) : Ω → [a1, a2] ⊂ (0, 1). We assume that both, A(·, ω)
and p0(ω), are defined on a common probability space (Ω,F ,P). T > 0 is
fixed. We called equation(5) the random logistic equation, which is a Random
differential equation (RDE). We observe that the parameters in the proposed
model are still interpretable; meaning that, in our case, they correspond to
the random size at birth and to the stochastic growth rate at each time t.

The solution to equation (5) is given by (a proof is presented in appendix
A)

P (t, ω) =
p0(ω)

p0(ω) +
(

1− p0(ω)
)

exp
(

−
∫ t

t0
A(s, ω)ds

) (6)

Note that the limt→∞ P (t, ω) = 1 is satisfied only when the stochastic
process A(s, ω) is strictly positive. If A(s, ω) does not ensure positivity, then
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with some strictly positive probability the limt→∞ P (t, ω) = 0, so that the
IVP stochastic solution (5) could not behave as its deterministic counterpart
(3). However, in nature some species could decrease their sizes under some
conditions; then, even in these situations the stochastic model considered in
this manuscript could be an appropriate model. To illustrate the suitability
of the model we choose as examples two stochastic processes with reflection
at zero. However, other possible choices could be done acordingly to the
phenomena/data to study.

The fact that P (t) reaches an asymptotic value of 1 does not imply that
all individuals are expected to growth to the species’ maximum observed size.
Instead, this means that with strictly positive probability some individuals
could reach the asymptotic size and some will not.

To approximate the coefficient A(s, ω), we will use the Karhunen-Loève
expansion. This approximation is used for those cases where it is highly dif-
ficult to obtain a closed form of the stochastic process or when performing
simulations in an efficient way is desired or when statistical properties of the
referred stochastic process will be studied.

Therefore, we present a theorem on the L2 convergence of the Karhunen-
Loève expansion of a mean square continuous process. The proof of this
theorem can be consulted in [22], Theorem 5.28.

Theorem 1 Consider a mean square integrable continuous time stochastic process

X ≡ {X(t, ω) : t ∈ T , ω ∈ Ω}, i.e., X ∈ L2(Ω, L2(T )
)

with µX(t) and cX(s, t) as its

mean and covariance functions, respectively. Then,

X(t, ω) = µX(t) +

∞
∑

j=1

√
νjφj(t)ξj(ω), ω ∈ Ω, (7)

where, this sum converges in L2(Ω, L2(T )
)

and

ξj(ω) :=
√
νj
〈

X(t, ω)− µX(t), φj(t)
〉

L2(T )
, (8)

associated to the covariance function cX(s, t). The random variables ξj(ω) have

zero mean E[ξj(ω)] = 0, unit variance V ar[ξj(ω)] = 1 and are pairwise uncorrelated

E[ξj(ω)ξk(ω)] = δjk. Furthermore, if X(t, ω) is Gaussian, then ξj(ω) ∼ N(0, 1) are

independent and identically distributed.

This theorem guarantees that each process with finite second moment can
be written as a series of the product between random variables and a sequence
of functions that are some suitable basis. By using this theorem, we will
approximate A(s, ω). In this paper, we will use T = [t0, T ] for some T > t0.

Note that it is necessary to truncate the series because it is impossible to
take the sum to infinite in equation (7). Then, we work with a finite approxi-
mation to the process X(t, ω).
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In the following paragraphs, we apply a truncation of the Karhunen-
Loève expansion to A(s, ω) and then we will get an approximation for the
density f(p, t) of the RDE’s solution (5) at time t. Notice that f(p, t) is not
a transition density but is a true fixed-time density for the process P (t, ω).
More precisely, given a fixed t the function (0, 1) ∋ p → f(p, t) is the density
probability function of the random variable P (t, ω) at every fixed time t.

Set ξN (ω) := (ξ1, . . . , ξN ) and denote by

QN

(

t, ξN (ω)
)

=

∫ t

t0

(

µA(s) +

N
∑

j=1

√
νjφj(s)ξj(ω)

)

ds. (9)

Some hypotheses on p0, A(t, ω), {ξj}j≥1 and f(p, t) are required:

(H1) p0 : Ω → [b1, b2] ⊂ (0, 1) and A(t, ω) ∈ L2
(

Ω, L2(T )
)

.
(H2) p0(ω), ξj(ω), 1 ≤ j ≤ N are absolutely continuous random vari-

ables. Moreover, p0(ω), ξN (ω) are independent with densities fp0
(p0) and

fξN (ω)(ξ1, . . . , ξN ), respectively.

(H3) fp0
(p0) is Lipschitz continuous in its domain; that is,

∃L = Lfp0
such that | fp0

(p)− fp0
(q) |≤ L | p− q | ∀p, q ∈ [b1, b2].

(H4) A(t, ω) admits a Karhunen-Loève expansion of type (7) such that there exists
a constant C > 0 that satisfies

E
[

e2QN (t,ξN (ω))
]

≤ C, for all positive integers N.

Note that because A(t, ω) ∈ L2
(

Ω, L2(T )
)

, we can apply Theorem 1. Then,
the stochastic process (6) solution to (5) can be written as

P (t, ω) =
p0(ω)

p0(ω) +
(

1− p0(ω)
)

exp
(

−
∫ t

t0

[

µA(s) +
∑∞

j=1

√
νjφj(t)ξj(ω)

]

ds
) .

(10)
We define the N -truncated solution of P (t, ω) as

PN (t, ω) =
p0(ω)

p0(ω) +
(

1− p0(ω)
)

exp
(

−QN

(

t, ξN (ω)
)

) . (11)
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Following the procedure used in [20, see, eq. (11) ], we obtain the
probability density function of the truncated solution PN (t, ω)

fN (p, t) =

∫

RN

fp0

(

pe−QN (t,ξN )

1 + p(−1 + exp
(

−QN (t, ξN )
)

)

fξN
(ξ1, . . . , ξN )

× pe−QN (t,ξN )

[

1 + p(−1 + exp
(

−QN (t, ξN )
)

]2 dξN · · · dξ1.



























(12)

Note that in the previous expression, even when it is not explicitly pointed
out, the density fp0

depends on time.
The following theorem ensures the convergence of (12) to the exact density

f(p, t) [20, Th. 3].

Theorem 2 Under Hypotheses (H1)-(H4), the sequence of densities {fN (p, t)}N≥1

defined by (12) converges for every J × [t0, T ], for all J ⊂ R, to the exact density

f(p, t) of the solution of the random Initial Value Problem (5).

4 Bayesian Inference

In this section, for the sake of completeness, we illustrate the use of Bayesian
inference to update the density fp0

(p0). The main idea of Bayesian inference
is to update the probability of occurrence of some event as more evidence or
data becomes available. We refer to [23] for further reading.

Suppose that the unknown parameter θ of a given model is regarded as
a random variable. Prior information is expressed using probability density
f(θ), which is called prior probability. The Bayesian approach connects data
and parameter through the likelihood function L(x | θ) and is based on the
evaluation of the posterior probability, which by Bayes theorem is

f(θ | x) ∝ f(θ)L(x | θ).

Note that parameter values where the likelihood is high are those that
have a high probability of producing the observed data. This agrees with the
maximum likelihood approach, where the best estimate of θ is the one that
maximizes the likelihood function.

We want to update fp0
by applying Bayesian inference. Suppose that, at

times τ1, τ2, . . . , τm we obtain new information to calculate the likelihood func-
tion and consequently update the posterior probability. We denote by Li(x | θ)
and fPi

(θ | x) as the likelihood function and the posterior probability at time
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τi (i = 1, 2, . . . ,m), respectively. Then,

fPi
(θ | x) ∝ fPi−1

(θ | x)L(x | θ), i = 1, . . . ,m,

where fP0
(θ | x) = fp0

(θ). Note that the last expression is applied in the
case when the SDE (5) has a closed solution. In those cases where there is an
approximate solution,

fN
Pi
(θ | x) ∝ fN

Pi−1
(θ | x)L(x | θ), i = 1, . . . ,m,

where fN
P0
(θ | x) = fp0

(θ) and N are the number of terms that we take in the
approximation of A(t, ω) (compare equations (10) and (11) taking into account
(9)).

We use the well-known Beta-Binomial model to our data. For the sake of
completeness we present a brief review of this model in appendix.

5 Biological growth of the Narcine entemedor

We are interested in modeling the biological growth of a giant electric ray (or
Cortez electric ray) Narcine entemedor using the RDE (5).

Narcine entemedor specimens were collected between October 2013
through December 2015 in the south of Bahia de La Paz, which is located
in the southern portion of the Gulf of California (24" 25’ N, 110" 18’ W).
The organisms were captured by artisanal fishers using monofilament gill nets
(200–300 m long, 1.5 m high, 20–25 cm stretch mesh), traditionally called
"chinchorros," which are set in the afternoon at depths between 10 and 30 m
over sandy bottoms and recovered the next morning. Individuals were mea-
sured for total length (TL, cm) and the sex was determined by the presence
of copulatory organs in males. Vertebrae were collected from the abdominal
region of each specimen. The radius of each vertebrae was measured on the
corpus calcareum along a straight line through the focus of each vertebra with
SigmaScan Pro 5.0.0 Software (SPSS Inc). Vertebral radius (VR) was plotted
against TL and tested for a linear relationship to determine if these vertebrae
were a suitable structure for age determination and for back-calculated esti-
mation of length at previous ages. The number of the sample is N = 244.

We have split the whole sample into two disjoint datasets. The biggest
dataset contains around 70% of the observations and it was used for
learning—that is, to fit the parameters of the model—which is usually called
the training dataset. The fitted model was used to run simulations. We then
construct confidence intervals, which we use to compare the observations of a
second dataset—called the validation dataset—, which is the complement of
the training data. The sample size for training data was N1 = 170 and for the
test data it was N2 = 74.
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5.1 Bayesian inference for the initial random variable

In this subsection, we applied the Beta-Binomial model to the random vari-
able p0. We noted two limitations about this approach. Fistly, there was not
available data that help us to set up a density function for the variable p0.
Secondly, the random variable p0 has as a support an interval strictly inside
the [a, b]  [0, 1]. Thus, we used the Beta-Binomial model, because it allowed
us to approximate a beta distribution for p0 in a simple but efficient approach.
Another possible choice could be to take into account the deviations from the
predictions, that means try to model with a continuous likelihood instead of a
discrete as in the Beta-Binomial model. However, we constrained the density
to be in an interval [a, b]  [0, 1] which implies we have to truncate the con-
tinuous likelihood, and consequently the posterior density as well. Moreover,
the fact that a Binomial converges to a Gaussian for a large sample, indicate
that the election of the Beta-Binomial model is suitable to the data.

The strategy to construct a density for p0 using the the Beta-Binomial
model is as follows. First, we select a noninformative or weakly informative
prior density, meaning a beta density that reflects our ignorance on the initial
value p0. Afterward, we use the available data to construct a Binomial density
that incorporates information about the initial density. This last part will we
done fitting the logistic model (4).

We focused on two random variables

• Estimated-aged, which is an age that is assigned to each individual according
to its largest vertebra.

• Proportion size of each individual, we define a new variable by dividing
"individual size" by the maximum size of the specie observed in the sample.

Observe that in opposition of the definition of the already defined two
random variables, when we use explicit data we get the sampled aged and the
sampled proportion size, which is no longer a random variable but an actual
number.

Using these variables, we fitted a logistic curve according to equation (4),
which is the solution of equation (3), with the variables Estimated-aged and
Proportion size. p0 and r were fitted using a optimization procedure. To esti-
mate those values, the sum of the square error between the observed data and
the curve (4) was calculated,

S =

N1
∑

j=1

[

p̂(tj ; r, p0)− pj(t)
]2

, (13)

where p̂(tj ; r, p0) is the value of the curve at the time of the pj(t). r̂ and p̂0
were the values that minimize S. By using the R- function optim, r̂ = 0.2266
and p̂0 = 0.4414 were obtained; see figure 1. Note that this prior information
is reflected on the prior distribution of p0.
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A set of random variables {Yj}N1

j=1 is then defined: Yj = 1 if the j ob-
servation of the variable "estimated-aged" is below or on the logistic curve,
otherwise Yj = 0. The sum over all the random variables Yj :

Z :=

N1
∑

j=1

Yj ,

follows a Z ∼ Bin(N1, p), with p unknown. The random variable Z describes
how many of the observed data are less than or equal to the expected size
according to age. It is important to note that p is the initial condition of the
model equation (5) which we are assuming is random.

From our training data, we obtain that z = 62 and because N1 = 170,
then n − z = 108. Moreover, data goes from 0 to 14 years in the estimated
aged variable, then the interval [0, T ] = [0, 14] in the RDE equation (5).

Figure 1 Logistic curve for the the variables estimated-aged and proportion-
size.
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We consider parameter p as a random variable that follows a Beta distri-
bution: Beta[0.1,0.9](α, β), which is the prior distribution. We denote by z the
value of the random variable Z. We use the Beta-Binomial model to obtain
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the posterior distribution accordingly to equation (21), then the posterior
distribution is Beta[0.1,0.9](α+ z, n− z + β). Prior and posterior distributions
need to be standardized to be a true density.

We consider two Beta distributions with parameters (α, β):

• (α, β) = (1, 1)
• (α, β) = (2, 2),

in the former case, each segment with same length, included in the range of
the random variable, has equal probability; while in the latter case, the prob-
ability is high around the middle point of the segment [0.1, 0.9]. These choices
could be considered as noninformative distributions and, as we mention before,
they reflect our ignorance on the true value of the random initial condition.

We use a mesh for the interval [0.1, 0.9] with ∆x = 1/100.
The density of the RDE’s solution with Beta as prior distribution for

p0, with two different Betas is presented in figure 2. This means that the
use of the posterior distribution is not included. As we mention before, they
are noninformative and therefore they are among the best choices as prior
distribution when we do not know the value of the parameter (or any data)
(see for instance [24]).

In the following two sections, we simulate the posterior distribution with
two examples of stochastic processes as random coefficients of the RDE (5).
The stochastic processes are the Wiener and the Ornstein-Uhlenbeck pro-
cesses.

We use the Karhunen-Loeve expansion with N = 1, as in [20] to approxi-
mate the posterior distribution. We apply the Simpson’s rule see, e.g., [25] to
perform the numerical integration of the expression (12).

6 Wiener process as random coefficient.

In this section, we consider A(t, ω) to be the Wiener process (also known as
Brownian motion). We recall some basic facts of the Karhunen-Loeve expan-
sion for the Wiener process W (t, ω), t ∈ [0, T ] [22] . W (t, ω) has mean function
µW (t) = 0 and covariance function given by CW (s, t) = min(s, t), for all
s, t ∈ [0, T ]. The Karhunen-Loeve expansion, equation (7), is performed with
a set of uncorrelated standard Gaussian random variables {ξj(ω)}j≥1; that is,
ξj(ω) ∼ N(0, 1) and with the set of functions φj(t) and eigenvalues νj given by

νj =
4T 2

(2j − 1)2π2
, φj(t) =

√

2

T
sin
( (2j − 1)πt

2T

)

, j = 1, 2, . . .
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Figure 2 Density of the solution of the random logistic equation using the
prior distribution Beta(α, β).

(a) Beta(1, 1)

(b) Beta(2, 2)

We choose P0(ω) independent of the random vector ξN = (ξ1, . . . , ξN ).

With this expansion, we simulate the solution of the RDE by using the
equation (12). The posterior distribution of the solution when the prior den-
sity is Beta(1, 1) and Beta(2, 2) is presented in figure 3. Notice that we get
almost the same shape of the density for both choices of prior distribution.
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This is most probably due to the fact that the sample number is greater than
50. We use a mesh for the interval [0.1, 0.9] with ∆x = 1/100 and a time step
of ∆t = 1/100.

Note that the variability increases when time increases. This can be ex-
plained by the fact that during the first period of life, the availability of food
is essential in the growth of each organism. If the food is very abundant, then
their size will be greater than expected. This fact generates variability on the
data. Meanwhile, when the organisms achieve the maximum age, the variabil-
ity decreases because they approach the maximum expected size. Therefore,
the model reproduces the biological growth dynamic well.

We then run 1000 simulations of the Wiener process. We use the function
snssde1d from the R-library Sim.DiffProc [26, 27] to simulate the Wiener
process.

From the posterior density at time t = 0, as shown in figure 3, we take 1000
samples. We make that for each prior distribution Beta(1, 1) and Beta(2, 2).

Subsequently, we run 1000 simulations of the solution of the equation (6),
each of them combining the posterior density Beta(α, β) and the previous
Wiener processes simulations. Figure 4 show the simulations of the solutions
of the equation (5).

In these figures, every single line is a realization of the process, that means
that every line represents an estimated growth along time. Note that not all
the individuals reach the maximal expected growth size, this agrees with what
is observed in nature. Therefore, the proposed model adequately reproduces
this phenomenon.

We also observe that the dynamic of the differential equation governs
the behavior of the solution because each of the solutions stays close to the
solution mean. In other words, the variations of the Wiener processes are not
strong.

Note that when the posterior distribution is updated with new data, we
obtain a Beta(21, 32) and a Beta(22, 33), and these distributions are quite
similar. Therefore, as in the case of the densities (figure 3), there is no sub-
stantial difference between Beta(1, 1) and Beta(2, 2). Thus, if the sample size
is large enough (n ≥ 20), then we could use as a prior distributions either
Beta and the result will be very similar.

One important fact about this model is that it is able to provide a cred-
ible interval at certain level α (analogous to confidence intervals in classical
statistics). However, because we are using a very low number of terms in the
Karhunen-Loeve expansion, the credible intervals are wide and meaningful.
Consequently, they are not included in the results. To improve this part it is



Springer Nature 2021 LATEX template

Modeling the biological growth with a random differential equation 15

necessary to include more terms in the Karhunen-Loeve expansion. Another
idea could be to use the Wiener-chaos expansion to improve the numerical
simulations.

Figures 5 show the mean, confidence intervals at 95% for the simulations;
black points represent observed data, dotted lines represent confidence in-
tervals (CI) of the simulation. We presented two graphs, one for each prior
distribution Beta(1, 1) and Beta(2, 2). Bayesian inference and the numerical
approximation to the solution given by the Karhunen-Loeve expansion are well
behaved because all of the observed data are inside the confidence interval.

7 Ornstein-Uhlenbeck process as random
coefficient.

We will now address the case in which the random coefficient A(t, ω) is the
Ornstein-Uhlenbeck process.

The Ornstein-Uhlenbeck (OU) process was introduced by Leonard Orn-
stein and George Eugene Uhlenbeck in 1930. This is a mean reverting process
(i.e., the process tends to drift towards its long-term mean). This process has
been studied deeply by several authors, see, e.g. [15]

Consider the following stochastic differential equation (SDE)

dXt = −θ(Xt − µ)dt+ σdWt (14)

X0 = x0

where θ, µ, σ are the parameters of the SDE and Wt is a Wiener process:

• µ represents the equilibrium or mean value.
• σ is the degree of errors.
• θ is the rate by which the errors dissipate and the variable reverts towards

the mean.
• x0 is the initial value.

As usual, the OU process is defined as the unique strong solution:

Xt = e−θt

(

x0 − µ(1− eθt) + σ

∫ t

0

eθsdWs

)

, (15)

when µ = 0 and x0 ∼ N(0, σ2/2¸), it is possible to prove that the covari-
ance function is cov(Xt, Xs) = 2θe−θt-s.
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The Karhunen-Loeve expansion, equation (7), is performed with the set of
functions φj(t) and eigenvalues νj given by

νj =
σ2

wj + θ2
, φj(t) =

(

T

2
− sin

(

2wjT
)

4wj

)−1/2

sin(wjt), j = 1, 2, . . .

where wj are the strictly positive solutions of the following equation

θ sin(wjT ) + wj cos(wjT ) = 0 (16)

for j ≥ 1.

Moreover, ξj is given by

ξj =
1

νj

〈

Xt − µXt
, φj

〉

L2([0,T ])
(17)

Note that {ξj} is a sequence of independent Gaussian random variables. For
a detailed derivation of the Karhunen-Loeve expansion for the OU process,
see for instance Section 2.3 of [28] or [29].

We choose P0(ω) independent of the random vector ξN = (ξ1, . . . , ξN ).

To simulate solutions of the random logistic equation with the OU process
and beta posterior, we need to fix the values of the parameters in the SDE
(14). However, estimating these parameters formally and rigorously seems
complicated and is beyond the scope of this work.

Therefore, we choose these values heuristically without the use of any in-
ference tools (see appendix for the procedure to fit these values). We fixed the
values as θ = 1/2, σ = 1.5 and x0 = 0.

We repeat the procedure described in the previous section: We run 1000
simulations of the OU process using the function snssde1d. We take 1000
samples from the posterior density at time t = 0, as shown in figure 6. Finally,
we run 1000 simulations of the solution of the equation (6), each of them
combining the posterior density Beta(α, β) and the previous OU processes
simulations.

Figure 7 show the simulations of the solutions of the equation (5). As
before, we observe that the dynamic of the differential equation governs the
behavior of the solution. In fact, the behavior of the OU case is very similar to
the Wiener process. The only difference that we observe is that the confidence
intervals are smaller than for the Wiener process.
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As in previous section, we now present figure 8 with the mean, confidence
intervals at 95% for the simulations and we compare with the real data. From
here, we observe that almost all of the experimental data are inside the inter-
val, meaning that the Bayesian inference and the numerical approximation to
the solution given by the Karhunen-Loeve expansion are well behaved.

8 Testing the model with new data

In this section we test the model with a different dataset. The observations
are stored as a test dataset, which is approximately 30% of the whole dataset.
We use the mean of simulations and confidence intervals, and compare with
these new data. We observe in figure 9 that the new data is inside the confi-
dence intervals.

We have fitted four models, with different choices of initial condition and
different stochastic process A(t, ω).

To evaluate the goodness of fit the adjusted values of each model where
compared, we calculated the square of the errors for each simulation,

Sq =

N
∑

j=1

[

p̂(tj)− pj(t)
]2

, (18)

where p̂(tj) is the predicted curve at the time tj of the pj(t) observation.
Since p̂(tj) is random, then we run 1000 simulations and we take the value
p̂(tj) equal to the mean of such simulations, in this way we stabilize the mean
curve. We use p̂(tj) as the predicted curve. We observe that for each set of
1000 simulations, the values of Sq have very small variations. Consequently,
we decided to repeat this procedure 10 times, and with these values take the
average to provide a better approximation to Sq. We have also calculated the
standard deviation of Sq.

The model with the OU process and prior Beta(2, 2) has the smallest sum
of squares, which means that the predicted values are closest to the real data
and are consequently a better goodness of fit. Moreover, when comparing
goodness of fit of the OU process with the Wiener processes, when they are
used as stochastic growth rate, we conclude that the the OU process has a
better performance no matter the choice of Beta as prior distribution. We also
conclude that the election of the prior distributions is not as important as was
expected. This means that we could start with a total absence of knowledge
and if the data is large enough, then it is possible to get a very similar result
if we have a little knowledge about the initial condition. We observe that the
confidence interval for the random initial condition of the solution covers the
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estimated p0 in section 5.

We present the results of this procedure in the table 1.

(α, β) Wiener process OU process

(1,1) 0.7104 (0.0221 ) 0.5398 (0.0226 )
(2,2) 0.7081 (0.0216) 0.5238 (0.0182)

Table 1: Mean and Standard deviation of Sq

9 Conclusions

In this paper, we modeled the biological growth of Narcine entemedor with
the use of a random logistic differential equation (RLDE). Because we al-
low the initial condition to be a a random variable, we used the classical
Beta-Binomial model from Bayesian inference to incorporate real data in the
calculation of the distribution of the mentioned initial condition. Our second
main assumption is that the growth rate r is not a deterministic but is a
stochastic process. We then used two examples for the stochastic growth rate:
the Brownian motion and the Ornstein-Uhlenbeck process. For these exam-
ples, the density of the solution by using the Karhunen-Loeve expansion of
the solution of the RLDE was constructed numerically. Observe that we have
calculated a probability density function, and thus it is possible to calculate
directly credible intervals.

The proposed model allows us to include the inherent randomness of the
variables in the model, hence the within-subject variation is well represented.
In the deterministic model, the parameters are usually estimated by mini-
mizing the square of the difference between the value of the function and the
observed data. In contrast, in the stochastic model it is assumed that the
initial condition is stochastic. Therefore, it is assumed that the value of the
parameter may vary depending on the circumstances. Assuming that the pa-
rameter is a random variable, under certain conditions, its probability density
function can be obtained and therefore confidence intervals can be calculated.
This is an advantage because it is not clear how to build confidence intervals
in the deterministic model.

We have also performed several simulations for the RLDE. With these
simulations, we construct confidence intervals of their mean. We simulated the
initial condition accordingly to the density obtained by the Karhunen-Loeve
expansion, and we simulated the stochastic process A(t, ω) using simulations
of the solution of the RLDE. We find that the mean of the simulations fits
well the real data. Moreover, the simulated trajectories of the solution reaches
maximum sizes at different times, which is consistent with the observation in
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nature where different individuals of the same species reach a maximum size
at different ages; so the model reproduces this phenomena well.

The method introduced in this paper could be applied to different growth
equations; for instance, to a random Von Bertalanffy equation. A natural
extension of this research could be to increase the number of term in the
Karhunen-Loeve expansion. Another option is to use Wiener-Chaos expan-
sion instead of using KL expansion to numerically construct the density of
the solution of the RLDE and compare their performance. Another avenue of
future research is to construct a model with the use of a Stochastic Differen-
tial Equation, instead of a Random Differential Equation, and then study if it
could produce better results than those presented here.

10 Appendix A

In this appendix, it is proved that the function (6) is in fact a solution of the
Initial value problem equation (5). Assume that the stochastic process A(t, ω)
is continuous in time. Notice that most of the stochastic process that are
continuous functions of the Wiener process, such as the Ornstein-Uhlenbeck
process, Geometric Brownian motion, and so on are in fact continuous in time,
which implies that the Riemann integrals in time of each of these processes
are differentiable functions in time and that their derivatives are continuous
in time. Note that,

1− P (t, ω) = 1− p0(ω)

p0(ω) +
(

1− p0(ω)
)

exp
(

−
∫ t

t0
A(s, ω)ds

)

=
p0(ω) +

(

1− p0(ω)
)

exp
(

−
∫ t

t0
A(s, ω)ds

)

− p0(ω)

p0(ω) +
(

1− p0(ω)
)

exp
(

−
∫ t

t0
A(s, ω)ds

)

=

(

1− p0(ω)
)

exp
(

−
∫ t

t0
A(s, ω)ds

)

p0(ω) +
(

1− p0(ω)
)

exp
(

−
∫ t

t0
A(s, ω)ds

) . (19)

The exponential of the integral in time of the stochastic process A(t, ω) is
continuous, then the stochastic process P (t, ω) has a classical continuous
derivative in time. Therefore, taking the derivative in time

P ′(t, ω) =

p0(ω)× (−1)

[

p0(ω) +
(

1− p0(ω)
)

exp
(

−
∫ t

t0
A(s, ω)ds

)

]′

[

p0(ω) +
(

1− p0(ω)
)

exp
(

−
∫ t

t0
A(s, ω)ds

)

]2
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=

p0(ω)× (−1)

[

(

1− p0(ω)
)

exp
(

−
∫ t

t0
A(s, ω)ds

)

]

×
[

−
∫ t

t0
A(s, ω)ds

]′

[

p0(ω) +
(

1− p0(ω)
)

exp
(

−
∫ t

t0
A(s, ω)ds

)

]2

=

p0(ω)×
[

(

1− p0(ω)
)

exp
(

−
∫ t

t0
A(s, ω)ds

)

]

×A(t, ω)

[

p0(ω) +
(

1− p0(ω)
)

exp
(

−
∫ t

t0
A(s, ω)ds

)

]2

= A(t, ω)
p0(ω)

[

p0(ω) +
(

1− p0(ω)
)

exp
(

−
∫ t

t0
A(s, ω)ds

)

]

×

[

(

1− p0(ω)
)

exp
(

−
∫ t

t0
A(s, ω)ds

)

]

[

p0(ω) +
(

1− p0(ω)
)

exp
(

−
∫ t

t0
A(s, ω)ds

)

]

= A(t, ω)P (t, ω)
[

1− P (t, ω)
]

.

The last equality comes from equation (19).

Then, the solution of the Initial Value Problem equation (5) is (6).

11 Appendix B

In this appendix, we briefly describe how to estimate the SDE’s parameters in
(14).

After applying some algebra to equation (6), we obtain,

ln

(

P0

(

1
Pt(ω) − 1

)

1− P0(ω)

)

= −
∫ t

0

A(s, ω)ds, for 0 < t ≤ T. (20)

A(s, ω) = Xt(ω) is the solution of the SDE Eq. (14). x0 = 0 was fixed.
Note that in (20) the stochastic process A(s, ω) is behind a Riemann time
integral, therefore it is difficult to estimate the parameters θ and σ of the SDE
(14). See, [30] for a method to estimate these parameters using observations
of the integral through a discretization with time step ∆, which in our case
does not apply. We now describe the method to estimate the parameters.
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Denote by Yt as

Yt = ln

(

P0

(

1
Pt(ω) − 1

)

1− P0(ω)

)

.

We look for parameters that generate solutions whose integrals “cover” the
data. We have performed 1000 simulations of the OU process equation (14),
we have integrated them in time, and the confidence intervals and mean of
these simulations were obtained. The Function snssde1d from the R-library

Sim.DiffProc [26, 27] was used.

We have chosen these parameters such that the variance of the simulations
were minimal. We fixed the parameters θ = 1/2 and σ = 1.5.

12 Appendix C: Beta-binomial model

We now describe shortly the well-known Beta-Binomial model
Suppose y1, . . . , yn follow independent binomial distributions:

Y ∼ Bin(n, θ),

where n is known and θ is an unknown parameter that will be assumed as a
random variable, thus we assign it to be a prior distribution.

The prior distribution should reflect our ignorance about the unknown
parameter θ and it should not have any special properties. Then, we suppose
that θ ∼ Beta(α, β) with 0 < α < β < 1.

Beta distribution is a conjugate of binomial distribution [24, see example
5.4] or [31, see example 2.2], this implies that the posterior distribution is also
a Beta. Assuming that the random variable X is Binomial(n, x), the posterior
distribution p(θ | x) is also Beta:

θ | x ∼ Beta(x+ α, n− x+ β). (21)
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Figure 3 Density of the solution of the random logistic equation using the
Wiener process as random coefficient and the posterior distribution, where the
prior distribution is Beta(1, 1) or Beta(2, 2) .

(a) Beta(1, 1)

(b) Beta(2, 2)
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Figure 4 Simulation with the data obtained from the logistic regression using
the Wiener process as random coefficient and the posterior distribution, where
the prior distribution is Beta(1, 1) or Beta(2, 2). Mean of the solution in dark.
Each line is a simulated’s individual growth and some of them are highlighted
in red.

(a) Beta(1, 1)

(b) Beta(2, 2)
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Figure 5 Confidence intervals at 95% level using the Wiener process as ran-
dom coefficient and the posterior distribution, where the prior distribution is
Beta(1, 1) or Beta(2, 2).

(a) Beta(1, 1)

(b) Beta(2, 2)
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Figure 6 Density of the solution of the random logistic equation using the OU
process as random coefficient and the posterior distribution, where the prior
distribution is Beta(1, 1) or Beta(2, 2).

p S
pace

T
im

e

f(p
,t)

0

10

20

30

40

50

60

(a) Beta(1, 1)

p Space

T
im

e

f(p
,t)

0

5

10

15

20

25

(b) Beta(2, 2)



Springer Nature 2021 LATEX template

Modeling the biological growth with a random differential equation 29

Figure 7 Simulation with the data obtained from the logistic regression using
the OU process as random coefficient and the posterior distribution, where the
prior distribution is Beta(1, 1) or Beta(2, 2). Mean of the solution in dark red.
Each line is a simulated’s individual growth and some of them are highlighted
in red.

(a) Beta(1, 1)

(b) Beta(2, 2)
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Figure 8 Comparison of credibel intervals using the OU process as ran-
dom coefficient and the posterior distribution, where the prior distribution is
Beta(1, 1) or Beta(2, 2)..

(a) Beta(1, 1)

(b) Beta(2, 2)
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Figure 9 Test data in points, confidence intervals in dots. Mean of the so-
lutions of the RDEs in solid line. Here we are using the Wiener process as
random coefficient and the posterior distribution, where the prior distribution
is Beta(1, 1) or Beta(2, 2).

(a) Beta(1, 1)

(b) Beta(2, 2)
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Figure 10 Test data in points, confidence intervals in dots. Mean of the
solutions of the RDEs in solid line. using the OU process as random coefficient
and the posterior distribution, where the prior distribution is Beta(1, 1) or
Beta(2, 2).

(a) Beta(1, 1)

(b) Beta(2, 2)
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