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Abstract

In this article, we study estimation methodologies for parameters of an unit Gompertz distribu-

tion based on two frequentist methods and Bayesian method using progressively Type II censored

data. In frequentist approach, besides conventional maximum likelihood estimation, maximum

product of spacing method is proposed for parameter estimation as an alternative approach to com-

mon maximum likelihood method. In order to obtain maximum likelihood estimates, we use both

Newton-Raphson and stochastic expectation minimization algorithms, while for obtaining Bayes

estimates for unknown parameters of the model, we have considered both traditional likelihood

function as well as product of spacing function. Moreover, the approximate confidence intervals

of the parameters are obtained under two the frequentist approaches and highest posterior den-

sity credible intervals of the parameters are obtained under Bayesian approaches using MCMC

approach. In addition, percentile bootstrap technique is utilized to compute confidence intervals.

Numerical comparisons are presented of the proposed estimators with respect to various criteria

quantities using Monte Carlo simulations. Further, using different optimality criteria, an optimal

censoring scheme has been suggested. Besides, one-sample and two-sample prediction problems

based on observed sample and appropriate predictive intervals under Bayesian framework are dis-

cussed. Finally, to demonstrate the proposed methodology in a real-life scenario, maximum flood

level data is considered to show the applicability of the proposed methods.

Keywords: Unit Gompertz distribution, maximum likelihood estimation, maximum product of

spacing estimation, Bayesian estimation, progressively type II censored data, one-sample

prediction, two-sample predication.

1. Introduction

The Gompertz distribution was first introduced in the year 1825 by Benjamin Gompertz and it

became very popular among demographers and actuaries. This distribution is a generalization of

the exponential distribution and has wide applicability in different spheres, especially in medical

and actuarial studies. It possesses some relation with some well-known distributions such as expo-

nential, double exponential, Weibull, extreme value (Gumbel distribution) or generalized logistic
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distribution (see Willekens (2001)), which makes it useful for actuarial and the medical studies.

Mazucheli and Dey (2019) proposed a new transformed distribution by using the transformation

X = exp(−Y ), where random variable Y follows Gompertz distribution. The authors emphasized

that the new transformed distribution gives a very satisfactory fit than Beta and Kumaraswamy

distributions for some specific data sets. This new transformed distribution is called the Unit-

Gompertz (UG) distribution. The UG distribution has the following probability density function

(p.d.f.)

f(z;α, β) = αβz−(β+1)e−α(z−β−1), 0 < z < 1, α > 0, β > 0. (1)

The corresponding cumulative distribution function (c.d.f.) is given by

F (z;α, β) = e−α(z−β−1), x 0 < z < 1, α > 0, β > 0. (2)

The p.d.f. of this distribution can have variety of shapes while the hazard rate function is constant,

increasing and upside-down bathtub-shaped. However, UG distribution has an edge over the Gom-

pertz distribution because of the fact that upside-down bathtub-shaped hazard function cannot be

modelled using Gompertz distribution. For more properties of UG distribution, one can refer to

the works of Mazucheli and Dey (2019) and Anis and De (2020).

After the introduction of UG distribution in literature, to the best of our knowledge, very little work

has been conducted by researchers on this distribution. Notable among these works are: Jha et al.

(2019) considered UG distribution to estimate multicomponent stress-strength reliability based on

classical and Bayesian approaches using complete sample. Kumar et al. (2020) studied classical

as well as Bayesian estimation of the parameters of the model based on lower record values and

inter-record times. They also obtained prediction of future record values for the UG distribution.

Further, they derived single and product moments of lower record values. Jha et al. (2020) again

considered this model using classical and Bayesian approaches to estimate the multicomponent

stress strength reliability under progressive type II censoring samples. They also obtained boot-

strap, asymptotic and highest posterior density confidence interval of reliability quantity. Recently,

Arshad et al. (2021) studied this model under the framework of dual generalized order statistics.

They obtained the parameters of the model using Markov Chain Monte Carlo and Lindley’s ap-

proximation methods based on order statistics and lower record values.

In lifetime and reliability experiments, the necessity for censored data arises due to non- avail-

ability of complete information on failure times data for all experimental units. Although several

censoring schemes have been developed over the years, yet researchers seem to prefer progressive

type II censoring scheme over other conventional censoring schemes as under this scheme experi-

menter can reduce the total time on test and/or the number of failed items/ survival test units can be

withdrawn during the experiment at different stages which is not possible in case of conventional

type II censoring scheme. The progressive type II censoring can be described in the following
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way: suppose that n identical and independent units are put on a life test. When the first failure

occurs, X1:m:n, R1 of the n − 1 active units are randomly removed from the test. Similarly, when

the second failure occurs, X2:m:n, R2 of the n − R1 − 2 active units are randomly removed from

the test, and the test continues. This is repeated m times, where 1 ≤ m ≤ n is prefixed, after

which all Rm remaining surviving items are removed. Here, R = (R1, R2, · · · , Rm), such that

m +
∑n

i=1 Ri = n, is the progressive censoring scheme. The progressively type II order statistics

generated through R are denoted by X = (X1:m:n, X2:m:n, · · · , Xm:m:n).

Independently, Cheng and Amin (1983) and Ranneby (1984) introduced the method of maxi-

mum product of spacing (PS) function as a competitive method to the method of maximum like-

lihood. The Maximum Product of Spacing Estimators (MPSEs) are obtained by maximizing the

PS function similar to Maximum Likelihood Estimators (MLEs). Therefore, it is expected that the

MPSEs retain most of the properties of the MLEs. Anatolyev and Kosenok (2005) stated that the

MPSEs are more efficient than the MLEs for skewed distributions or in small sample cases for

heavy tailed distributions. For some recent references, see for example Almetwally and Almongy

(2019), El-Sherpieny et al. (2020) Shakhatreh et al. (2021) and Yadav et al. (2021). The general

condition to obtain the MPSEs is that f(z) > 0; ∀ z ∈ (a, b) and all the sample items are i.i.d.

In our case, we assume that Z follows the unit Gompertz distribution with support (0, 1), which

furnishes a = 0 and b = 1.

In the premise of the above, we have not come across any work related to estimation of the

parameters of the UG distribution under progressive type II censoring using two frequentist and

Bayesian methods. Our objectives in this study are: First, estimating the parameters of the UG dis-

tribution using two frequentist estimation approaches, namely; conventional maximum likelihood

and MPS estimation methods. In addition, based on these two methods, we have obtained approx-

imate confidence intervals (ACIs) for the parameters. Second objective is to obtain the MLEs by

using both Newton-Raphson (NR) and Stochastic Expectation Maximization (SEM) algorithms.

Third objective is to obtain the Bayes Estimates (BEs) of the UG distribution parameters based

on Likelihood (LK) and PS functions under squared-error loss function using independent gamma

priors. Furthermore, Markov Chain Monte Carlo (MCMC) techniques are considered to compute

the posterior functions and consequently, Bayes estimates and associated credible intervals are

computed. Fourth objective is to obtain an optimal censoring scheme using different optimality

criteria. Fifth objective is obtain Bayes predictive intervals based on one-sample prediction and

two-sample prediction methods. Using various choices of the effective sample size, the perfor-

mance of the proposed methods is compared through a simulation study in terms of their bias,

mean squared-error (MSE), sample standard error(SSE) and estimated standard error (ESE) and

confidence intervals (CI) are compared in terms of their average confidence lengths (IL). A well-
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known data set on maximum flood level (in millions of cubic feet per second) for Susquehanna

River at Harrisburg, Pennsylvania has been re-analyzed.

Rest of the paper is organised as follows: Classical point estimators based on progressive type

II censored sample through LK and PS functions are investigated in Sections 2 and 3. Section 4

provides SEM algorithm to estimate MLEs. Section 5 provides asymptotic confidence intervals

based on LK and PS functions. Section 6 provides parametric bootstrap confidence interval. Sec-

tion 7 provides Bayes estimates as well as associated credible intervals using each of the proposed

frequentist functions. The simulated results are presented in Section 8. In Section 9, optimal cen-

soring plans are presented. Prediction problem has been considered in Section 10. An application

using real dataset is provided for illustrative purposes in Section 11. Finally, we conclude the paper

in Section 12.

2. Maximum Likelihood Estimators

Based on the observed sample X = (X1:m:n, X2:m:n, · · · , Xm:m:n) from a type II progressive

censoring scheme, R = (R1, · · · , Rm), the likelihood function (LK) can be written as

L(α, β|X) = A

m∏

i=1

f(xi:m:n;α, β) [1− F (xi:m:n;α, β)]
Ri ,

= A(αβ)m
m∏

i=1

x
−(β+1)
i:m:n e−α(x−β

i:m:n−1)

m∏

i=1

[1− e−α(x−β
i:m:n−1)]Ri , (3)

where A = n(n − 1 − R1) · · · (n − R1 − · · · − Rm−1 − m + 1). The associated log-likelihood

function (without constant term) can be expressed from (3) as

ln(α, β|x) = log(L(α, β|x)) = m log(α) +m log(β)− (β + 1)
m∑

i=1

log(xi:m:n)

−α

m∑

i=1

(x−β
i:m:n − 1) +

m∑

i=1

Ri log[1− e−α(x−β
i:m:n−1)]. (4)

Upon differentiating (4) with respect to α and β and equating to zero, the resulting equations must

be satisfied to obtain the MLEs of α and β. The normal equations are

∂ln(α, β|x)

∂α
=

m

α
−

m∑

i=1

(ui − 1) +
m∑

i=1

Ri
(ui − 1)vi
(1− vi)

= 0, (5)

∂ln(α, β|x)

∂β
=

m

β
−

m∑

i=1

log(xi:m:n) + α

m∑

i=1

ui log(xi:m:n)

−α

m∑

i=1

Ri
ui log(xi:m:n) vi

(1− vi)
= 0. (6)
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where

ui = x−β
i:m:n and vi = e−α(x−β

i:m:n−1). (7)

Very simple iterative procedure like bisection or Newton-Raphson method may be used to maxi-

mize equations (5) and (6) to obtain the MLEs of α and β say α̂ and β̂, respectively.

3. Maximum Product of Spacing Estimation

Based on a progressive type II censored sample, we can write the Product of Spacing (PS)

function as follows

S(α, β|X) =
m+1∏

i=1

[F (xi:m:n;α, β)− F (xi−1:m:n;α, β)]
m∏

i=1

[1− F (xi:m:n;α, β)]
Ri ,

=
m+1∏

i=1

[e−α(x−β
i:m:n−1) − e−α(x−β

i−1:m:n−1)]
m∏

i=1

[1− e−α(x−β
i:m:n−1)]Ri

=
m+1∏

i=1

[vi − vi−1]
m∏

i=1

[1− vi]
Ri , (8)

with x0:m:n = v0 = 0 and xm+1:m:n = vm+1 = 1. The MPSEs of α and β can be obtain by

maximizing (8) with respect to α and β or equivalently by maximizing the natural logarithm of the

PS function in the following form

sn(α, β|X) =
m+1∑

i=1

log[vi − vi−1] +
m∑

i=1

Ri log[1− vi]. (9)

The MPSEs of α and β denoted by α̃ and β̃ can be obtained by solving the following two normal

equations

∂sn(α, β|X)

∂α
=

m+1∑

i=1

−(ui − 1)vi + (ui−1 − 1)vi−1

(vi − vi−1)
+

m∑

i=1

Ri
(ui − 1)vi
(1− vi)

, (10)

and

∂sn(α, β|X)

∂β
= α

m+1∑

i=1

ui vi log(xi:m:n)− ui−1vi−1 log(xi−1:m:n)

(vi − vi−1)

−α

m∑

i=1

Ri
ui vi log(xi:m:n)

(1− vi)
. (11)

Since there are no closed from solutions for the MPSEs, therefore, one can odopt an iterative pro-

cedure to obtain MPSEs numerically from (10) and (11). Cheng and Traylor (1995) stated that the

MPSEs are consistent and exhibit similar asymptotic properties to the MLEs under more general

conditions. Also, the MPSEs possess the invariance principle similar to the MLEs, see for more

details Coolen and Newby (1990).
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4. Stochastic EM algorithm

It can be seen that in evaluating the MLEs using Newton-Raphson, one can face two difficul-

ties. The first one is the sensitivity of the obtained estimators to the initial values of parameters and

the second is the calculation of the second-order derivatives of the log-likelihood based on pro-

gressive data sometimes can be tedious. Alternatively, to find the MLEs, we propose a version of

expectation-maximization (EM) algorithm which is called stochastic EM (SEM) algorithm. First,

we explain the idea of EM algorithm. The EM algorithm, proposed by Dempster et al. (1977), is an

iterative technique and is widely used approach for computing the maximum likelihood estimates

of incomplete data or missing information problems. Here, we treat the censored observations as

data missing information and apply EM algorithm to find the MLEs. The EM algorithm includes

two main steps; Expectation(E)-step and Maximization(M)-step. Assume the complete lifetimes

are given by W = (X,Z) where X = (X1:m:n, · · · , Xm:m:n) denotes the observed observations and

Z = (Z1, · · · ,Zm) denotes the censored data where Zj = (Zj1, · · · , ZjRj
).

Then the complete log-likelihood function based on the complete lifetimes, W, is proportional

to

lcn(α, β|W) =n lnα + n ln β + nα− (β + 1)
m∑

i=1

ln(xi:m:n)− α

m∑

i=1

x−β
i:m:n

− (β + 1)
m∑

i=1

Rj∑

j=1

ln(zij)− α

m∑

i=1

Rj∑

j=1

z−β
ij .

To perform the E-step of the EM algorithm, we need to compute the conditional expectation of

the complete log-likelihood conditionally on the observed data X,, using the current value α(k) and

β(k) of the parameters α and β as follows. Now

E(lcn(α,β|W)|X, α(k), β(k)) = n lnα + n log β + nα− (β + 1)
m∑

i=1

log(xi:m:n)− α

m∑

i=1

x−β
i:m:n

− (β + 1)
m∑

i=1

Rj∑

j=1

E(ln(Zij)|Xi:m:n, α
(k), β(k))− α

m∑

i=1

Rj∑

j=1

E(Z−β
ij |Xi:m:n, α

(k), β(k)).

(12)

In the M-step, we find α(k+1) and β(k+1) which maximize the conditional expectation given in (12).

This is easily achieved by solving the following likelihood equations

∂E(lcn(α, β|W)|X, α(k), β(k))

∂α
= 0

and
∂E(lcn(α, β|W)|X, α(k), β(k))

∂β
= 0
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or equivalently

n

α
=− n+

m∑

i=1

w−β
i +

m∑

i=1

Rj∑

j=1

E(Z−β
ij |x, α(k), β(k)) (13)

n

β
=

m∑

i=1

ln(xi:m:n)− α

m∑

i=1

x−β
i:m:n ln(xi:m:n)−

m∑

i=1

Rj∑

j=1

E(ln(Zij)|xi:m:n, α
(k), β(k))

− α

m∑

i=1

Rj∑

j=1

E(Z−β
ij log(Zij)|xi:m:n, α

(k), β(k)). (14)

Observe that, the explicit expressions of the conditional expectations in (13) and (14) can be written

as follows. For any function g(zij;α, β), i = 1, 2, · · · ,m; j = 1, · · · , Ri, we have

E(g(Zij;α, β)|Zij > xi:m:n) =

∫ 1

xi:m:n
g(y;α, β)y−(β+1)e−α(y−β−1)dy
∫ 1

xi:m:n
y−(β+1)e−α(y−β−1)dy

. (15)

It is observed that the E-step of the EM algorithm involved complex integrals which cannot be

solved in a closed form. The SEM algorithm is an alternative method of the EM algorithm where

the expectation in the E-step is calculated using Monte Carlo simulations. It is useful for the cases

when the E-step is hard to calculate exactly. The idea of approximating the E-step in EM algorithm

by the Monte-Carlo technique, was first proposed by Wei and TannerWei and Tanner (1990). As

mentioned by Wang and Cheng (2010), the approximation of Wei and Tanner (1990) have more

time-consuming. Later Diebolt and Celeux (1993) modified their idea by replacing the E-step with

stochastic step through simulation technique. For more information about SEM, see for example,

Tregouet et al. (2004), Zhang et al. (2014) and Arabi Belaghi et al. (2017).

The description of SEM method is as follows. Note that the conditional survival function of a

random variable Zij, given Zij > xi:m:n, can be computed by

S(Zij|Zij > xi:m:n) =
1− e−α(z−β

ij −1)

1− e−α(x−β
i:m:n−1)

(16)

We first generate independent Ri number of samples zij, i = 1, 2, · · · ,m; j = 1, · · · , Ri from the

conditional survival function, (16), using the expression

zij =
(
1− (1/α) log(1− u(1− e−α(x−β

i:m:n−1)))
)−1/β

, (17)

where u is a random variate from the uniform distribution, U(0, 1). Upon using this simulated
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sample, Equations (13) and (14) reduce to

n

α
=− n+

m∑

i=1

x−β
i:m:n +

m∑

i=1

Rj∑

j=1

z−β
ij (18)

n

β
=

m∑

i=1

log(xi:m:n)− α

m∑

i=1

x−β
i:m:n log(xi:m:n)−

m∑

i=1

Rj∑

j=1

log(zij)− α

m∑

i=1

Rj∑

j=1

z−β
ij log(zij). (19)

Therefore the SEM algorithm works as follows. Set initial values of α and β as α(0) and β(0).

Step(i) At k-th iteration, let (α(k), β(k)) be the estimate of (α, β).

Step(ii) Using the expression (17), simulate zij ≡ zij(α
(k), β(k)), i = 1, · · · ,m; j = 1, · · · , Ri,

where α and β are replaced by α(k) and β(k), respectively.

Step(iii) Compute α(k+1) and β(k+1) using (18) and (19).

Step(iv) If |α(k+1) − α(k)|+ |β(k+1) − β(k)| < ϵ, for some pre-specified quantity ϵ, then set α(k+1)

and β(k+1), as the MLEs of α and β, otherwise, set k = k + 1 and go to Step(ii).

5. Asymptotic Confidence Intervals (ACIs)

In this section, we construct three types of 100(1− γ)% confidence intervals for the unknown

parameters α and β. The first type of confidence interval is obtained by using the MLEs, the second

by using MPSEs and the third by using parametric bootstrap method.

5.1. ACIs based on MLEs

From the log-likelihood function (4), the second order partial derivatives of ln(α, β|X) can be

obtained directly with respect to α and β as follows

∂2ln(α, β|X)

∂α2
= −

m

α2
−

m∑

i=1

Ri
(ui − 1)2 vi
(1− vi)2

(20)

∂2ln(α, β|X)

∂β2
=

m∑

i=1

Ri
α ui vi(log(xi:m:n))

2(1− α vi − ui)

(1− vi)2
−

m

β2

−α
m∑

i=1

ui(log(xi:m:n))
2 (21)

∂2ln(α, β|X)

∂α∂β
=

m∑

i=1

ui log(xi:m:n)−
m∑

i=1

Ri
ui log(xi:m:n)(vi − α(ui − 1)vi − v2i )

(1− vi)2
. (22)

It is observed that the asymptotic Variance-Covariance (VarCov) of the MLEs of α and β cannot be

obtained in closed form because of the complicated nature of the expectations of the expressions
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(20), (21) and (22). Therefore, we obtain the approximate asymptotic VarCov matrix for the MLEs

by obtaining the inverse of the observed Fisher information matrix as follows

I(α̂, β̂) =

[
−∂2ln(α,β|X)

∂α2 −∂2ln(α,β|X)
∂α∂β

−∂2ln(α,β|X)
∂β∂α

−∂2ln(α,β|X)
∂β2

]−1

(α,β)=(α̂,β̂)

=

[
v̂ar(α) ĉov(α, β)
ĉov(β, α) v̂ar(β)

]
. (23)

Using the asymptotic properties of the MLEs, it is known that (α̂, β̂) ∼ N2

(
(α, β), I(α̂, β̂)

)
,

where I(α̂, β̂) is given by (23). Thus, the (1 − γ)% ACIs of the parameters α and β can be

obtained as follows

α̂± zγ/2
√

v̂ar(α) and β̂ ± zγ/2
√

v̂ar(β),

where zγ/2 is the upper (γ/2)th percentile point of a standard normal distribution.

5.2. ACIs based on MPSEs

Here we construct the (1 − γ)% ACIs of the α and β based on the asymptotic properties of

the MPSEs. First, we obtain the second order partial derivatives of the logarithm of PS function,

sn(α, β|X), given in (9) as follow

∂2sn(α, β|X)

∂α2
= −

m+1∑

i=1

vivi−1(ui − ui−1)
2

(vi − vi−1)2
−

m∑

i=1

Ri
(ui − 1)2vi
(1− vi)2

(24)

∂2sn(α, β|X)

∂α∂β
=

m+1∑

i=1

uivi log(xi:m:n)(vi − vi−1 + αvi−1(ui − ui−1))

(vi − vi−1)2

−

m+1∑

i=1

ui−1vi−1 log(xi−1:m:n)(vi − vi−1 + αvi(ui − ui−1))

(vi − vi−1)2

+
m+1∑

i=1

Riuivi log(xi:m:n)(vi − 1 + α(ui − 1))

(1− vi)2
(25)

and

∂2sn(α, β|X)

∂β2
= −α

m+1∑

i=1

viui(log(xi:m:n))
2(vi − vi−1 + αui vi−1)

(vi − vi−1)2

−α

m+1∑

i=1

vi−1ui−1(log(xi−1:m:n))
2(vi−1 − vi + αvi ui−1)

(vi − vi−1)2

+2α
m+1∑

i=1

vi−1ui−1viui log(xi−1:m:n) log(xi:m:n)

(vi − vi−1)2

−α

m+1∑

i=1

Riuivi(log(xi:m:n))
2(αui + vi − 1)

(1− vi)2
. (26)
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Due to the difficulties in obtaining the expectations of the expressions (24), (25) and (26), the

asymptotic VarCov of the MPSEs of α and β cannot be obtained. Similar to the previous case in

Subsection 5.1, we obtain the approximate asymptotic VarCov matrix for the MPSEs as

I(α̃, β̃) =

[
−∂2 logS(α,β)

∂α2 −∂2 logS(α,β)
∂α∂β

−∂2 logS(α,β)
∂β∂α

−∂2 logS(α,β)
∂β2

]−1

(α,β)=(α̃,β̃)

=

[
ṽar(α) c̃ov(α, β)
c̃ov(β, α) ṽar(β)

]
. (27)

Based on the asymptotic properties of the MPSEs as in the case of the MLEs, (see, Cheng

and Traylor (1995)) it follows that (α̃, β̃) ∼ N2

(
(α, β), I(α̃, β̃)

)
, where I(α̃, β̃) is given by (27).

Therefore, the (1− γ)% ACIs of α and β are

α̃± zγ/2
√
v̂ar(α) and β̃ ± zγ/2

√
v̂ar(β). (28)

5.3. Parametric Bootstrap (Boot-p) CIs

The asymptotic normality of MLEs (or MPSEs) used to find the confidence interval is well-

performed only when the sample size is large enough. Therefore, alternatively, in this subsection,

the confidence intervals are computed using parametric percentile bootstrap (Boot-p) method even

for small sample size. The bootsrap method, proposed by Efron and Tibshirani (1986), are widely

used to estimate standard error or to build confidence intervals for the parameters as well as esti-

mating the reliability and hazard functions. The generation of progressively type II Boot-p samples

can be described as follows.

Step(1): Compute the MLEs (or MPSEs), α̂ and β̂, based on the original progressively type II

censored sample X = (X1:m:n, · · · , Xm:m:n).

Step(2): Based on the computed MLEs (or MPSEs) in Step(1), α̂ and β̂, generate a progressively

type II censored sample with the same censoring scheme R and same values of (n,m),

utilizing the algorithm given in Balakrishnan and Sandhu (1995).

Step(3): Compute the MLEs (or MPSEs), α̂∗ and β̂∗, based on the generated bootstrap sample in

Step(2).

Step(4): Repeat Step(2) and Step(3), for B times, where B is a pre-specified quantity. Then we

have two series of estimators α̂∗
1, α̂

∗
2, · · · , α̂

∗
B and β̂∗

1 , β̂
∗
2 , · · · , β̂

∗
B.

Next, we compute 100(1− γ)% Boot-p confidence intervals as follows. Arrange all bootstrapped

values, α̂∗
1, α̂

∗
2, · · · , α̂

∗
B and β̂∗

1 , β̂
∗
2 , · · · , β̂

∗
B, in ascending order and obtain α̂∗

(1) < α̂∗
(2) < · · · <
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α̂∗
(B) and β̂∗

(1) < β̂∗
(2) < · · · < β̂∗

(B). Then 100(1− γ)% Boot-p confidence intervals of α and β are

computed by

(α̂∗
([B( γ

2
)]), α̂

∗
([B(1− γ

2
)])) and (β̂∗

([B( γ
2
)]), β̂

∗
([B(1− γ

2
)])),

respectively, where [x] denotes the integral part of x.

6. Bayesian Estimation

In this section, we consider Bayesian estimation of the unknown parameters of the UG dis-

tribution under progressively type II censored data. We mainly discuss the Bayes estimates and

the associated credible intervals of the unknown parameter(s) based on LK and PS functions. In

our Bayesian analysis, we have assumed only squared error loss function. However, other loss

functions can be considered. Prior distributions play an important role for obtaining the Bayes

estimates. However, there is no clear cut method to choose the best priors for the unknown model

parameters for Bayesian estimation problem. In this regard, readers may refer to the works of

Arnold and Press (1983). In the premise of the above arguments, we consider the piecewise inde-

pendent gamma priors for the parameters of the considered model. Thus the proposed priors for

the parameters α and β may be taken as:

π1(α) ∝ αa−1 e−b α , α > 0, a, b > 0

π2(β) ∝ βc−1 e−d β , β > 0, c, d > 0 (29)

The hyperparameters a, b, c, d are known and non-negative. As the family of gamma distributions

is highly flexible, and can provide different shapes based on parameter values and thus it can be

considered as suitable priors of the model parameters. See for more details Kundu and Pradhan

(2009), Dey et al. (2016b). Thus the joint prior distribution for α and β is

π(α, β) ∝ αa−1βc−1e−(bα+dβ) , α, β > 0. (30)

Based on the observed sample x1:m:n < x2:m:n < · · · < xm:m:n from a type II progressive censoring

scheme, the joint posterior density using joint prior distribution defined in (30) and the traditional

LK function can be written as

Ω(α, β|x) ∝ αa+m−1βc+m−1e−(bα+dβ)

m∏

i=1

z
−(β+1)
i e−α(x−β

i:m:n−1)

m∏

i=1

[1− e−α(x−β
i:m:n−1)]Ri . (31)

The marginal posterior probability density functions of α and β are given respectively as

Ωα(α|x) ∝

∫ ∞

0

Ω(α, β|x)dβ. (32)
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and

Ωβ(β|x) ∝

∫ ∞

0

Ω(α, β|x)dα. (33)

Similarly, based on the PS function, (8) and the joint prior distribution defined in (30), the joint

posterior density and the marginal posterior density functions of α and β can be, respectively,

expressed as

Ψ(α, β|x) ∝ αa−1βc−1e−(bα+dβ)

m+1∏

i=1

[e−α(x−β
i:m:n−1) − e−α(x−β

i−1:m:n−1)]

×

m∏

i=1

[1− e−α(x−β
i:m:n−1)]Ri (34)

Ψα(α|x) ∝

∫ ∞

0

Ψ(α, β|x)dβ (35)

Ψβ(β|x) ∝

∫ ∞

0

Ψ(α, β|x)dα. (36)

Suppose ω̂ is an estimator of parameter ω, we propose to use squared-error (SE) loss function

which is defined as

ℓ(ω, ω̂) = (ω̂ − ω)2. (37)

From (37), the Bayes estimate is given by the posterior mean of ω. For arbitrary function φ(α, β),

the Bayes estimator, namely φ̂B (or φ̃B), is the expectation of the posterior distribution under

squared error loss, which is given by

φ̂B =

∫∞

0

∫∞

0
φ(α, β)Ω(α, β|x)dαdβ∫∞

0

∫∞

0
Ω(α, β|x)dαdβ

, (38)

using the LK function and

φ̃B =

∫∞

0

∫∞

0
φ(α, β)Ψ(α, β|x)dαdβ∫∞

0

∫∞

0
Ψ(α, β|x)dαdβ

, (39)

using the PS function.

Next, we construct the credible intervals for α and β. Let θ denote the parameter α or the pa-

rameter β. After obtaining the marginal posterior distribution of θ, a symmetric 100(1−γ)% Bayes

credible interval of θ, denoted by [Lθ, Uθ], can be obtained by solving the following equations

P (θ > Uθ) =

∫ ∞

Uθ

Ωθ(θ|x)( or Ψθ(θ|x))dθ = γ/2 (40)

and

P (θ < Lθ) =

∫ Lθ

0

Ωθ(θ|x)( or Ψθ(θ|x))dθ = γ/2. (41)

We need to apply suitable numerical method to compute the above intervals.
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6.1. Bayesian Inference using MCMC Approach

It is clear that the Bayes estimates of the unknown parameters α and β do not possess closed

forms. Therefore, instead of applying numerical methods, we utilize Markov Chain Monte-Carlo

(MCMC) approach to obtain the Bayes estimates and construct credible intervals of the unknown

parameters. The advantage of using MCMC is its ability to construct Highest Posterior Density

(HPD) credible intervals for α and β. We first draw random samples from the posterior density

function, π(α, β|x) and then, we use the simulated values to compute the Bayes estimates and

HPDs of α and β. Here π(α, β|x) denotes Ω(α, β|x) given in (31) or Ψ(α, β|x) given in (34).

Since the posterior density function π(α, β|x) can not be simulated easily, we utilize a random

walk Metropolis-Hastings (MH) algorithm to generate samples from it. The purpose of using the

random-walk MH algorithm is due to its flexibility in generating random samples from any pro-

posal distribution, especially when the conditional posterior distributions of the parameters are un-

known distributions. For our case, we propose a bivariate normal density N2((log(α), log(β)), Σ̂),

where Σ̂ is the estimated variance-covariance matrix. These samples are utilized to obtain the

Bayes estimates and construct credible intervals for the parameters as given in following algo-

rithm.

Step. 1 Start with an initial values (α, β) as (α0, β0), and set j = 1.

Step. 2 Set (α, β) = (αj−1, βj−1).

Step. 3 Generate a new candidate parameter values (δ1, δ2) from bivariate normal distribution

N2((log(α), log(β)), Σ̂).

Step. 4 Set α∗ = exp(δ1) and β∗ = exp(δ2).

Step. 5 Calculate d = min{1, π(α
∗,β∗|x)αβ

π(α,β|x)α∗β∗
}

Step. 6 Generate a random number u from uniform (0, 1).

Step. 7 If u ≤ d accept (α∗, β∗) else retain (α, β).

Step. 8 If j < M, where M is a pre-specified value, set j = j + 1 and go to Step. 2, otherwise

stop.

The retained sample values, (α1, β1), · · · , (αM , βM) is a random sample from the posterior density

π(α, β|x). To reduce the effects of the initial values on the simulated samples, we discard some of

the initial N < M number of samples (burn-in). Now, using Monte-Carlo integration technique,
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the Bayes estimates of α and β under squared error loss function can be obtained as

α̂B( or α̃B) =
1

M −N

M∑

j=N+1

αj,

β̂B( or α̃B) =
1

M −N

M∑

j=N+1

βj.

For constructing HPD credible intervals of α and β, we use the method proposed by Chen and

Shao (1999) as follows. Let α(N+1) < α(N+2) < · · · < α(M) and β(N+1) < β(N+2) < · · · < β(M)

be the ordered values of αj and βj for j = N + 1, · · · ,M. Consider the following 100(1- γ)%

credible intervals of α and β

(α(j), α(j+[(1−γ)M ])) and (β(j), β(j+[(1−γ)M ])), j = N + 1, · · · , [γM ],

where [x] denotes the integral part of x. Thus the HPD credible interval of α (or β) can be derived

by choosing the credible interval which has the shortest length.

6.2. Selecting hyper-parameter values

Now, we consider the issue of how to select the hyper-parameter values in order to compute

Bayes estimators with respect to informative priors instead of non-informative priors. Following

Dey et al. (2016a) and Singh and Tripathi (2018), the selection of hyperparameters values can

be done based on the past available data. With this respect, suppose that we have K number

of samples available from UG(α, β) distribution and let the associated MLEs of (α, β) based on

these samples be (α̂j, β̂j), j = 1, 2 · · · , K. By equating the mean and variance of the MLEs with

the mean and variance of the priors, we obtain the values of hyperparameters. In specific, since we

have adopted gamma priors, π(θ) ∝ θh1−1e−h2θ, then we have

1

K

K∑

i=1

θ̂j = h1/h2 and
1

K − 1

K∑

i=1

(θ̂j −
1

K

K∑

i=1

θ̂j)2 = h1/h
2
2.

Here (θ, h1, h2) represents (α, a, b) or (β, c, d). By solving the above equations, the estimated

hyper-parameters are computed as

h1 =
( 1
K

∑K
i=1 θ̂

j)2

1
K−1

∑K
i=1(θ̂

j − 1
K

∑K
i=1 θ̂

j)2

and

h2 =
1
K

∑K
i=1 θ̂

j

1
K−1

∑K
i=1(θ̂

j − 1
K

∑K
i=1 θ̂

j)2
.
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7. Simulation

Here, a simulation study is conducted in order to explore the performance of the classical and

Bayes estimates. The configurations of the sample size, n, and inspection times, m are adopted as

(25, 10), (50, 20) and (100, 30). The censoring schemes are considered as scheme I= (0 ∗ (m −

1), n−m) and scheme II= ((n−m)/2, 0 ∗ (m− 2), (n−m)/2) when n−m is an even number

and scheme II= ((n − m + 1)/2, 0 ∗ (m − 2), (n − m − 1)/2) when n − m is an odd number,

where we abbreviated for example, (1, 1, 0, 0, 1) by (1 ∗ 2, 0 ∗ 2, 1). In all cases we have taken

the true values of the parameters as (α, β) = (1.25, 1.5) and (0.5, 0.75). The size of the bootstrap

samples is taken to be 5000. The progressive type II censored samples are generated by utilizing

the algorithm proposed by Balakrishnan and Sandhu (1995) as follows.

(1) Generate m independent Uniform U(0, 1) observations W1,W2, · · · ,Wm.

(2) Set Vi = W
1/(i+Rm+Rm−1+···+Rm−i+1)
i for i = 1, 2, · · · ,m.

(3) Set Ui = 1 − VmVm−1 · · ·Vm−i+1 for i = 1, 2, · · · ,m. Then U1, U2, · · · , Um is the required

progressive type II censored sample from the Uniform U(0, 1) distribution.

(3) Finally, set Xi = F−1(Ui) for i = 1, 2, · · · ,m where F−1 is the inverse cdf of the UG distri-

bution. Then X1, X2, · · · , Xm is the required progressive type II censored sample from the

UG distribution.

For the classical estimation, we estimate the unknown parameters using the MLE, MPS and SEM

methods. For each of these methods, we have computed the absolute average bias (Bias) , the

sample standard deviation (SSE), the estimated standard deviation (ESE) using the observed infor-

mation matrix based on the LK (or PS) function, the mean square error (MSE). Moreover, we have

evaluated 95% Wald’s confidence intervals using the observed information matrix based on the LK

(or PS) function (CI), the Boot-p based on LK function (MBT) and Boot-p based of PS function

(PBT).

For the Bayes estimations, we obtain the Bayes estimate by numerically solving (38) (BSL),

the Bayes estimate by numerically solving (39) (BSP), MCMC based on LK fuction (MCL) and

MCMC based on PS function (MCP). For each of these methods, we compute the absolute average

bias (Bias), mean square error (MSE), credible intervals (CI) by numerically solving (40) and (41)

and HPD intervals using the generated MCMC samples based on LK (or PS) function. For a given

sample, the random-walk MH algorithm is used to generate MCMC samples of size M = 20100

with burn-in period of N = 100. The process for the both types of estimation (classical and

Bayesian) is replicated 1000 times. The results of classical estimation are reported in Tables 1-3

and the results of Bayes estimation are reported in Tables 4-5.
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From Table 1, it is observed that the Bias for all the estimators, in general, are reasonably small

which indicates that the estimated values are close to the true parameter values. As expected, the

Bias, MSE, SSE an ESE of all estimators are decreasing when sample sizes are increasing for all

the cases. However, the MPS method presents less bias estimates than the MLE and SEM for the all

cases. In addition, the SEM algorithm performs better than MLE based on this aspect. Clearly, the

MSE of MPS and SEM is less than that of MLE. Moreover, MPS presents higher MSE as compared

with SEM. The SSE for the SEM method are less than that of MLE and MPS methods while the

ESE of the MLE is the while the ESE of the MLE is less that than of MPS and SEM. With respect to

95% confidence interval, from Table 2 and Table 3, the confidence intervals constructed by Boot-p

methods based on LK function (MBT) have the smaller. In addition, the length of the confidence

intervals is decreasing when the value of sample size is increasing. Hence, the performance of the

MLEs are satisfactory in terms of the biases and standard errors of the estimates. For the Bayesian

estimates, the Bias of all proposed methods are also reasonably small. It is clear that the Bias,

RMSE and the length of the credible/HPD intervals are decreasing when the value of sample size

is increasing.

8. Optimal censoring

In life-testing experiment, it is usually taken a fixed and pre-specified censoring scheme. How-

ever, choosing the optimum censoring scheme from a set of all possible schemes can be of impor-

tant concerns to the estimation problem as it may lead to efficient estimates for parameters.

In this section, instead of considering pre-specified inspection censoring scheme, we inves-

tigate by using different techniques for selecting the the optimum censoring scheme under the

progressive type II censored data. The problem of identifying the optimal censoring scheme for

different distributions has received considerable attention in the statistical literature. See for ex-

ample, Abouammoh and Alshingiti (2009), Pradhan and Kundu (2013), Sultan et al. (2014), Dube

et al. (2016), Sen et al. (2018) and Ashour et al. (2020). The first two criteria, proposed in this

section, for selecting the optimal censoring scheme depend on the comparison of the Fisher infor-

mation matrices (or equivalently of the variance-covraince (VarCov) matrix) of the MLEs of the

unknown parameters as follow.

Criterion(I): Minimizing the determinant of VarCov matrix of the MLEs.

Criterion(II): Minimizing the trace of VarCov matrix of the MLEs.

In the case of one parameter distributions criteria I and II are quite effective. However, if we have

multi-parameter distributions, these criteria are not scale invariant (see, Gupta and Kundu (2006)).

So we have to use other criteria which are scale invariant. The other two criteria, we adopted here,

are based on the comparison of the precisions of the logarithm of MLE for p-th quantile of the UG
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α = 1.25 β = 1.5

(n,m) scheme Bias MSE SSE ESE Bias MSE SSE ESE

(25, 10)

I

MLE 0.911 0.894 0.571 0.828 0.880 2.960 1.090 0.828

MPS 0.760 0.537 0.716 1.473 0.663 0.864 0.601 1.473

SEM 0.820 0.641 0.488 0.916 0.708 0.813 0.505 0.916

II

MLE 0.439 0.512 0.565 0.835 0.928 2.136 1.130 0.835

MPS 0.201 0.501 0.701 1.745 0.110 0.378 0.607 1.745

SEM 0.335 0.357 0.495 0.969 0.524 0.541 0.517 0.969

(50, 20)

I

MLE 0.876 0.779 0.120 0.264 0.726 2.656 0.574 0.260

MPS 0.665 0.452 0.130 0.497 0.642 0.708 0.261 0.497

SEM 0.741 0.553 0.081 0.320 0.695 0.800 0.179 0.320

II

MLE 0.274 0.297 0.471 0.695 0.453 0.627 0.649 0.695

MPS 0.193 0.408 0.620 1.397 0.103 0.245 0.495 1.397

SEM 0.246 0.255 0.441 0.731 0.360 0.341 0.460 0.731

(100, 30)

I

MLE 0.728 0.542 0.114 0.250 0.696 1.111 0.345 0.250

MPS 0.564 0.335 0.127 0.432 0.630 0.460 0.250 0.432

SEM 0.681 0.469 0.076 0.277 0.656 0.761 0.166 0.277

II

MLE 0.238 0.200 0.378 0.542 0.315 0.308 0.457 0.542

MPS 0.185 0.275 0.518 0.955 0.101 0.168 0.410 0.955

SEM 0.229 0.187 0.366 0.554 0.289 0.239 0.394 0.554

α = 0.5 β = 0.75

(25, 10)

I

MLE 0.171 0.073 0.209 0.285 0.308 0.236 0.376 0.285

MPS 0.103 0.173 0.403 0.736 0.050 0.108 0.325 0.736

SEM 0.170 0.072 0.207 0.287 0.289 0.186 0.321 0.287

II

MLE 0.139 0.074 0.234 0.325 0.275 0.222 0.383 0.355

MPS 0.153 0.220 0.444 0.955 0.044 0.124 0.350 0.955

SEM 0.137 0.073 0.233 0.333 0.258 0.182 0.340 0.333

(50, 20)

I

MLE 0.121 0.050 0.189 0.281 0.165 0.078 0.225 0.281

MPS 0.083 0.113 0.326 0.458 0.020 0.047 0.217 0.458

SEM 0.121 0.050 0.189 0.284 0.164 0.077 0.224 0.284

II

MLE 0.111 0.042 0.173 0.242 0.154 0.072 0.220 0.242

MPS 0.059 0.080 0.277 0.540 0.014 0.045 0.212 0.540

SEM 0.111 0.042 0.173 0.244 0.154 0.072 0.219 0.244

(100, 30) I

MLE 0.094 0.030 0.146 0.195 0.115 0.041 0.168 0.195

MPS 0.041 0.049 0.218 0.342 0.007 0.028 0.166 0.342

SEM 0.094 0.030 0.147 0.195 0.115 0.041 0.168 0.195

II

MLE 0.076 0.028 0.148 0.203 0.092 0.032 0.153 0.203

MPS 0.056 0.060 0.236 0.364 0.012 0.025 0.156 0.364

SEM 0.076 0.028 0.149 0.204 0.093 0.032 0.153 0.204

Table 1: Simulation results of classical estimation methods. MLE: maximum likelihood estimator; MPS: maximum
product of spacing estimator; SEM: stochastic EM; Bias: absolute average bias; SSE: sample standard error; ESE:
estimated standard error; MSE: mean square error.
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α β

(n,m) CI IL CI IL

(25, 10)

I

MLE (0,2.449) 2.449 (0.790,4.066) 3.275

MPS (0,4.772) 4.772 (0,5.021) 6.841

SEM (0,2.815) 2.815 (0.124,3.924) 3.800

MBT (0.253,2.047) 1.794 (1.250,3.000) 1.750

PBT (0.282,2.499) 2.217 (0.661,2.804) 2.143

II

MLE (0,2.461 ) 2.461 (0.758,4.001) 3.244

MPS (0,4.296 ) 4.296 (0,4.450) 4.450

SEM (0,2.725 ) 2.725 (0.213,3.802) 3.590

MBT (0.259,1.987) 1.728 (1.269,3.000) 1.731

PBT (0.310,2.499) 2.188 (0.704,2.818) 2.114

(50, 20)

I

MLE (0,0.813) 0.813 (1.587,3.465) 1.878

MPS (0,1.559) 1.559 (1.339,3.286) 1.947

SEM (0,1.136) 1.136 (1.808,3.063) 1.255

MBT (0.267,1.022) 0.755 (1.835,3.000) 1.165

PBT (0.315,2.336) 2.021 (0.970,2.828) 1.858

II

MLE (0,0.863) 0.863 (0.431,1.378) 0.947

MPS (0,1.618) 1.618 (0,1.818) 1.818

SEM (0,0.868) 0.868 (0.425,1.383) 0.957

MBT (0.093,0.844) 0.750 (0.601,1.426) 0.826

PBT (0.130,0.963) 0.834 (0.485,1.503) 1.018

(100, 30)

I

MLE (0.032,1.013) 0.981 (2.006,2.987) 0.981

MPS (0,1.533) 1.694 (1.283,2.977) 1.694

SEM (0.025,1.113) 1.088 (1.813,2.900) 1.088

MBT (0.287,1.172) 0.885 (1.636,3.000) 1.364

PBT (0.352,2.122) 1.770 (1.068,2.818) 1.750

II

MLE (0,2.074) 2.074 (0.753,2.877) 2.123

MPS (0,3.208) 3.208 (0,3.388) 3.388

SEM (0,2.106) 2.106 (0.704,2.875) 2.172

MBT (0.366,2.110) 1.744 (1.119,2.879) 1.760

PBT (0.526,2.417) 1.891 (0.871,2.414) 1.542

Table 2: Simulation results of classical estimation methods for α = 1.25 and β = 1.5.. MLE: maximum likelihood

estimator; MPS: maximum product of spacing estimator; SEM: stochastic EM; MBT: Boot-p based on LK function;

PBT: Boot-p based on PS function; CI: 95% confidence interval and IL: interval length.
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α β

(n,m) CI IL CI IL

(25, 10)

I

MLE (0,0.887) 0.887 (0.499,1.617) 1.118

MPS (0,2.046) 2.046 (0,2.242) 2.242

SEM (0,0.893) 0.893 (0.476,1.603) 1.127

MBT (0.023,0.783) 0.761 (0.660,1.500) 0.840

PBT (0,0.965) 0.965 (0.463,1.608) 1.145

II

MLE (0,0.998) 0.998 (0.387,1.662) 1.274

MPS (0,2.526) 2.526 (0,2.667) 2.667

SEM (0,1.016) 1.016 (0.355,1.661) 1.306

MBT (0.039,0.821) 0.782 (0.636,1.498) 0.862

PBT (0.040,0.962) 0.923 (0.459,1.626) 1.167

(50, 20)

I

MLE (0,0.929) 0.929 (0.364,1.466) 1.101

MPS (0,3.440) 3.440 (0,3.609) 3.609

SEM (0,0.936) 0.936 (0.358,1.471) 1.113

MBT (0.088,0.877) 0.789 (0.583,1.444) 0.861

PBT (0.131,0.982) 0.852 (0.470,1.522) 1.052

II

MLE (0,0.863) 0.863 (0.431,1.378) 0.947

MPS (0,1.618) 1.618 (0,1.818) 1.818

SEM (0,0.868) 0.868 (0.425,1.383) 0.957

MBT (0.093,0.844) 0.750 (0.601,1.426) 0.826

PBT (0.130,0.963) 0.834 (0.485,1.503) 1.018

(100, 30)

I

MLE (0.024,0.787) 0.763 (0.484,1.246) 0.763

MPS (0,1.210) 1.210 (0.087,1.426) 1.339

SEM (0.024,0.788) 0.764 (0.483,1.247) 0.764

MBT (0.013,0.773) 0.760 (0.615,1.356) 0.741

PBT (0.087,0.948) 0.861 (0.519,1.457) 0.938

II

MLE (0.027,0.821) 0.795 (0.445,1.240) 0.795

MPS (0,1.279) 1.279 (0.025,1.451) 1.427

SEM (0.023,0.825) 0.801 (0.442,1.243) 0.801

MBT (0.142,0.838) 0.697 (0.594,1.285) 0.691

PBT (0.216,0.961) 0.745 (0.508,1.438) 0.930

Table 3: Simulation results of classical estimation methods for α = 0.50 and β = 0.75.. MLE: maximum likelihood

estimator; MPS: maximum product of spacing estimator; SEM: stochastic EM; MBT: Boot-p based on LK function;

PBT: Boot-p based on PS function; CI: 95% confidence interval and IL: interval length.
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α β

(n,m) Bias MSE CI/HPD IL Bias MSE CI/HPD IL

(25, 10)

I

BSL 0.723 0.533 (0.440,1.865) 1.425 0.638 0.426 (1.015,2.673) 1.659

BSP 0.188 0.064 (0.636,2.299) 1.663 0.054 0.027 (0.949,2.126) 1.177

MCL 0.577 0.477 (0.357,1.900) 1.543 0.483 0.298 (0.952,2.356) 1.404

MCP 0.966 0.794 (0.567,4.879) 4.312 0.233 0.337 (0.747,1.816) 1.068

II

BSL 0.419 0.060 (0.502,2.019) 1.517 0.355 0.166 (1.010,2.300) 1.290

BSP 0.098 0.057 (0.577,2.195) 1.618 0.042 0.026 (0.949,2.128) 1.180

MCL 0.339 0.375 (0.466,2.065) 1.599 0.584 0.291 (0.973,2.440) 1.468

MCP 0.652 0.891 (0.520,3.592) 3.072 0.214 0.325 (0.780,1.818) 1.038

(50, 20)

I

BSL 0.435 0.210 (0.356,1.567) 1.211 0.309 0.124 (1.137,2.612) 1.476

BSP 0.094 0.054 (0.679,2.355) 1.676 0.031 0.024 (0.951,2.091) 1.140

MCL 0.399 0.439 (0.336,1.462) 1.126 0.276 0.122 (1.110,2.479) 1.368

MCP 0.374 0.642 (0.628,2.122) 1.494 0.023 0.119 (0.957,2.020) 1.064

II

BSL 0.136 0.052 (0.551,1.967) 1.416 0.141 0.041 (1.075,2.317) 1.242

BSP 0.069 0.040 (0.678,2.264) 1.586 0.029 0.020 (0.977,2.064) 1.087

MCL 0.234 0.351 (0.400,1.754) 1.354 0.221 0.197 (1.056,2.425) 1.369

MCP 0.561 0.606 (0.692,3.059) 2.367 0.099 0.118 (0.869,1.841) 1.028

(100, 30)

I

BSL 0.253 0.084 (0.227,1.041) 0.814 0.122 0.058 (1.386,2.687) 1.301

BSP 0.053 0.034 (0.720,2.303) 1.583 0.006 0.017 (0.994,2.071) 1.076

MCL 0.183 0.375 (0.274,1.154) 0.880 0.128 0.090 (1.291,2.602) 1.311

MCP 0.124 0.571 (0.691,2.176) 1.486 0.007 0.036 (0.994,2.012) 1.018

II

BSL 0.129 0.020 (0.394,1.535) 1.141 0.490 0.020 (1.207,2.399) 1.192

BSP 0.027 0.018 (0.714,2.312) 1.598 0.010 0.017 (0.994,2.067) 1.072

MCL 0.177 0.284 (0.274,1.154) 0.880 0.284 0.090 (1.291,2.502) 1.211

MCP 0.124 0.571 (0.690,2.175) 1.485 0.007 0.036 (0.994,2.012) 1.018

Table 4: Simulation results of Bayesian methods for α = 1.25 and β = 1.5. BSL: Bayes estimate by numerically

solving (38); BSP: Bayes estimate by numerically solving (39); MCL: Bayes estimate using MCMC based on LK

function; MCP: Bayes estimate using MCMC based on PS function; Bias: absolute average bias; MSE: mean square

error; CI: 95% credible interval by numerically solving by solving (40) and (41); HPD: highest posterior density using

MCMC samples based on LK (or PS) function; IL: interval length.
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α β

(n,m) Bias MSE CI/HPD IL Bias MSE CI/HPD IL

(25, 10)

I

BSL 0.177 0.031 (0.219,0.686) 0.467 0.085 0.009 (0.561,0.989) 0.427

BSP 0.018 0.004 (0.287,0.814) 0.527 0.012 0.002 (0.560,0.937) 0.377

MCL 0.235 0.056 (0.186,0.649) 0.462 0.136 0.032 (0.588,1.026) 0.438

MCP 0.022 0.027 (0.261,0.261) 0.553 0.006 0.010 (0.547,0.947) 0.399

II

BSL 0.128 0.018 (0.256,0.768) 0.512 0.076 0.008 (0.563,0.986) 0.423

BSP 0.019 0.004 (0.281,0.817) 0.536 0.012 0.002 (0.559,0.938) 0.379

MCL 0.143 0.010 (0.218,0.731) 0.513 0.094 0.009 (0.585,1.022) 0.437

MCP 0.026 0.033 (0.253,0.253) 0.573 0.011 0.012 (0.541,0.942) 0.401

(50, 20)

I

BSL 0.120 0.016 (0.201,0.601) 0.400 0.065 0.006 (0.620,1.019) 0.399

BSP 0.017 0.004 (0.299,0.803) 0.504 0.009 0.002 (0.571,0.928) 0.357

MCL 0.135 0.021 (0.181,0.569) 0.388 0.078 0.029 (0.627,1.038) 0.411

MCP 0.014 0.005 (0.284,0.284) 0.483 0.005 0.002 (0.579,0.937) 0.358

II

BSL 0.050 0.006 (0.249,0.726) 0.477 0.045 0.004 (0.608,1.022) 0.414

BSP 0.018 0.004 (0.296,0.817) 0.521 0.011 0.002 (0.569,0.931) 0.362

MCL 0.057 0.007 (0.232,0.676) 0.445 0.057 0.005 (0.614,1.007) 0.392

MCP 0.012 0.008 (0.277,0.277) 0.496 0.001 0.002 (0.574,0.933) 0.359

(100, 30)

I

BSL 0.088 0.009 (0.163,0.527) 0.363 0.025 0.008 (0.752,1.079) 0.327

BSP 0.013 0.004 (0.311,0.799) 0.488 0.004 0.002 (0.586,0.928) 0.342

MCL 0.094 0.016 (0.122,0.427) 0.305 0.051 0.020 (0.702,1.107) 0.405

MCP 0.010 0.005 (0.296,0.296) 0.476 0.003 0.002 (0.581,0.919) 0.338

II

BSL 0.026 0.004 (0.199,0.598) 0.399 0.024 0.002 (0.664,1.068) 0.404

BSP 0.010 0.004 (0.310,0.800) 0.490 0.003 0.002 (0.586,0.926) 0.340

MCL 0.037 0.003 (0.180,0.555) 0.375 0.048 0.001 (0.750,1.059) 0.309

MCP 0.010 0.004 (0.292,0.292) 0.478 0.001 0.002 (0.582,0.921) 0.338

Table 5: Simulation results of Bayesian methods for α = 0.50 and β = 0.75. BSL: Bayes estimate by numerically

solving (38); BSP: Bayes estimate by numerically solving (39); MCL: Bayes estimate using MCMC based on LK

function; MCP: Bayes estimate using MCMC based on PS function; Bias: absolute average bias; MSE: mean square

error; CI: 95% credible interval by numerically solving by solving (40) and (41); HPD: highest posterior density using

MCMC samples based on LK (or PS) function;IL: interval length.
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distribution. For the UG distribution, the logarithm for p-th quantile is given by

log(Tp) = (−1/β) log(1− log(p)/α), 0 < p < 1.

Then the asymptotic variance of log(T̂p), the MLE of log(Tp) based on the censoring scheme

(R1, · · · , Rm), can be computed by using delta method as

V ar(log(T̂p)) = GT (α̂, β̂)VarCov(α̂, β̂)G(α̂, β̂),

where

GT (α̂, β̂) =

(
∂ log(Tp)

∂α
,
∂ log(Tp)

∂β

) ∣∣∣
α=α̂,β=β̂

=

(
−

log(p)

α̂2β̂(1− log(p)/α̂)
,
log(1− log(p)/α̂)

β̂2

)

and

VarCov(α̂, β̂) =

(
Var(α̂) Cov(α̂, β̂)

Cov(β̂, α̂) Var(β̂)

)
.

Following Gupta and Kundu (2006), for a given censoring scheme (R1, · · · , Rm), we define the

following information measure

IS(R1, · · · , Rm) =

∫ 1

0

Var(log(T̂p))W (p)dp,

where W (p) ≥ 0 is a non-negative weight function such that
∫ 1

0
W (p)dp = 1. Hence, we propose

the following criteria

Criterion(III): Minimizing the variance of the p-th quantile estimator, Tp for p = 0.5

Criterion(IV): Minimizing the variance of the p-th quantile estimator, Tp for p = 0.9

Criterion(V): Minimizing the information measure IS(R1, · · · , Rm) for w(p) = 1

Criterion(VI): Minimizing the information measure IS(R1, · · · , Rm) for w(p) = 2p.

Table 6 presents the results of optimal censoring based on MLEs and MPSs with respect to

Criteria I-VI for (α, β) = (1.25, 1.5), (0.5, 0.75),m = 5 and n = 10, 15, 20. From Table 6, we

observed that the censoring scheme (0 ∗ m,n − m) is the most preferred one among the other

schemes based on all criteria. Moreover, the reported censoring schemes are almost the same

under the criteria V and VI for the MLE with n = 10, 15 and for the MPS with n = 10, 20.

9. Bayesian Prediction

The prediction of the censored or future observation(s) based on current sample (also known

as informative sample) is important practical problem in applied statistics. For more informa-

tion and recent references about this problem, see the articles Al-Hussaini (1999), Mousa and

Jaheen (2002), Balakrishnan et al. (2010), Dey and Dey (2014), AL-Hussaini et al. (2015), Dey
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(α, β) = (1.25, 1.5) (α, β) = (0.50, 0.75)

MLE MPS MLE MPS

n Crit Optimum Value Optimum Value Optimum Value Optimum Value

10

I (0*2,3,2,0) 0.0226 (0,1,0*2,4) 0.2361 (0*2,1,4,0) 0.0005 (0*4,5) 0.0042

II (2,0*3,3) 5.2522 (1,0*3,4) 7.2320 (1,0*3,4) 0.4981 (0*4,5) 0.7586

III (0*4,5) 0.0068 (0*4,5) 0.0101 (0*4,5) 0.0612 (0*4,5) 0.0972

IV (0*4,5) 0.0048 (0*4,5) 0.0035 (1,0*3,4) 0.0774 (0*4,5) 0.0662

V (0*4,5) 0.0062 (0*4,5) 0.0833 (0*2,1,0,4) 0.0617 (2,0*3,3) 0.4540

VI (0*4,5) 0.0058 (0*4,5) 0.0311 (0*2,1,0,4) 0.0666 (2,0*3,3) 0.1913

15

I (0*2,10,0*2) 0.0158 (0,2*2,1,5) 0.1516 (0,1,0,9,0) 0.0003 (0*4,10) 0.0027

II (5,0*3,5) 3.5804 (0,2*2,1,5) 6.1574 (6,0*3,4) 0.3915 (4,0*3,6) 0.6698

III (0*4,10) 0.0068 (0*4,10) 0.0098 (0*4,10) 0.0583 (0*4,10) 0.0972

IV (3,0*3,7) 0.0042 (6,0*3,4) 0.0028 (4,0*3,6) 0.0726 (5,0*3,5) 0.0591

V (0*4,10) 0.0058 (2,0*3,8) 0.0738 (0*4,10) 0.0563 (4,0*3,6) 0.3566

VI (0*4,10) 0.0056 (5,0*3,5) 0.0262 (0*4,10) 0.0636 (7,0*3,3) 0.1430

20

I (0*4,15) 0.0120 (1,3,1,2,8) 0.0964 (0*3,15,0) 0.0003 (1,2,0,1,11) 0.0020

II (10,0*3,5) 2.8574 (5,3,0,2,5) 4.8190 (10,0*3,5) 0.3332 (1,2,0,1,11) 0.6054

III (0*4,15) 0.0070 (2,0*3,13) 0.0100 (0*4,15) 0.0607 (1,2,0,1,11) 0.0976

IV (8,0*3,7) 0.0041 (3,0,2,1,9) 0.0029 (9,0*3,6) 0.0659 (3,2,7,1,2) 0.0482

V (0*4,15) 0.0058 (8,0*3,7) 0.0528 (1,0*3,14) 0.0559 (10,0*3,5) 0.2922

VI (4,0*2,1,10) 0.0057 (8,0*3,7) 0.0184 (2,1,0*2,12)0.0639 (10,0*3,5) 0.1114

Table 6: The optimal censoring scheme (Optimum) with its value (Value) based on MLEs and MPSs for the criteria

I-VI when m = 5 and n = 10, 15, 20.
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et al. (2016b) and Kotb and Raqab (2019). Our main objective in this section is to investi-

gate the predictive estimate and the predicative interval of the j-th order statistic T = Xj:Rk
,

j = 1, 2, · · · , Rk; k = 1, 2, · · · ,m, based on progressively type II censored sample with respect

one-sample and two-sample prediction problems.

9.1. One-sample prediction problem

Let X = (X1:m:n, X2:m:n, · · · , Xm:m:n) be a progressively type II censored sample with pro-

gressive censoring scheme R = (R1, · · · , Rm). To simplified our notation, let Xk:m:n = Xk and

xk:m:n = xk. Let T = Xj:Rk
denote the j-the order statistic out of Rk removed unites at stage k, for

j = 1, · · · , Rk and k = 1, 2 · · · ,m. We assume that the predicted value of the j-th order statistic,

Xj:Rk
, should be take a value in the range [xk, xk+1]. Then the conditional distribution of T given

X = x is given by

fT |X(t|x) =fT |Xk
(t|xk < t < xk+1)

=j

(
Rk

j

)
(F (t)− F (xk))

j−1(F (xk+1)− F (t))Rk−jf(t)

(F (xk+1)− F (xk))Rk
, xk < t < xk+1,

where j = 1, 2, · · · , Rk and k = 1, 2, · · · ,m. Here, the p.d.f. f and the c.d.f. F are given in

(1) and (2), respectively. Upon substituting (1) and (2) and using binomial and negative binomial

expansions in the above expression, we get, for 0 < xk < t < xk+1 < 1,

fT |X(t|x) =αβj

(
Rk

j

)
(e−α(t−β−1) − e−α(x−β

k
−1))j−1

(e−α(x−β
k+1

−1) − e−α(x−β
k

−1))Rk

× (e−α(x−β
k+1

−1) − e−α(t−β−1))Rk−jt−(β+1)e−α(t−β−1)

=αβj

(
Rk

j

) Rk−j∑

i=0

j+i−1∑

r=0

∞∑

u=0

(
Rk − j

i

)(
j + i− 1

r

)(
i+ j + u− 1

u

)

× (−1)i−r−1t−(β+1)e−α((r+1)t−β−(u+r−1)x−β
k

+ux−β
k+1

−2).

Let π(α, β|X) be the joint posterior density Ω(α, β|X) given in (31) or the joint posterior density

Ψ(α, β|X) given in (34). Then the Bayes prediction density function of T given X = x, can be

computed by taking the expectation of the conditional distribution of T given X = x, fT |X, with

respect to the joint posterior density, π(α, β|X), as follows.

f ∗
T |X(t|x) =EPosterior(fT |X(t|x))

=

∫ ∞

0

∫ ∞

0

fT |X(t|x)π(α, β|x)dαdβ

=j

(
Rk

j

) Rk−j∑

i=0

j+i−1∑

r=0

∞∑

u=0

(
Rk − j

i

)(
j + i− 1

r

)(
i+ j + u− 1

u

)
(−1)i−r−1

×

∫ ∞

0

∫ ∞

0

αβt−(β+1)e−α((r+1)t−β−(u+r−1)x−β
k

+ux−β
k+1

−2)π(α, β|x)dαdβ. (42)
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From (42), the Bayes predication of T = Xj:Rk
, j = 1, 2, · · · , Rk, given X = x, can be obtained

by

E(T |X = x) =

∫ xk+1

xk

tf ∗
T |X(t|x)dt. (43)

Consequently, the predictive survival function of T = Xj:Rk
given X = x is obtained as

S∗
T |X=x(t|x) =Pr(T > t|x)

=

∫ xk+1

t

f ∗
T |X(w|x)dw

=j

(
Rk

j

) Rk−j∑

i=0

j+i−1∑

r=0

∞∑

u=0

(
Rk − j

i

)(
j + i− 1

r

)(
i+ j + u− 1

u

)
(−1)i−r−1

×

∫ ∞

0

∫ ∞

0

∫ xk+1

t

αβw−(β+1)e−α(r+1)w−β

dwe−α((u+r−1)x−β
k

+ux−β
k+1

−2)π(α, β|x)dαdβ

=j

(
Rk

j

) Rk−j∑

i=0

j+i−1∑

r=0

∞∑

u=0

(
Rk − j

i

)(
j + i− 1

r

)(
i+ j + u− 1

u

)
(−1)i−r−1

r + 1

×

∫ ∞

0

∫ ∞

0

(
e−α(r+1)x−β

k+1 − e−α(r+1)t−β
)
e−α((u+r−1)x−β

k
+ux−β

k+1
−2)π(α, β|x)dαdβ.

Therefore the 100(1 − γ)% Bayes predictive interval of T = Xj:Rk
can be computed by solving

the following equations for the lower bound, L, and upper bound , U, as

S∗
T |X(L|x) =

1 + γ

2
and S∗

T |X(U |x) =
1− γ

2
.

9.2. Two-sample Bayesian predication

Let Y = (Y1, Y2, · · · , YN) be an unobserved independent ordered sample of size N from the

same population of the informative sample. This sample will be referred to as the future sam-

ple. Our aim here is to predict the j-th ordered statistic in the future sample, Yj, based on the

progressively type II censored informative sample. The density function, Yj, is given by

fYj |X(y|x, α, β) = fYj
(y|α, β) = j

(
N

j

)
(F (y|α, β))j−1(1− F (y|α, β))N−jf(y|α, β). (44)

Upon substituting (1) and (2) and using binomial expansion in the above expression, we get

fYj |X(y|x, α, β) =αβj

(
N

j

)
e−α(j−1)(y−β−1)(1− e−α(y−β−1))N−jy−(β+1)e−α(y−β−1)

=αβj

N−j∑

u=0

(
N

j

)(
N − j

u

)
(−1)N−j−uy−(β+1)e−α(N−u)(y−β−1). (45)
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Then the Bayes predictive density function of Yj given x is given by

f ∗
Yj |X

(y|x) =EPosterior(fYj |X(y|x))

=j

N−j∑

u=0

(
N

j

)(
N − j

u

)
(−1)N−j−u

∫ ∞

0

∫ ∞

0

αβy−(β+1)e−α(N−u)(y−β−1)π(α, β|X)dαdβ.

(46)

Consequently, the predictive survival function of Yj given x, S∗
Yj |X

, is obtained as

S∗
Yj |X

(t|x) =Pr(Yj > t|x)

=

∫ ∞

t

f ∗
Yj |X

(y|x)dy

=j

N−j∑

u=0

(
N

j

)(
N − j

u

)
(−1)N−j−u

×

∫ ∞

0

∫ ∞

0

αβ

∫ 1

t

y−(β+1)e−α(N−u)(y−β−1)dyπ(α, β|X)dαdβ,

=j

N−j∑

u=0

(
N

j

)(
N − j

u

)
(−1)N−j−u

N − u

∫ ∞

0

∫ ∞

0

[
1− e−α(N−u)(t−β−1)

]
π(α, β|X)dαdβ.

Similarly, the 100(1− γ)% Bayes predictive interval of Yj given x can be computed by solving the

following equations for the lower bound, L and upper bound U

S∗
Yj |X

(L|x) =
1 + γ

2
and S∗

Yj |X
(U |x) =

1− γ

2
.

The solutions of the above equations can not be obtained analytically so we apply a numerical

technique for solving them simultaneously.

10. Real data analysis

In this section, we analyze a data set as a real life application of the UG distribution. The data

set represents 20 observations of the maximum flood level (in millions of cubic feet per second) for

Susquehanna River at Harrisburg, Pennsylvania and is reported in Dumonceaux and Antle (1973).

Data Set:

0.26, 0.27, 0.30, 0.32, 0.32, 0.34, 0.38, 0.38, 0.39, 0.40,

0.41, 0.42, 0.42, 0.42, 0.45, 0.48, 0.49, 0.61, 0.65, 0.74.

By Mazucheli and Dey (2019), the GU distribution fits the real data set in comparison to the beta,

Kumaraswamy and McDonal distributions. The MLEs (standard errors) of the completed data set

of α and β are 0.02(0.02) and 4.14(0.74), respectively. For estimating the unknown parameters,
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Method Scheme R Generated sample

LK

I (0*3,1*2,0,1,0,2,5) 0.26,0.27,0.30,0.32,0.34,0.38,0.39,0.41,0.42,0.45

II (5,0,2,0,2,0*4,1) 0.26,0.38,0.38,0.41,0.42,0.45,0.48,0.49,0.61,0.65

II (1,0*5,1*2,2,5) 0.26,0.30,0.32,0.32,0.34,0.38,0.38,0.40,0.42,0.45

IV (0,1,2,4,2,0,1,0*3) 0.26,0.27,0.32,0.38,0.42,0.45,0.48,0.61,0.65,0.74

V (0*3,1*2,0,1,0,2,5) 0.26,0.27,0.30,0.32,0.34,0.38,0.39,0.41,0.42,0.45

VI (0*3,1*2,0,1,0,2,5) 0.26,0.27,0.30,0.32,0.34,0.38,0.39,0.41,0.42,0.45

PS

I (1*2,0*3,1,0*2,1,6) 0.26,0.30,0.32,0.34,0.38,0.38,0.40,0.41,0.42,0.42

II (0,3,0*2,2,0,2,0,1,2) 0.26,0.27,0.34,0.38,0.38,0.41,0.42,0.45,0.48,0.61

II (0*5,4,0,1,0,5) 0.26,0.27,0.30,0.32,0.32,0.34,0.41,0.42,0.42,0.45

IV (3,0*2,1,2,0*2,3,1,0) 0.26,0.32,0.34,0.38,0.39,0.42,0.42,0.42,0.61,0.74

V (3,0*2,2,1*2,0*3,3) 0.26,0.32,0.34,0.38,0.40,0.42,0.42,0.45,0.48,0.49

VI (3,0*2,2,1*2,0*3,3) 0.26,0.32,0.34,0.38,0.40,0.42,0.42,0.45,0.48,0.49

Table 7: The generated progressively type II censored sample from the real data set based on schemes I-VI using the

likelihood (LK) and product of spacing (PS) functions.

we have considered 6 different censoring schemes corresponding to the six optimal criteria pre-

sented in Section 8. The progressively censored samples are generated from the completed set by

considering m = 10 and using all 6 censoring schemes and the generated samples are reported in

Table 7. The results of classical and Bayesian estimations are presented in Table 8 and 9. In Table

8 we report the estimates (Est.), estimated standard error (ESE), 95% confidence interval (CI) and

the length of these intervals (IL) of the parameters α and β using MLE, MPS and SEM methods.

Moreover, 95% percentile bootstrap confidence interval (CIB) and their lengths (ILB) for the two

parameters using MLE and MPS methods are also included. In Table 9, we report Bayes estimates

(Est.), 95% credible/HPD intervals (CI/HPD) and their lengths (IL) of the two parameters using

numerical calculations (DIR) and MCMC methods based on the likelihood (LK) and product of

spacing (PS) methods. From the reported values in Tables 8 and 9, it can seen that, in terms of

confidence/ceridable intervals, the censoring scheme III has lower interval lengths for the classical

estimation while the censoring scheme II has the lower interval lengths for Bayesian estimation.

With respect to the prediction problem, the predictive values, x̃j:Rk
or Yj, and the 95% predic-

tion intervals, (L,U), and their lengths (IL) using one-sample and two-sample techniques for the

first three optimal censoring schemes, I, II and III, with N = 20 and m = 10 are reported in Table

10 and Table 11. From Table 11, it can be seen that, for a future sample of size 10, the length of

the predication intervals become wider with the increase in j for j < 10 and for all the censoring

schemes.

11. Concluding remarks

In this article, statistical inference of the unknown parameters of UG distribution based on pro-

gressively type II censoring scheme is considered. The MLEs and MPSEs as well as associated
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α β
Est ESE CI IL CIB ILB Est ESE CI IL CIB ILB

MLE

I 0.05 0.01 (0,0.15) 0.15 (0,0.21) 0.21 3.19 0.75 (1.50,4.88) 3.39 (2.00,6.72) 4.72

II 0.09 0.01 (0,0.25) 0.25 (0,0.44) 0.43 3 0.69 (1.35,4.62) 3.27 (1.71,6.19) 4.48

III 0.04 0.01 (0,0.12) 0.12 (0,0.16) 0.16 3.48 0.82 (2,5.06) 3.06 (2.27,6.17) 3.90

IV 0.17 0.03 (0,0.51) 0.51 (0,0.80) 0.79 2.29 0.63 (0.74,3.84) 3.10 (1.21,5.20) 3.99

V 0.05 0.01 (0,0.15) 0.15 (0,0.21) 0.21 3.19 0.75 (1.50,4.88) 3.39 (2.03,6.72) 4.69

VI 0.05 0.01 (0,0.15) 0.15 (0,0.21) 0.21 3.19 0.75 (1.50,4.88) 3.39 (2.03,6.67) 4.64

MPS

I 0.08 0.01 (0,0.28) 0.28 (0,0.93) 0.93 2.71 0.95 (0.80,4.62) 3.82 (1.19,4.83) 3.64

II 0.25 0.07 (0,0.76) 0.76 (0.04,2.68) 2.64 1.88 0.65 (0.30,3.46) 3.16 (0.48,3.57) 3.08

III 0.14 0.02 (0,0.24) 0.24 (0.01,0.82) 0.81 2.25 0.81 (0.89,4.02) 3.13 (1,4.07) 3.07

IV 0.31 0.13 (0,1.02) 1.02 (0.04,4.11) 4.07 1.74 0.79 (0,3.49) 3.49 (0.34,3.41) 3.07

V 0.11 0.01 (0,0.35) 0.35 (0.01,0.93) 0.91 2.56 0.79 (0.82,4.30) 3.48 (1,4.51) 3.51

VI 0.11 0.01 (0,0.35) 0.35 (0.01,0.94) 0.93 2.56 0.79 (0.82,4.30) 3.48 (0.98,4.47) 3.49

SEM

I 0.05 0.05 (0,0.15) 0.15 - - 3.20 0.85 (1.52,4.87) 3.35 - -

II 0.09 0.09 (0,0.27) 0.27 - - 2.97 0.86 (1.28,4.66) 3.38 - -

III 0.04 0.04 (0,0.11) 0.11 - - 3.47 0.84 (1.82,5.11) 3.30 - -

IV 0.17 0.15 (0,0.47) 0.47 - - 2.31 0.74 (0.87,3.75) 2.88 - -

V 0.05 0.05 (0,0.14) 0.14 - - 3.22 0.80 (1.65,4.79) 3.14 - -

VI 0.05 0.05 (0,0.16) 0.16 - - 3.18 0.92 (1.37,4.99) 3.62 - -

Table 8: Classical estimation of the real data set based on censoring schemes I-VI using the likelihood (LK) and the

product of spacing (PS) functions

LK PS

α β α β
Est CI/HPD IL Est CI/HPD IL Est CI/HPD IL Est CI/HPD IL

DIR

I 0.02 (0,0.05) 0.05 3.94 (3.14,4.83) 1.69 0.02 (0,0.05) 0.05 4.34 (3.33,5.28) 1.95

II 0.03 (0,0.06) 0.06 4.01 (3.23,4.86) 1.63 0.03 (0,0.06) 0.06 3.96 (3.17,4.85) 1.68

III 0.02 (0,0.05) 0.05 4.04 (3.22,4.97) 1.75 0.02 (0,0.05) 0.05 3.95 (3.15,4.91) 1.76

IV 0.03 (0,0.06) 0.06 3.77 (3.04,4.58) 1.54 0.03 (0,0.06) 0.06 4.22 (3.33,5.25) 1.93

V 0.02 (0,0.05) 0.05 3.94 (3.14,4.83) 1.69 0.02 (0,0.05) 0.05 4.36 (3.43,5.43) 1.99

VI 0.02 (0,0.05) 0.05 3.94 (3.14,4.83) 1.69 0.02 (0,0.05) 0.05 4.36 (3.43,5.43) 1.99

MCMC

I 0.03 (0.02,0.04) 0.02 3.51 (3.09,3.89) 0.80 0.05 (0.03,0.08) 0.05 4.21 (3.26,5.76) 2.50

II 0.05 (0.03,0.06) 0.03 3.54 (3.01,3.81) 0.80 0.03 (0.01,0.04) 0.03 3.96 (3.32,4.66) 1.34

III 0.05 (0.04,0.06) 0.02 3.29 (2.88,3.67) 0.79 0.04 (0.02,0.07) 0.05 4.29 (2.73,5.81) 3.08

IV 0.03 (0.01,0.05) 0.04 3.86 (3.18,4.59) 1.41 0.03 (0.01,0.05) 0.04 4.09 (3.27,4.85) 1.58

V 0.03 (0.02,0.05) 0.03 3.61 (3.09,4.10) 1.02 0.04 (0.02,0.08) 0.06 3.86 (3.13,4.59) 1.46

VI 0.03 (0.03,0.04) 0.01 3.50 (3.11,3.91) 0.80 0.04 (0.02,0.06) 0.04 3.79 (3.15,4.42) 1.27

Table 9: Bayesian estimation of the real data set based on censoring schemes I-VI using the likelihood (LK) and the

product of spacing (PS) functions
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LK PS

k Rk j x̃j:Rk
(L,U) IL k Rk j x̃j:Rk

(L,U) IL

I

4 1 1 0.330 (0.320,0.340) 0.020 1 1 1 0.281 (0.263,0.300) 0.037

5 1 1 0.360 (0.339,0.380) 0.041 2 1 1 0.310 (0.300,0.320) 0.012

7 1 1 0.400 (0.390,0.410) 0.020 6 1 1 0.390 (0.380,0.400) 0.012

9 2 1 0.430 (0.419,0.445) 0.026 9 1 1 0.415 (0.408,0.420) 0.012

9 2 2 0.440 (0.425,0.450) 0.025 10 6 1 0.477 (0.420,0.617) 0.197

10 5 1 0.510 (0.454,0.660) 0.206 10 6 2 0.537 (0.434,0.719) 0.285

10 5 2 0.577 (0.464,0.769) 0.305 10 6 3 0.604 (0.461,0.810) 0.349

10 5 3 0.654 (0.498,0.866) 0.368 10 6 4 0.680 (0.499,0.890) 0.391

10 5 4 0.745 (0.546,0.948) 0.402 10 6 5 0.768 (0.555,0.958) 0.403

10 5 5 0.857 (0.626,0.994) 0.368 10 6 6 0.872 (0.643,0.995) 0.352

II

1 5 1 0.289 (0.263,0.339) 0.076 2 3 1 0.290 (0.271,0.320) 0.049

1 5 2 0.312 (0.270,0.355) 0.085 2 3 2 0.307 (0.275,0.335) 0.060

1 5 3 0.331 (0.285,0.370) 0.085 2 3 3 0.324 (0.292,0.340) 0.048

1 5 4 0.348 (0.303,0.375) 0.072 5 2 1 0.390 (0.381,0.405) 0.024

1 5 5 0.365 (0.330,0.380) 0.050 5 2 2 0.400 (0.385,0.410) 0.025

3 2 1 0.390 (0.379,0.405) 0.026 7 2 1 0.430 (0.422,0.445) 0.023

3 2 2 0.400 (0.385,0.410) 0.025 7 2 2 0.440 (0.425,0.450) 0.025

5 2 1 0.430 (0.422,0.445) 0.023 9 1 1 0.543 (0.484,0.605) 0.121

5 2 2 0.440 (0.425,0.450) 0.025 10 2 1 0.718 (0.613,0.919) 0.306

10 1 1 0.804 (0.658,0.988) 0.330 10 2 2 0.846 (0.655,0.993) 0.338

III

1 1 1 0.281 (0.260,0.300) 0.040 6 4 1 0.354 (0.344,0.381) 0.037

7 1 1 0.390 (0.380,0.400) 0.020 6 4 2 0.368 (0.345,0.399) 0.054

8 1 1 0.410 (0.401,0.420) 0.019 6 4 3 0.382 (0.354,0.405) 0.051

9 2 1 0.430 (0.423,0.445) 0.022 6 4 4 0.396 (0.368,0.410) 0.042

9 2 2 0.440 (0.425,0.450) 0.025 8 1 1 0.415 (0.409,0.420) 0.011

10 5 1 0.510 (0.453,0.659) 0.206 10 5 1 0.512 (0.454,0.664) 0.210

10 5 2 0.576 (0.465,0.771) 0.306 10 5 2 0.581 (0.466,0.774) 0.308

10 5 3 0.653 (0.495,0.869) 0.374 10 5 3 0.659 (0.501,0.873) 0.372

10 5 4 0.744 (0.548,0.949) 0.401 10 5 4 0.751 (0.549,0.951) 0.402

10 5 5 0.856 (0.624,0.994) 0.370 10 5 5 0.862 (0.630,0.995) 0.365

Table 10: One-sample predictive estimates of the real data set , x̃j:Rk
, 95% prediction intervals, (L,U) and their lengths,

IL, using likelihood (LK) and product of spacing (PS) functions for the first three optimal censoring schemes, I, II and

III.
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LK PS

j Yj (L,U) IL j Yj (L,U) IL

I

1 0.271 (0.151,0.414) 0.263 1 0.264 (0.141,0.421) 0.281

2 0.330 (0.205,0.490) 0.285 2 0.327 (0.191,0.501) 0.310

3 0.380 (0.243,0.554) 0.311 3 0.380 (0.234,0.571) 0.337

4 0.428 (0.279,0.624) 0.344 4 0.431 (0.270,0.638) 0.367

5 0.479 (0.315,0.690) 0.375 5 0.484 (0.307,0.701) 0.394

6 0.534 (0.351,0.754) 0.403 6 0.542 (0.346,0.770) 0.424

7 0.595 (0.395,0.823) 0.429 7 0.605 (0.393,0.840) 0.447

8 0.666 (0.444,0.896) 0.452 8 0.678 (0.446,0.905) 0.459

9 0.752 (0.504,0.955) 0.451 9 0.763 (0.511,0.962) 0.451

10 0.859 (0.598,0.995) 0.397 10 0.867 (0.609,0.995) 0.386

II

1 0.310 (0.177,0.468) 0.291 1 0.273 (0.141,0.441) 0.300

2 0.375 (0.237,0.546) 0.309 2 0.341 (0.198,0.523) 0.325

3 0.429 (0.279,0.613) 0.334 3 0.397 (0.239,0.595) 0.355

4 0.480 (0.317,0.677) 0.360 4 0.451 (0.283,0.659) 0.377

5 0.532 (0.355,0.741) 0.385 5 0.506 (0.321,0.728) 0.407

6 0.586 (0.398,0.802) 0.404 6 0.565 (0.364,0.792) 0.428

7 0.646 (0.443,0.860) 0.417 7 0.629 (0.414,0.859) 0.445

8 0.714 (0.492,0.914) 0.422 8 0.701 (0.467,0.917) 0.450

9 0.792 (0.561,0.968) 0.407 9 0.784 (0.538,0.963) 0.425

10 0.884 (0.657,0.995) 0.338 10 0.881 (0.642,0.995) 0.353

III

1 0.276 (0.156,0.418) 0.262 1 0.257 (0.133,0.412) 0.279

2 0.335 (0.208,0.494) 0.287 2 0.304 (0.186,0.497) 0.311

3 0.384 (0.248,0.557) 0.309 3 0.374 (0.227,0.568) 0.341

4 0.432 (0.287,0.625) 0.338 4 0.426 (0.266,0.636) 0.370

5 0.482 (0.322,0.691) 0.369 5 0.481 (0.304,0.700) 0.396

6 0.537 (0.356,0.760) 0.404 6 0.539 (0.343,0.769) 0.426

7 0.597 (0.399,0.824) 0.425 7 0.603 (0.388,0.840) 0.452

8 0.668 (0.449,0.896) 0.447 8 0.677 (0.442,0.905) 0.464

9 0.753 (0.507,0.955) 0.448 9 0.763 (0.508,0.962) 0.454

10 0.859 (0.601,0.995) 0.394 10 0.868 (0.608,0.995) 0.387

Table 11: Two-sample predictive estimates for the future sample of the real data set, Yj , 95% prediction intervals,

(L,U) and their lengths (IL) using likelihood (LK) and product of spacing (PS) functions for the first three optimal

censoring schemes, I, II and III.
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ACIs are obtained. MLEs are obtained by using both Newton-Raphson and stochastic expectation

minimization (SEM) algorithms. The Bayes estimates based on likelihood and product of spacings

functions are developed using gamma informative priors relative to squared-error loss function.

Random-walk Metropolis-Hastings algorithm has been used to obtain the point Bayes estimates

and their associated HPD intervals. Simulation results showed that the MPS method performs

better than ML and SEM methods in estimating the unknown parameters in terms of bias, while

SEM algorithm performs better than MLE. With respect to 95% confidence interval, Boot-p meth-

ods based on LK function (MBT) have the smaller CI. Bayes estimates obtained by PS method

out performs LK method in terms of both bias and MSE, while the length of the HPD intervals

based on LK function are shorter than PS function. In regard to optimal censoring, the censoring

scheme (0 ∗ m,n − m) is the most preferred one among the other schemes based on all criteria.

However, the considered censoring schemes are almost the same under the criteria V and VI for

the MLE with n = 10, 15 and for the MPS with n = 10, 20. In real data analysis, we observed

that confidence/ceridable intervals based on censoring scheme III has the lower interval lengths for

the classical estimation while the censoring scheme II has the lower interval lengths for Bayesian

estimation. Finally, the Bayesian approach according to both the traditional likelihood and product

of spacing functions to estimate the parameters of the UG distribution under progressive type II

censoring is recommended. We hope that the methodologies proposed in this work will be use-

ful to applied statisticians. It will be interesting to study the methods of estimation under hybrid

censored data. The work is in progress and it will be reported later.
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