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Abstract 

 

Metastatic cancer remains almost inevitably a lethal disease. A better understanding of disease 

progression and response to therapies therefore remains of utmost importance. Here, we characterize 

the genomic differences between early-stage untreated primary tumors and late-stage treated metastatic 

tumors using a harmonized pan-cancer (re-)analysis of 7,152 whole-genome-sequenced tumors. In 

general, our analysis shows that metastatic tumors have a low intra-tumor heterogeneity, high genomic 

instability and increased frequency of structural variants with comparatively a modest increase in the 

number of small genetic variants. However, these differences are cancer type specific and are heavily 

impacted by the exposure to cancer therapies. Five cancer types, namely breast, prostate, thyroid, kidney 

clear carcinoma and pancreatic neuroendocrine, are a clear exception to the rule, displaying an extensive 

transformation of their genomic landscape in advanced stages. These changes were supported by 

increased genomic instability and involved substantial differences in tumor mutation burden, clock-based 

molecular signatures and the landscape of driver alterations as well as a pervasive increase in structural 

variant burden. The majority of cancer types had either moderate genomic differences (e.g., cervical and 

colorectal cancers) or highly consistent genomic portraits (e.g., ovarian cancer and skin melanoma) when 

comparing early- and late-stage disease. Exposure to treatment further scars the tumor genome and 

introduces an evolutionary bottleneck that selects for known therapy-resistant drivers in approximately 

half of treated patients. Our data showcases the potential of whole-genome analysis to understand tumor 

evolution and provides a valuable resource to further investigate the biological basis of cancer and 

resistance to cancer therapies. 

 

 



 

 

Introduction 

Metastatic spread involves tumor cells detachment from a primary tumor, colonization of a secondary 

tissue, and growth in a hostile environment1,2. Advanced metastatic tumors are frequently able to resist 

aggressive treatment regimes3. Despite the many efforts to understand these phenomena4–8, we still have 

limited knowledge of the contribution of genomic changes that equip tumors with these extraordinary 

capacities. Thus, it is essential to characterize genomic differences between primary and metastatic 

cancers and quantify their impact on therapy resistance to be able to understand and harness therapeutic 

interventions that establish more effective and more personalized therapies9.  

Multiple large-scale genome-sequencing efforts have been devoted to profiling the genomic landscape of 

primary tumorigenesis by relying on clinical panels10 or on whole-exome sequencing11 or whole-genome 

sequencing12,13 strategies. Similarly, recent efforts have characterized large cohorts of patients with 

metastatic tumors14,15. Several cancer type specific projects have also reported analysis of primary and 

metastatic matched biopsies in urothelial carcinomas16, breast cancer17, kidney clear cell carcinoma18 and 

prostate carcinoma19,20, among others21. However, the ethical and logistical challenges associated with 

the collection of paired biopsy data hampers the extrapolation to thousands of patients with multiple 

cancer types.  

To circumvent this issue, most large-scale comparisons between primary and metastatic tumors have 

relied on unmatched whole-exome data or have adopted more targeted approaches with a specific focus 

on driver gene landscapes22–24. These efforts have frequently involved separated processing pipelines for 

primary and metastatic cohorts, complicating the analysis of genomic features that are highly sensitive to 

the selected data-processing strategy25,26. An impressive recent study that uniformly analyzed more than 

25,000 tumors27 has provided a comprehensive overview of the genomic differences, driver alteration 

patterns and organotropism using clinical gene-panel sequencing as a base. However, this genomic 

analysis approach, which is limited to several hundreds of genes, prevented the exploration of the full 

spectrum of genomic alterations that play a role in tumorigenesis, such as structural variation and 

mutational scarring caused by intrinsic and extrinsic forces. 

Here, we present a large-scale unified analysis of more than 7,000 whole-genome sequenced (WGS) 

paired tumor-normal samples (re-)analyzed by the same data-processing pipeline. This dataset enabled 

cancer type specific comparisons of whole-genome features in 22 cancer types with high representation 

in both primary and metastatic patients. We investigated differences in tumor clonality, genomic 

instability markers, whole-genome-duplication (WGD) rates, tumor mutation and structural variant (SV) 

burden and clock-based molecular signatures and assessed the contribution of cancer treatments to the 

observed differences. We also explored disparities in the driver gene landscape and their implications for 

therapeutic actionability. Finally, we identified known and new associations between certain driver 

alterations and exposure to various treatments. The harmonized genomic dataset used in our study 

constitutes the largest repository of uniformly analyzed cancer WGS data and is publicly available to the 

scientific community to better understand the full spectrum of DNA alterations as well as to study their 

role in tumor evolution and response to therapy. 



 

 

Results 

7,152 uniformly processed whole-genome-sequenced paired tumor-normal samples 

from patients with primary and metastatic tumors 

 

To characterize the genomic differences between primary and metastatic tumors, we created a uniformly 

analyzed dataset of matched tumor and normal genomes from patients with primary and metastatic 

cancer. We first collated the Hartwig Medical Foundation (Hartwig) dataset, which includes 4,784 samples 

from 4,375 metastatic patients (from which 2,520 samples were previously described14). Then, we re-

processed 2,835 primary tumor samples from the Pan-Cancer Analysis of Whole Genomes (PCAWG) 

consortium using the open-source Hartwig analytical pipeline14,28 to harmonize somatic calling, 

standardize broad functional annotations of events and eliminate biases caused by processing pipelines 

and filter conditions (Supp. Fig. 1, Supp. Table 1). Reassuringly, per-sample comparison of the number of 

single base substitutions (SBSs), double base substitutions (DBSs), indels (IDs), and SVs revealed a strong 

agreement between our results and the consensus calls originally generated by the PCAWG consortium 

(see Supp. Note 1). Additionally, our processing pipeline strategy was minimally affected by differences in 

sequencing coverage, enabling a reasonable comparison of WGS samples from heterogeneous sources 

(decreased sensitivity at 60× and 38× coverage, typical for PCAWG samples, compared with 109× 

coverage, typical for Hartwig samples between 0% and 5% for simple mutations and between 8% and 14% 

for SVs respectively) (Supp. Note 1). A total of 7,152 tumor samples from 58 cancer types met the 

processing pipeline quality standards (see methods and Supp. Fig. 1a) and constitutes one of the largest 

publicly available datasets of WGS primary and metastatic tumors. The flexible nature of the processing 

pipeline, which does not require extensive parameter fine-tuning, enables its application to other whole-

genome-sequencing projects, thereby providing an excellent opportunity for future integrative analyses 

that incorporate this dataset.  

To explore genomic differences between primary and metastatic tumors, we focused on 22 cancer types 

from 14 tissues with sufficient sample representation (i.e., at least 15 unique patients in both the primary 

and metastatic cohorts), which totaled 5,751 tumor samples (1,916 primary and 3,835 metastatic) (Fig. 

1a, Supp Fig 1a). Within this dataset, patients with metastatic tumors were slightly older at biopsy than 

patients with primary tumors (mean of 2.09 years older across all cancer types). In particular, the mean 

age at biopsy in primary and metastatic cohorts, respectively, was 59.9 and 67.9 years in patients with 

prostate carcinoma, 52.8 and 63.6 years in patients with thyroid carcinoma, and 49.6 and 70.3 years in 

patients with diffuse B cell lymphoma. Consistent gender proportions were observed across all cancer 

types except for thyroid adenocarcinomas, which had higher male representation in the metastatic cohort 

(metastatic: 72% male, 28% female; primary: 25% male, 75% female). Treatment information was 

available for 53% metastatic patients. This information is essential to gauge the contribution of this 

evolutionary bottleneck to the genomic differences between primary and metastatic tumors (Fig. 1a). 

Finally, biopsy location was explicitly annotated in 82.4% of metastatic patients, including 12.6% biopsies 

from metastatic lesions in the primary tissue (local), 16% in lymph nodes and 53.8% in distant locations. 

Biopsy locations were highly tumor type specific and likely reflected both the dissemination patterns of 



 

 

the tumors and the challenges associated with collection of clinical samples. In summary, we generated a 

harmonized dataset of 7,152 primary and metastatic WGS tumor samples from 58 cancer types including 

22 cancer types with sufficient representation in both early and late clinical stages to allow for a systematic 

comparison (Supp. Table 1).  

 

Global genomic characteristics of primary and metastatic tumors  

 

We first explored global genomic differences between primary and metastatic tumors across the 

aforementioned 22 cancer types. Metastatic tumors showed an overall increase in clonality compared 

with their primary tumor counterparts (Fig. 1b). Particularly, 12 cancer types had a significantly higher 

metastatic average clonality ratio, ranging from 3.2% increased mean clonality in skin melanoma to 37% 

increased mean clonality in thyroid carcinoma. Interestingly, within the group of patients with metastatic 

breast cancer, distant and lymph node tumor biopsies showed significantly higher clonality ratios 

compared with local metastatic lesions (Fig. 1c). This increase in clonality was also observed in distant 

tumor biopsies of esophagus cancer and colorectal carcinomas (Fig. 1c). Nevertheless, the biopsy location 

did not influence tumor clonality in other cancer types such as non-small cell cancer and skin melanoma 

(Supp. Fig 1b), suggesting that patterns of tumor dissemination are highly tumor type specific8. Thus, our 

results thus support the notion that metastatic lesions generally have lower intra-tumor heterogeneity27, 

which may be explained by a single major subclone seeding event from the primary cancer and/or by 

severe evolutionary constraints imposed by anti-cancer therapies. 

Karyotype comparison revealed a generally conserved portrait, which was strongly shaped by the tissue 

of origin29, and where only two cancer types showed substantial karyotypic changes (kidney clear cell and 

prostate carcinomas, >10 chromosome arm gains/losses) and three additional cancer types displayed 

moderate changes (breast, uterus, and thyroid carcinomas, >5 chromosome arm gain/losses) in the 

metastatic cohort compared with the primary cohort (Fig. 1d, Supp. Table 2). The majority (63 of 84) of 

significant discrepancies were associated with an increased frequency of chromosomal arm gains in the 

metastatic dataset, while only 21 discrepancies were caused by an increased frequency of chromosome 

arm losses. Chromosome arms 7p, 12p, 5p and 17q, which are relatively enriched in oncogenes30, were 

the most recurrent chromosome arm gains. Conversely, chromosome arms 1p and 18q, highly enriched 

in tumor suppressor genes30, were the most recurrent losses in the metastatic cohort (Fig. 1d). 

We next investigated differences in four well-studied genomic instability markers: chromosomal 

aneuploidy score31, loss of heterozygosity (LOH) genome fraction in diploid tumors, WGD32, and TP53 

alterations32,33 (Fig. 1e, Supp. Table 2). Four cancer types (i.e., colorectal, kidney clear cell, prostate, and 

thyroid) showed persistent increases in the four genomic instability markers in the metastatic cohort, 

whereas four additional cancer types (i.e., breast, stomach, pancreas neuroendocrine and diffuse B cell 

lymphoma) had some form of increased genomic instability in the metastatic cohort. Our results thus 

confirmed that genomic instability is a hallmark of advanced tumors4,9,27,29,34,35 and revealed that the 

majority of cancer types have already acquired variable degrees of this genomic feature early in tumor 



 

 

evolution. However, certain cancer types, such as prostate, kidney, and thyroid, significantly increased 

the level of genomic instability in later evolutionary stages, which were, in turn, associated with 

substantial karyotypic changes. 

 

Tumor mutation burden 

 

The unified processing of both primary and metastatic tumor samples enables quantitative and qualitative 

comparison of SBSs, DBSs and ID burden, which we refer to collectively as tumor mutation burden (TMB). 

We found that the TMB in metastatic tumors was only moderately increased compared with primary 

tumors across the 22 cancer types tested (fold-change increases of 1.22 ± 0.48 for SBS, 1.52 ± 0.85 for DBS 

and 1.43 ± 0.55 for IDs; mean ± standard deviation [SD]). In fact, more than 60% of the cancer types (13 

of 22) had no significant increase in mutation burden for any mutation type. Only five cancer types (breast, 

cervical, thyroid, prostate carcinoma, and pancreas neuroendocrine) had a consistent increase for the 

three mutation types at the metastatic stage, although the mutation profiles lacked systematic differences 

between primary and metastatic tumors (Fig. 2b, Supp Fig. 2a). These results show that TMB is not 

necessarily indicative of tumor progression status and that the mutational spectra are tightly shaped by 

the mutational processes that were already active before and during primary tumor development. 

 

Mutational processes in primary and metastatic tumors 

 

To assess whether the TMB differences may be attributed to differential activity of environmental or 

endogenous mutational processes, we conducted a tissue type specific mutational signature de novo 

extraction that resulted in representative mutational signatures of 69 SBSs, 12 DBSs, and 19 IDs (Supp. 

Table 3). Most of these (50 of 69 SBSs, 8 of 12 DBSs, and 12 of 19 IDs) mapped onto the well-described 

mutational signatures in human cancer36. Moreover, we inferred the suspected etiology for two novel DBS 

mutational signatures associated with mismatch repair deficiency (MMRd) (DBS_denovo_2) and 

MMRd/POLE hypermutation (DBS_denovo_1) (Supp. Table 3).  

By comparing the activities of all mutational processes, we found that mutations caused by cytotoxic 

treatments were enriched in 11 cancer types (Fig. 2c-e). Platinum-based chemotherapies (SBS31/SBS35 

and DBS5) showed the strongest mutagenic effect with 429 ± 266 (mean ± SD) SBS mutations and 23 ± 15 

(mean ±SD) DBS mutations on average per sample. In fact, the excess in DBS mutation burden observed 

in six cancer types (stomach, esophagus, cervix, upper respiratory tract, non-small cell lung, and urothelial 

cancer) could be fully attributed to platinum treatment (Fig. 2d top bars). Likewise, the radiotherapy ID 

signature37 (ID8) was systematically enriched in multiple cancer types as a response to widespread 

exposure to radiation-based treatment, whereas the 5-fluorouracil38,39 (SBS17a/b), duocarmycin40 (SBS90) 

and polycyclic aromatic hydrocarbon (PAH) metabolites from chemotreatments41 (DBS2) occasionally led 

to a greater mutation burden in metastatic tumors in a tumor type specific manner (Fig. 2c-e).  



 

 

The systematic enrichment of SBS2/13 mutations in metastatic cancers suggests enhanced activity of 

APOBEC mutagenesis during the progression of advanced tumors. Specifically, our results revealed an 

increase in APOBEC mutation burden of 316 ± 173 (mean ± SD) mutations per sample in six metastatic 

tumors (breast, colorectal, stomach, kidney, prostate, and pancreas neuroendocrine) that reached 

statistical significance, being breast and stomach cancers the ones with the strongest increase (>500 

APOBEC mutations per sample in both cancer types). Other cancer types, such as cervical and urothelial 

cancers, also showed enhanced APOBEC activity (>1800 mutations per sample), but they did not reach 

significance owing to high intrinsic APOBEC activity in the primary tumors. The metastatic breast cancer 

samples also had a higher percentage of APOBEC hypermutation than primary tumors (14% vs 5%, Supp. 

Fig. 2c, Supp. Table 3). 

Five metastatic cancer types also displayed more mutations from the clock-like mutational processes, 

including four cancer types (breast, prostate, diffuse B-cell lymphoma and kidney clear cell carcinoma) 

that exhibited an increased SBS1 contribution and two cancer types (prostate and thyroid) that had an 

increased SBS5/SBS40 mutation burden. The increase in clock-like mutations in thyroid and prostate 

cancers, as well as diffuse B-cell lymphomas to a lesser extent, may be explained by the greater proportion 

of older patients with metastatic disease compared with primary disease. However, the SBS1 enrichment 

was also present in cancer types in the primary and metastatic cohorts with highly similar age population 

distributions (see Fig. 1a). Thus, our results revealed an increase in SBS1 mutations in advanced tumor 

stages that cannot be explained by older patients’ ages at the time of biopsy. 

Additional more-focused analyses may achieve a better understanding of the observed mutational 

signatures with differing activity in a small subset of cancer types (such as oxidative stress-induced and 

DNA repair related mutations) and those lacking mechanistic etiology warrants additional more focused 

analyses. All contributions can be found in Supp. Table 3. 

 

Differential SBS1 mutation rates in primary and metastatic cancers 

 

To investigate the apparent contradiction of increased SBS1 mutation burden in the metastatic cohort, 

despite primary and metastatic cohorts having a similar age at biopsy, we assessed their SBS1 mutation 

burden by the age of biopsy separately for both cohorts (see methods). As expected, rates of SBS1 

mutation acquisition were highly tissue specific42,43, and SBS1 mutation burden increased linearly with age 

in the majority of cancer types in both primary and metastatic cohorts (Pearson’s R > 0.1, 17 of 22 tumor 

types, Supp. Fig. 3a, Supp. Table 4). However, four cancer types (i.e., breast, prostate, kidney clear cell, 

and thyroid) showed an age-independent and significant enrichment of SBS1 mutations at the metastatic 

stage (Fig. 3a, Supp. Fig. 3a). For instance, metastatic breast cancer had a nearly uniform fold increase of 

1.46 (189 ± 17 SBS1 mutations, mean ± SD) across the ages of biopsies that was independent of tumor 

genome ploidy and HER2 status (Supp. Fig. 3b-c). Importantly, this pattern was highly cancer type specific 

and was not observed for most cancer types, including those with similar intra-tumor heterogeneity in 



 

 

the primary cohort (e.g., colorectal, ovarian cancer, pancreas, and stomach cancers) (Fig. 3b, Supp. Fig. 

3a). Moreover, other mutational processes that operate over the evolution of the somatic tissues (e.g., 

clock-like mutations attributed to SBS5/SBS40 that accumulate with age in a cell-cycle independent 

manner43,44) were not enriched (Supp. Fig. 3d).  

SBS1 mutation burden has been extensively correlated with estimated stem cell division rates45. 

Therefore, an increase in age and tumor type specific SBS1 mutation burden in treated metastatic tumors 

may indicate that these tumors have undergone a higher number of cell divisions. However, the estimated 

number of years to explain the SBS1 mutation burden shift (23 and 67 years for breast and prostate cancer 

respectively, see Supp. Table 4) shows that this cannot be the main cause. Hence, a more plausible 

explanation, which also supports previous observations46–48, is that these metastatic tumors display 

accelerated cell division rates compared with their primary tumor counterparts (Fig. 3c). Supporting this 

hypothesis, metastatic tumors also had a lower normalized fraction of clonal SBS1 mutations as well as a 

greater fraction of SBS1 clonal late mutations (Fig. 3d, Supp. Fig. 3e). Of note, this pattern was not 

observed in cancer types with consistently high SBS1 mutagenic dynamics (Fig. 3e) and was 

indistinguishable for SBS5/SBS40 mutations (Supp. Fig. 3f).  

To understand the underlying factors that lead to the increased proliferation rates in some cancer types 

and not in others, we explored the relationship between the yearly rate of SBS1 mutation accumulation 

in primary tumors (a proxy of stem cell division rates45) and the estimated fold change of the SBS1 

mutation rate in the metastatic cohort. Remarkably, we observed a strong negative association between 

these two factors (Spearman Rs= -0.64, p-value = 0.01, Fig. 3f), which was consistent when relying on 

independent measurements of primary tumor turnover rates (Supp. Fig. 3h, Supp. Table 4). This indicates 

that tumors with an intrinsically active turnover rate (e.g., colorectal and ovarian cancers) preserve their 

high proliferation rates, while others with low cell division rates (e.g., breast, prostate, kidney, and thyroid 

cancers), may acquire higher proliferation rates during the course of cancer progression and treatment 

exposure.  

 

Structural variant burden  

 

The total number of SVs per tumor revealed an extensive increase in SV burden in the metastatic tumors 

(fold change 1.9 ± 1.2, mean ± SD). In fact, 14 of 22 (64%) cancer types showed a significant median 

increase in total SV burden in the metastatic tumors (Fig. 4a, Supp. Table 5), which cannot be explained 

by differences in sequencing coverage or tumor clonality (Supp. Note 1). Importantly, these cancer types 

not only included the eight cancer types with increased genomic instability markers, but also six additional 

cancer types (i.e., esophagus, hepatocellular, pancreas carcinoma, cervix, non-small cell lung cancer, and 

urothelial cancer) (Fig. 4a).  

Breaking down the comparison into specific SV types revealed that small (<10kb) deletions, which also 

contributed most to the global SV burden, showed a strong metastatic enrichment (2.15 ± 1.3 fold change 



 

 

in 16 of 22 cancer types with significant enrichment, mean ± SD, Fig. 4a, Supp. Fig. 4a). Moreover, larger 

(≥10kb) deletions and duplications had a similar pan-cancer enrichment, although with slightly lower fold 

changes that varied from 1.5 up to 1.9. Moreover, complex SVs with ≥20 breakpoints, encompassing 

events such as chromothripsis and chromoplexy, were particularly enriched in esophagus cancer (1.5-fold) 

and prostate cancer (3-fold). Finally, a strong cancer type specific metastatic enrichment was also noted 

for the long interspersed nuclear element (LINE) insertions, with an increased fold change of 12.2 and 8.5 

in stomach and urothelial cancer, respectively. 

Compared with TMB, the SV analyses revealed a much more widespread effect, with larger increases per 

metastatic cancer type that affected almost every cancer type studied, indicating that metastatic tumors 

appear to evolve primarily by genomic changes at the structural level. 

 

Genomic and clinical features associated with structural variant burden  

 

We next sought to unravel the underlying features associated with the observed increase in SV burden in 

metastatic tumors using linear regression models (Fig. 4b-f, Supp. Fig. 4b-f, Supp. Table 5). Our approach 

confirmed previously described cancer type specific driver-induced SV phenotypes, including HRd 

(BRCA1/2)49,50, CDK1251, and MDM252, which are more frequently mutated in metastatic pancreatic, 

prostate, and breast carcinomas, respectively. Reciprocal duplications induced by CDK12 and CCNE1 

alterations53 likely explain the enrichment of complex rearrangements in prostate and esophagus cancer, 

respectively. We also found potential novel associations, such as large deletions linked to the chromatin 

regulators SETD2 and CHD1. Finally, the cell cycle checkpoint CDKN2A showed a pervasive association 

with deletions in breast and kidney clear cell carcinomas (Fig. 4b-d, Supp. Fig. 4b). However, this may not 

necessarily imply causation, because the tumor suppressor CDKN2A is frequently inactivated in tumors in 

which deletion signatures are common54. 

We also found that genomic instability features (i.e., genome ploidy and TP53 alterations) showed a strong 

pan-cancer association with deletions and, to a lesser extent, with duplications (Fig. 4b-f, Supp. Fig. 4b-f), 

supporting the established role of WGD32 and TP5331 loss in the ubiquitous generation of large genomic 

alterations. As mentioned earlier (see Fig. 1e), these features were generally more prevalent in patients 

with metastatic tumors and thus very likely contributed to the observed SV increase in metastatic tumors. 

Finally, prior exposure to radiotherapy treatment was strongly associated with small deletions in breast 

and prostate cancers (in agreement with radiotherapy-treated secondary malignancies55, gliomas37, and 

healthy tissue56). This suggests that, among common anti-cancer therapies, radiotherapy in particular 

significantly contributes to the SV landscape in treatment-surviving cancer cells. 

 

  



 

 

Cancer driver gene alterations in primary and metastatic tumors 

 

Comparison of the total number of driver gene alterations per tumor sample revealed a moderate 

increase in the metastatic cohort (a mean of 4.5 and 5.2 driver alterations per sample in primary and 

metastatic tumors, respectively), including 11 (50%) tumor types with a significant increase (Fig. 5a). 

Prostate adenocarcinoma (3.02 driver alterations per sample), pancreas neuroendocrine (2.16), thyroid 

carcinoma (1.7), and kidney clear cell carcinoma (1.63) showed the strongest increases (>1.5 driver 

alterations per patient), whereas the majority of cancer types showed a mean increase below 1.5 driver 

alterations per sample. All mutation types (amplifications, deletions, and mutations) tended to show 

consistent biases toward increases in metastatic tumors (Fig. 5a), with small variant mutations 

contributing the most (2.3 and 2.6 driver mutations per sample in primary and metastatic tumors, 

respectively). 

Comparison of gene- and cancer-type frequencies revealed that only 18 genes had a significant frequency 

bias in at least one cancer type (29 gene and cancer-type pairs in total, Fig. 5b, Supp. Fig. 5a-b, Supp. Table 

6). The majority (21 of 29, 72%) of the significant pairs had enrichment toward higher metastatic 

frequency, including four driver genes that were exclusively mutated in metastatic tumors (PTPRD in 

kidney clear cell carcinoma, CREBBP in pancreas neuroendocrine, and RET and TP53 alterations in thyroid 

carcinoma). Moreover, most metastatic-enriched cancer drivers had a cancer type specific enrichment 

that included well-established resistance gene drivers associated with anti-cancer therapies, such as AR 

and ESR1 alterations in patients with prostate and breast cancer treated with hormone deprivation 

therapies57,58, and EGFR mutations in patients with metastatic non-small cell lung cancer often treated 

with anti-EGFR inhibitors. Nevertheless, three driver genes (i.e., TP53, CDKN2A, and TERT) showed a 

metastatic enrichment across multiple cancer types (Fig. 5b), indicating that alterations of these genes 

may enhance aggressiveness by disturbing pan-cancer hallmarks of tumorigenesis. In fact, TP53 

alterations have been extensively linked to genomic instability32,33, while CDK2NA and TERT are key 

regulators of cell proliferation, two pathways that are often perturbed in metastatic tumors59 (see earlier). 

Finally, some driver genes were strongly enriched in primary tumors, such as KMT2D mutations in non-

small cell lung cancer (primary 13.7%, and metastatic 2.1%) and POLE mutations in primary colorectal 

carcinomas (primary 13%, metastatic 0.5%). Of note, the higher prevalence of POLE mutations in primary 

tumors supports the increased SBS10a/b exposure (i.e., POLE hypermutation) in primary colorectal cancer 

(see Fig. 2d). Whether these alterations are indicators of better prognosis or drivers of subclonal 

expansion warrants further investigation.  

We next investigated whether the reported driver differences may impact on potential clinical 

actionability. Cancer type specific comparison of therapeutically actionable variants revealed an overall 

greater fraction of patients with therapeutically actionable variants in the metastatic cohort, with high 

variability across cancer types (Supp. Fig. 6a, Supp. Table 7). Subsetting by A-on label variants (i.e., 

approved biomarkers in the specific cancer type) revealed a consistent pattern in which only breast cancer 

(driven by higher PIK3CA mutation frequency) and non-small cell lung cancer (EGFR and KRASG12C 

alterations) showed a significant proportional increase in the metastatic cohort (Supp. Fig. 6a-b). Evidence 



 

 

levels representing biomarkers in experimental clinical stages (A-off label, B-on label, and B-off label) 

showed a modest and tumor type dependent metastatic increase, which was mainly linked to the 

increased alteration frequency of KRASG12X, EGFR secondary mutations, and CDKN2A loss in advanced 

tumor stages (Supp. Fig. 6b).  

In conclusion, the cancer driver gene landscape is generally conserved and the observed differences are 

associated with hallmarks of tumor aggressiveness and resistance to anti-cancer therapies. Consequently, 

therapeutic options are mainly dictated by the primary tumor60, although advanced experimental drugs 

may provide relevant therapeutic opportunities for metastatic tumors in the near future.  

 

Treatment associated driver gene alterations 

 

The high prevalence of resistance driver genes in late-stage tumors prompted us to devise a test that 

aimed to identify treatment enriched drivers (TEDs) that were either significantly enriched (i.e., treatment 

enriched) or exclusively found (i.e., treatment exclusive) in a cancer type and treatment specific manner 

(Fig. 6a and methods). Our analytical framework provided 56 TEDs associated with 24 treatment groups 

from eight cancer types (Fig. 6b bottom pie chart, Fig. 6c, Supp. Table 8). Of the identified TEDs, 28 of 56 

(50%) were coding mutation drivers, 18 (30%) copy number amplifications, 8 (15%) non-coding drivers 

and 3 (5%) recurrent homozygous deletions (Fig. 6c, Supp. Fig. 7a-b). Reassuringly, the majority of the top 

hits were widely known treatment-resistance drivers, including EGFRT790M mutations (Fig. 6d) and EGFR 

copy number gains in patients with non-small cell lung cancer treated with EGFR inhibitors61,62 (Supp. Fig. 

7c), AR-activating mutations and gene amplifications in prostate cancer patients treated with androgen-

deprivation therapy58 (Supp. Fig. 7d-e), and ESR1536–538 mutations in breast cancer patients treated with 

aromatase inhibitors57 (Supp. Fig. 7f), among others. Moreover, we also found that TP53, KRAS and PIK3CA 

alterations were recurrently associated with resistance to multiple treatments, which may indicate that 

these alterations are prognostic markers for enhanced tumor aggressiveness and plasticity rather than 

being a cancer type specific mechanism of drug resistance.  

Our results also provided a long tail of candidate drivers of resistance, some of them with orthogonal 

evidence by independent reports (Fig. 6c, Supp. Fig. 7a-b). Examples of the latter group include TYMS 

amplification in breast cancer patients treated with pyrimidine antagonists63 (Fig. 6e), PRNC1 and MYC co-

amplifications in prostate cancer patients treated with androgen-deprivation64 (Supp. Fig. 7g), SMAD4 

mutations in non-small cell lung cancer treated with immunotherapy65, and FGFR2 promoter mutations 

in breast cancer patients treated with CDK4/6 inhibitors66. The full TEDs catalog is provided in Supp. Table 

8 and constitutes a valuable resource for investigating resistance mechanisms to common cancer 

therapies. 

Overall, almost 50% of patients with metastatic disease with annotated treatment information harbored 

TEDs, including 30% with annotations of known resistance drivers and an additional 20% of patients with 

candidate resistance drivers derived from our analysis (Fig. 6f). We identified 0.70 ± 0.53 (mean ± SD) TEDs 

per metastatic sample across the eight cancer types that had reported TEDs (Fig. 6g), with prostate and 



 

 

breast cancers displaying the greatest prevalence of TEDs (i.e., 1.74 and 1.12 drivers per patient with 

prostate and breast cancer, respectively). Therefore, after excluding TEDs, primary and metastatic tumors 

had an approximately 40% reduction of their original differences in number of drivers per sample (from 

5.2 to 4.9 mean drivers per sample in the metastatic cohort after excluding TEDs, compared with 4.5 mean 

drivers per sample in the primary cohort) (Fig. 6g, Supp. Table 8), indicating that an important proportion 

of the metastatic-enriched drivers are likely associated with resistance to anti-cancer therapies.  

  



 

 

Discussion 

 

In this study we describe a cohort of >7,000 uniformly (re-)processed WGS samples from patients with 

primary untreated and metastatic treated tumors. Our robust analytical pipeline enabled the processing 

of large sets of paired tumor-normal WGS samples from diverse sequencing platforms with high efficiency 

and minimal human intervention. We leveraged this dataset to perform an in-depth comparison of 

genomic features across 22 cancer types with high representation from patients with primary and 

metastatic tumors. 

Our analyses revealed that metastatic tumors share common genomic traits, such as high genomic 

instability, low intra-tumor heterogeneity, and stronger enrichment of SVs, but fewer short mutations 

than primary tumors. However, the magnitude of genomic differences between primary and metastatic 

tumors is highly cancer type specific and is strongly influenced by exposure to cancer treatments. Overall, 

five cancer types (prostate, thyroid, kidney clear cell, breast, and pancreas neuroendocrine cancers) 

showed an intense transformation of the genomic landscape in advanced tumorigenic stages. Fueled by 

increased genomic instability, these cancer types displayed substantial differences in TMB, clock-based 

molecular signatures and driver gene landscape as well as the pervasive increase in SV burden (Fig. 7a, 

labeled as Strong). Importantly, metastatic prostate and breast cancers regularly harbored metastatic-

exclusive therapy-resistant driver gene mutations, suggesting that an important proportion of the 

genomic differences in metastatic tumors compared with primary tumors may be associated with clonal 

(re-)expansion following therapy exposure (see ref21 supporting this notion). However, the genomic 

differences in kidney, thyroid, and pancreas neuroendocrine carcinomas could not be linked to genomic 

markers of therapy resistance, which may indicate alternative evolutionary dynamics independent of 

cancer treatment. Another nine cancer types (e.g., cervix and colorectal, among others) displayed 

moderate genomic differences, although the global genomic portrait was conserved. Finally, the genomic 

landscape of the eight remaining cancer types (e.g., glioblastoma, sarcoma, and ovarian cancer, among 

others) was highly consistent between primary and metastatic stages, and the minimal differences were 

mainly attributed to exposure to cancer therapies.  

This study has several limitations. First, it was performed using unpaired primary and metastatic tumor 

biopsies. Ideally, matched biopsies from the same patient, as already implemented in cancer type specific 

studies18,67,68, would be needed to more specifically address the evolutionary dynamics of treated 

metastatic tumors. Moreover, the sequencing depths and tumor purity ranges used in this study are 

suboptimal to comprehensively profile the heterogeneous landscape of subclonal alterations, which may 

lead to underestimation of the extent of late-active mutational processes (e.g., treatment-induced 

processes). Single cell-based sequencing approaches will be instrumental to further dissect mutational 

landscapes independent of their clonality. In addition, the sequencing depth of the primary tumor cohort 

was lower and more variable than that of the metastatic tumor cohort. Although we demonstrated that 

this does not severely impact on the overall detectability of clonal somatic variants, individual drivers may 

have been occasionally missed, which may negatively impact statistical accuracy. Finally, genomic changes 

cannot entirely explain how tumor cells are able to colonize other organs while avoiding the strong 



 

 

bottlenecks imposed by the immune system69 or by aggressive treatment regimes. Therefore, additional 

information from complementary tumor omics studies70,71 and from the tumor microenvironment72,73 will 

be needed to further dissect and better understand tumor evolution and resistance to cancer therapy and 

eventually contribute to improved management of this deadly disease. 

To conclude, our dataset constitutes a valuable resource that can be leveraged to further study other 

aspects of tumor evolution (as illustrated by the accompanying publication69 focusing on genetic immune 

escape alterations) as well for the development of machine learning tools to foster cancer diagnostics74.  

 

 

 

  



 

 

Figures and figure legends 
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Figure 1. Overview and global genomic features of primary and metastatic tumors. a) Anatomic 

location of the 22 cancer types included in this study. Cancer types are ordered according to their tissue 

of origin. For each cancer type the following information is represented, from left to right: cancer type 

acronym, number of samples in primary and metastatic dataset (top and bottom, respectively), age at 

biopsy (in years), gender, type of treatment of metastatic patients and biopsy site from metastatic 

tumors. Partially created with BioRender.com. b) Mean percentage of clonal mutation in primary (x-axis) 

and metastatic (y-axis) tumors. Dots are coloured according to Log2 of the clonality ratio (metastatic 

divided by primary). Size of dots are proportional to the total number of samples (primary and 

metastatic). Red edge lines represent a Mann-Whitney p-value < 0.05. c) Tumor clonality according to 

the metastatic biopsy location in breast, colorectal and esophagus cancer (from left to right). N, 

number of samples in the group. p, Mann-Whitney p-value if p-value < 0.05. ns, not significant. Box-

plots: center line, median; box limits, first and third quartiles; whiskers, lowest/highest data points at 

first quartile minus/plus 1.5× IQR. d) Tumor karyotype. Heatmap representing the mean chromosome 

arm ploidy gain and losses relative to the mean genome ploidy in primary (top) and metastatic (bottom) 

tumors. Asterisks represent significantly different mean distributions between primary and metastatic 

tumors (Mann-Whitney adjusted p-value <0.05). Top bars represent the cumulative number of 

significant gain/losses in the metastatic cohort compared to the primary. e) Comparison of four genomic 

features between primary (top) and metastatic tumors (bottom). From left to right, aneuploidy score 

from ref31, proportion of genome undergoing LOH in diploid samples, fraction of samples bearing whole 

genome duplication (WGD) and TP53 alterations. Black dots represent the median values. Asterisks 

represent Fisher’s exact test p-value < 0.01 for discrete features (WGD and TP53) and Mann-Whitney p-

value < 0.01 for the continuous features.  
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Figure 2. Tumor mutation burden and mutational processes. a) Cumulative distribution function plot 

(samples were ranked independently for each variant type) of tumor mutation burden for each cancer 

type for SBS (blue), IDs (green) and DBS (red). Horizontal lines represent median values. Fold change labels 

are included only when Mann-Whitney comparison rendered a significant p-value < 0.01. b) SBS 

Mutational spectra of metastatic (top) and primary (bottom) patients. Patients are ordered according to 

their TMB burden. c) Main panel, moon plot representing the mutational burden differences attributed 

to each mutational signature in metastatic (left) and primary (right). Edge thickness and colors represent 

significant differences (q<0.05, ±1.4x fold change) and the direction of the enrichment, respectively. The 

size of circles are proportionate to the mutation burden difference. Right bars, number of metastatic 

cancer types with a mutational signature significant enrichment. Top stacked bars represent the 

cumulative signature exposure difference. Thicker bar edge lines represent significance. Bars are coloured 

according to the annotated etiology. Only mutational signatures with known etiology or with at least one 

cancer type with significant metastatic enrichment are included. d) and e) equivalent for DBS and IDs, 

respectively. Diff., difference. Muts. mutations. Sig., mutational signature. Mut. mutational. Susp., 

suspected.  
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Figure 3. Cell cycle division rates in primary and metastatic tumors. a) Linear regression of the SBS1 

mutation burden (y-axis) and patient’s age at biopsy (x-axis) in primary and metastatic breast (left) and 

prostate cancers (right) and b) colorectal and ovarian cancer. The mean fold change, mean SBS1 increase 

per year and p-value are included in cancer types with an age-independent significantly different primary 

and metastatic distribution. The median trendline and 99% confidence intervals of the linear regression 

are represented as a solid line and the adjacent shaded area, respectively. c) Depiction illustrating 

increased cell division rate in metastatic breast cancer compared to primary and its expected impact on 

the SBS1 variant allele frequency (VAF) distribution. Partially created BioRender.com. d) Comparison of 

global SBS1 clonality ratio and clonal late ratio between primary and metastatic in breast (left) and 

prostate cancers (right). e) Similar for colorectal and ovarian cancers. Boxplots are defined as in Fig. 1. f) 

Spearman correlation analysis of the mean SBS1 year burden of primary tumors (y-axis) and the mean 

metastatic SBS1 fold change (x-axis) across the 17 cancer types with linear association between age and 

SBS1 accumulation. Vertical error bars represent the 25th and 75th percentile, respectively. Horizontal 

error bars the fold change standard deviation. Cancer types with a significantly different SBS1 mutation 

rate are marked by thicker marker borders. Muts, mutations.  
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Figure 4. Structural variant burden and associated genomic features. a) Top rectangles represent the 

four genomic instability features defined in Fig. 1e. A red background represents significant enrichment 

in the metastatic cohort. S-plots, cumulative distribution function plot (samples ranked independently for 

each SV type) of tumor mutation burden for each cancer type for (from top to the bottom) the aggregated 

structural variant (SV) burden, small deletions (<10kb), large deletions (>=10kb), small duplications 

(<10kb), large duplications (>=10kb), complex events (<20 breakpoints), complex events (>=20 

breakpoints) and LINEs insertions. Horizontal lines represent median values. Backgrounds are coloured 

according to the relative enrichment, defined as: log10(median SV type burden in metastatic tumors + 1) 

− log10(median SV type burden in primary tumors + 1). Fold change labels and coloured backgrounds are 

displayed when Mann-Whitney comparison renders a significant p-value < 0.01. Fold change labels are 

displayed with ‘>’ when the SV burden for primary tumors is 0 (see methods for more details). For each 

cancer type, bottom bar plots represent the relative fraction of each SV type in the metastatic (left) and 

primary (right) datasets. b) Volcano plot representing the cancer type specific regression coefficients (x-

axis) and significance (y-axis) of clinical and genomic features against the number of small deletions. Each 

dot represents one feature in one cancer type. Labels are coloured according to the feature category. Dots 

are coloured by the frequency enrichment in metastatic (purple) or primary (orange) patients. LM, linear 

model. Coef, coefficient. c) Lollipop plots representing the regression coefficients (left, relative to panel 

b. x-axis) and metastatic enrichment (right, relative to dots color from panel b.) of features associated 

with small deletions. Only significant features (LM>0.0, p-value < 0.01 and with independent significance 

in primary or metastatic tumors) enriched in metastatic patients (enrichment > 0.0) are displayed. d), e) 

and f) are identical but referring to large deletions, small duplications and large duplications, respectively.  
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Figure 5. Driver alterations in primary and metastatic tumors. a) Cancer type specific distribution of 

number of driver alterations, amplifications, deletions and mutations per patient in primary (top) and 

metastatic (bottom). Black dots represent the mean values. Labels display mean differences (metastatic - 

primary) in cancer types with a significant difference. b) Heatmap representing the cancer genes 

displaying significant mutation frequency differences between primary and metastatic tumors. Circles 

denote mutation frequency enrichment in both cohorts while triangles facing upwards and downwards 

represent drivers that are exclusively enriched in metastatic and primary cohorts, respectively. Marker 

size is relative to the total number of mutated samples. Colors represent the direction of the enrichment.  
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Figure 6. Treatment enriched drivers. a) Visual depiction of the analytical framework to identify 

treatment enriched drivers (TEDs). The example illustrates the identification of TEDs in the 355 breast 

cancer patients treated with aromatase inhibitors. First step, identification of cancer driver genes from 

coding mutations (green), non-coding mutations (soft green), copy number amplifications (red) and 

biallelic deletions (blue). Second, for each identified cancer driver, comparison of the mutation/copy 

number alteration frequency in treated and untreated patients. Third, annotation of TEDs with 

orthogonal evidence and type of enrichment. b) Left, workflow representing the number of treatment 

groups in each step of the analysis. Pie charts, the external layers represent the number of treatment 

groups analyzed (top) or with identified TEDs (bottom) coloured by cancer type. The internal layers 

represent the category of the corresponding treatment. The group of breast cancer patients treated 

with aromatase inhibitors highlighted in both charts. N, number of patients in each treatment group. 

c) Volcano plots displaying the identified TEDs. Each dot represents one cancer gene alteration type 

in one treatment group. X-axis displays the effect size (as log2[odds ratio]) and the y-axis the 

significance (-log10[q-value])). Circle markers represent TEDs exclusively mutated in the treatment 

group (squared makers otherwise). Markers are coloured according to the type of alteration. Known 

resistance drivers are denoted by thicker edgelines. d) Distribution of mutations along the EGFR 

protein sequence in non-small cell lung cancer patients treated with EGFR inhibitors (top) and 

untreated (bottom). Pfam domains are represented as rectangles. Mutations are coloured according 

to the consequence type. e) Distribution of highly-focal copy number gains in chromosome 

chr18p:1Mb-8Mb in breast cancer untreated patients (bottom) and treated with pyrimidine 

antagonists (top). TYMS genomic location is highlighted. f) Global proportion of metastatic treated 

patients with known and candidate TEDs. g) Mean number of driver alterations per metastatic patient 

before (purple circle) and after excluding TEDs (purple square) compared to primary patients (orange 

square). Vertical lines, standard deviation range and labels the mean number of driver alterations. 

BRCA, Breast cancer. CESC, Cervix carcinoma. CHOL, Cholangiocarcinoma. COREAD, Colorectal 

carcinoma. ESCA, Esophagus cancer. GBM, Glioblastoma multiforme. KIRC, Kidney clear cell 

carcinoma. LMS, Leiomyosarcoma. NSCLC, Non small cell lung cancer. OV, Ovarian cancer. PAAD, 

Pancreas carcinoma. PRAD, Prostate carcinoma. SKCM, Skin melanoma. STAD, Stomach cancer. THCA, 

Thyroid cancer. HNSC, Upper respiratory tract cancer. BLCA, Urothelial cancer. UCEC, Uterus 

carcinoma. MB, Megabase.  
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Figure 7. Pan-cancer differences between primary and metastatic tumors. a) Stacked plot 

representing the qualitative differences of the eight studied genomic features across the 22 cancer 

types included in this study. Cancer types are sorted in ascending order according to the cumulative 

number of diverging genomic features between primary and metastatic tumors. Each horizontal track 

represents a genomic feature. The presence (and height) of each feature for a specific cancer type 

correlates with the magnitude of the observed differences. 
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Supplementary Figure 1. Cohort overview and global genomic features. a) Workflow of the unified 

processing pipeline used in this study for Hartwig (left) and PCAWG (right) WGS samples. First, PCAWG 

tumor and matched normal raw sequencing files were gathered and re-processed using the Hartwig tumor 

analytical pipeline. Next, the output of tumor samples that were correctly processed by the pipeline were 

further subjected to a strict quality control filtering. As a result, a total of 7,152 samples from 58 cancer 

types compose the harmonized dataset. 5,751 patient tumor samples from 22 cancer types with sufficient 

representation in both primary and metastatic datasets were selected for this study. b) Tumor clonality 

according to the metastatic biopsy location in kidney clear cell carcinoma, non-small cell lung cancer, 

prostate carcinomas and skin melanoma. N, number of samples in the group. p, Mann-Whitney p-value if 

p-value < 0.05. ns, not significant. Box-plots: center line, median; box limits, first and third quartiles; 

whiskers, lowest/highest data points at first quartile minus/plus 1.5× IQR.  
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Supplementary Figure 2. Mutation burden and mutational signatures. a) DBS (top) and ID (bottom) 

mutational spectra of metastatic and primary tumors. Patients are ordered according to their TMB 

burden. b) From top to bottom, moon plot representing the SBS, DBS and ID burden differences attributed 

to each mutational signature. Top stacked bars represent the cumulative signature exposure difference, 

including mutational signatures enriched in primary tumors (negative values). Thicker bar edge lines 

represent significance. Bars are coloured according to the annotated etiology. All mutational signatures, 

independent of their annotated etiology, are included. Diff., difference. Muts. mutations. Sig., mutational 

signature. Mut. mutational. Susp., suspected. c) Volcano plot representing the mutational signature 

hypermutation (>10,000 mutations for SBS, >500 for DBS, and >1000 for ID) prevalence comparison 

between primary and metastatic patients. Y-axis, log10(adjusted p-value). X-axis, effect size as Cramer’s V. 

Each dot represents a mutational signature in a cancer type. Dots are coloured according to the mutation 

type.  
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Supplementary Figure 3. SBS1 mutation rates in primary and metastatic tumors. a) Linear regression of 

the SBS1 mutation burden (y-axis) and patient’s age at biopsy (x-axis) in primary and metastatic cancer 

across the 22 cancer types. The mean fold change, mean SBS1 increase per year and p-value are only 

represented in cancer types with an age-independent significantly different primary and metastatic 

distribution. b) Relative to a) for ploidy corrected SBS1 in the tumor types of interest. c) Independent 

linear regressions for HER2+ (left) and HER2 (right) breast cancer samples. ERBB2 amplification status was 

used to annotate cancer subtypes. d) Relative to a) for ploidy corrected SBS5/40 counts in the tumor types 

of interest. e) Equivalent to Fig. 3d for primary and metastatic in kidney clear carcinoma (left) and thyroid 

cancers (right). f) Relative to Fig. 3d, but using ploidy corrected SBS5/40 clonality ratio and clonal late ratio 

in the cancer types of interest. Boxplots are defined as in Fig. 1. h) Relative to Fig. 3f but using SBS1 year 

mutation rate from ref45. Muts, mutations.  
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Supplementary Figure 4. Structural variant burden. a) SV length frequency distribution of deletions (left 

panel) and duplications (middle panel). Right panel shows the frequency distribution of the number of 

linked breakpoints for complex SVs. Dashed vertical lines represent the chosen threshold to separate 

between short and large deletions, duplications and complex SVs, respectively. b) Volcano plot 

representing the cancer type specific regression coefficients (x-axis) and significance (y-axis) of clinical and 

genomic features against the number of large deletions. Each dot represents one feature in one cancer 

type. Labels are coloured according to the feature category. Dots are coloured by the frequency 

enrichment in metastatic (purple) or primary (orange) patients. LM, linear model. Coef, coefficient. Similar 

panels are displayed for c) short duplications, d) large duplications, e) short complex SVs, large complex 

SVs and f) LINEs.  
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Supplementary Figure 5. Driver landscape and drivers per patient. a) Volcano plots representing the 

cancer type specific enrichment (x-axis) and significance (y-axis) of driver genes between primary and 

metastatic cohorts. From left to right, amplification drivers, biallelically deleted drivers and mutated driver 

genes. BRCA, Breast cancer. CESC, Cervix carcinoma. CHOL, Cholangiocarcinoma. COREAD, Colorectal 

carcinoma. ESCA, Esophagus cancer. GBM, Glioblastoma multiforme. KIRC, Kidney clear cell carcinoma. 

LMS, Leiomyosarcoma. NSCLC, Non small cell lung cancer. OV, Ovarian cancer. PAAD, Pancreas carcinoma. 

PRAD, Prostate carcinoma. SKCM, Skin melanoma. STAD, Stomach cancer. THCA, Thyroid cancer. HNSC, 

Upper respiratory tract cancer. BLCA, Urothelial cancer. UCEC, Uterus carcinoma. b) Comparison fraction 

of mutated patients for the top 20 most frequently mutated (including all types of alterations) oncogenes 

(left) and tumor suppressor genes (right) in the metastatic cohort. Top numbers represent primary 

frequency, bottom metastatic. 
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Supplementary Figure 6. Therapeutic actionability of variants. a) Cancer type specific fraction of primary 

(top) and metastatic (bottom) patients with reported therapeutically actionable variants. For each patient 

the variant with the greatest level of evidence was considered. Bars are coloured according to the variant 

actionability tiers. Fold change labels are displayed in cancer types with a significant proportional increase 

(Fisher’s exact test p-value <0.01). Purple edgelines highlight significant increase in metastatic A-on label 

fraction patients. b) Primary (left) and metastatic (right) alteration frequency of actionable variants with 

a high discrepancy (>5% frequency difference) from cancer types with a global significant increase of 

actionable variants in metastatic patients from panel a). Asterisk, Fisher’s exact test p-value <0.01. Text 

boxes include the associated treatments for alterations with a significant mutation frequency increase in 

metastatic patients.  
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Supplementary Figure 7. Treatment enriched drivers. a) Side by side alteration frequency comparison 

between treated (right bar) and untreated (left bar) patients for all treatment-exclusive and b) 

treatment enriched TEDs. c) Distribution of highly-focal copy number gains in chromosome 7 in non-

small cell lung cancer untreated patients (bottom) and treated with anti-EGFR (top). EGFR, MET and 

CDK6 genomic locations are highlighted. Each bin represents 100Kbs. d) Distribution of mutations 

along the AR protein sequence in prostate cancer patients treated with androgen deprivation (top) 

and untreated (bottom). Pfam domains are represented as rectangles. Mutations are coloured 

according to the consequence type. e) Distribution of highly-focal copy number gains in chromosome 

X in prostate untreated patients (bottom) and treated with androgen deprivation(top). AR coding 

region and the promoter region are highlighted. Each bin represents 100Kbs. f) Distribution of 

mutations along the ESR1 protein sequence in breast cancer patients treated with aromatase 

inhibitors (top) and untreated (bottom). g) Similar to e) but representing MYC and PRNCR1 co-

amplifications in chromosome 8q. 
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Methods 

 

Cohort gathering and processing  

 

We have matched tumor-normal whole genome sequencing data from cancer patients from two cohorts: 

the Hartwig Medical Foundation (Hartwig) and the Pan-Cancer Analysis of Whole Genomes (PCAWG) 

cohort. A detailed description of the Hartwig and PCAWG cohort gathering and processing as well as 

comprehensive documentation of the PCAWG sample reanalysis with the Hartwig somatic pipeline is 

described in the Supp. Note 1. 

 

Tumor clonality analysis 

 

Each mutation in the .vcf files is given a subclonal likelihood by PURPLE. Following PURPLE guidelines, we 

considered mutations with subclonal scores of 0.8 or higher to be subclonal and mutations below the 0.8 

threshold to be clonal. For each sample we then computed the average proportion of clonal mutations by 

dividing the number of clonal mutations by the total mutation burden (including SBS, MNVs and indels). 

Finally, for each cancer type we used Mann-Whitney test to assess the significance of the clonality 

difference between the primary and metastatic tumors. A p-value lower than 0.05 was deemed as 

significant.  

 

In addition, we leveraged biopsy site data in patient reports to further investigate differences in metastatic 

tumor clonality according to the metastatic biopsy site. If the metastatic biopsy site was in the same 

organ/tissue as the primary tumor, we considered them as “Local”, while if the metastatic biopsy site was 

reported in the lymphoid system or other organs/tissues they were dubbed as “Lymph” and “Distant”, 

respectively. Cancer types for which there was a minimum of 5 samples available for each of the biopsy 

groups were selected and Mann-Whitney test was used to compare the clonality between the biopsy 

groups. 

 

Karyotype  

 

Arm-level and genome copy number (CN) was estimated as described in Taylor et al. 201831. Briefly, CN 

of segments determined by PURPLE were rounded to the nearest integer, then the arm coverage per CN 

was calculated. Arm-level CN was determined to be either the CN with coverage >50%, the most common 

arm CN if coverage <50%, or the genome CN if coverage <50% and the most common arm CN does match 

the genome CN. The most common arm CN across all arms was deemed to be the genome ploidy.  



 

 

Estimated genome ploidy per sample was subtracted from the estimated chromosome arm ploidy to 

create a matrix of chromosome arm gains and losses relative to the estimated genome ploidy. This matrix 

was stratified by cohort (metastatic/primary) and a Mann-Whitney test was performed to assess the 

difference of the distributions for each arm in each cancer type. The resulting p-value was FDR adjusted 

across all arms per cancer type. A q-value < 0.05 was deemed to be significant. Mean arm gains and losses 

relative to genome ploidy were calculated and represented.  

 

Genomic instability markers  

 

To compare the differences in aneuploidy scores and the LOH proportions in each group, a Mann-Whitney 

test was performed per cancer type. The aneuploidy score represents the number of arms per tumor 

sample that deviate from the estimated genome ploidy as described in Taylor et al. 201831. To compare 

the LOH proportions, only diploid samples were included when calculating the p-value. The LOH 

proportion was defined as 1 - (diploid proportion estimated by PURPLE) of the genome. 

To compare the fraction of samples with a driver mutation in TP53 as well as the fraction of whole genome 

duplicated samples per cohort, a Fisher’s exact test was performed per cancer type. Any TP53 driver 

alteration (non-synonymous mutation, biallelic deletion and homozygous disruption) was considered in 

the analysis. Whole genome duplication was defined as present if the sample had more than 10 

autosomes with an estimated chromosome copy number >1.5. A p-value < 0.01 was deemed to be 

significant for all statistical tests. 

 

Mutational signature analysis  

 

Signature extraction 

The number of somatic mutations falling into the 96 single nucleotide substitution (SBS), 78 double base 

substitutions (DBS) and 83 indel (ID) contexts (as described in the COSMIC catalog75 

https://cancer.sanger.ac.uk/signatures/) was determined using the R package mutSigExtractor 

(https://github.com/UMCUGenetics/mutSigExtractor, v1.23). 

SigProfilerExtractor (v1.1.1) was then used (with default settings) to extract a maximum of 21 SBS, 8 DBS 

and 10 ID de-novo mutational signatures. This was performed separately for each of the 22 tissue types 

which had at least 30 patients in the entire dataset (aggregating primary and metastatic samples, see 

Supp. Table 3). Tissue types with less than 30 patients as well as metastatic patients with unknown primary 

location type were combined into an additional ‘Other’ group, resulting in a total of 23 tissue type groups 

for signature extraction. In order to select the optimum rank (i.e. the eventual number of signatures) for 

each tissue type and mutation type, we manually inspected the average stability and mean sample cosine 



 

 

similarity plots output by SigProfilerExtractor. This resulted in 440 de-novo signature profiles extracted 

across the 23 tissue type groups (Supp. Table 3). Least squares fitting was then performed (using the 

fitToSignatures() function from mutSigExtractor) to determine the per-sample contributions to each tissue 

type specific de-novo signature. 

Etiology assignment 

The extracted de-novo mutational signatures with high cosine similarity (≥0.85) to any reference COSMIC 

mutational signatures with known cancer type associations75 were labeled accordingly (256 de-novo 

signatures matched to 56 COSMIC reference signatures).  

For the remaining 184 unlabeled de novo signatures, we reasoned that there could be one or more 

signatures from one cancer type that are highly similar to those found in other tissue types, and that these 

likely represent the same underlying mutational process. We therefore performed clustering to group 

likely equivalent signatures. Specifically, the following steps were performed:  

1. We calculated the pairwise cosine distance between each of the de-novo signature profiles. 

2. We performed hierarchical clustering and used the base R function cutree() to group signature 

profiles over the range of all possible cluster sizes (min no. clusters = 2; max no. of clusters = 

number of signature profiles for the respective mutation type).  

3. We calculated the silhouette score at each cluster size to determine the optimum number of 

clusters.  

4. Finally, we grouped the signature profiles according to the optimum number of clusters. This 

yielded 27 SBS, 7 DBS, and 8 ID de-novo signature clusters (see Supp. Table 3).  

For certain de novo signature clusters, we could manually assign the potential etiology based on their 

resemblance to signatures with known etiology described in COSMIC75, Kucab et al. 201941 and Signal 76. 

Some clusters were an aggregate of 2 known signatures, such as SBS_denovo_clust_2 which was a 

combination of SBS2 and SBS13, both linked to APOBEC mutagenesis. Other clusters had characteristic 

peaks of known signatures, such as DBS_denovo_clust_4 which resembled DBS5 based having distinct 

CT>AA and CT>AC peaks. Lastly, DBS_denovo_clust_1 was annotated as POLE mutation and MMR 

deficiency as samples with high contribution (>150 mutations) of this cluster are frequently MSI or have 

POLE mutations. Likewise, DBS_denovo_clust_2 was annotated with MMR deficiency as the etiology as 

samples with high contribution (>250 mutations) of this cluster were all MSI. See Supp. Table 3 for a list 

of all the manually assigned etiologies. 

Comparing the prevalence of mutational processes between primary and metastatic cancer 

We then compared the activity (i.e. number of mutations contributing to) of each mutational process 

between primary and metastatic tumors. For each sample, we first summed the contributions of 

signatures of the same mutation type (i.e. SBS, DBS or ID) with the same etiology, henceforth referred to 

as ‘etiology contribution’. Per cancer type and per etiology, we performed two-sided Mann-Whitney tests 

to determine whether there was a significant difference in etiology contribution of primary and metastatic 

tumors. Per cancer type and per mutation type, we used the p.adjust() base R function to perform multiple 

testing correction using Holm’s method. Next, we added a pseudocount of 1 to the contributions (to avoid 



 

 

dividing by zero) and calculated the median contribution log2 fold change, i.e. log2[ (median contribution 

in metastatic tumors + 1) / (median contribution in primary tumors + 1) ]. We considered the etiology 

contribution between primary and metastatic tumors to be significantly different when the q-value was 

<0.05, and log2 fold change was ≥0.4 or ≤ -0.4 (= ±x1.4).  

We also determined whether there was an increase in the number of samples with high etiology 

contribution (i.e., hypermutators) in metastatic versus primary cohorts. For each signature, a sample was 

considered a hypermutator if the etiology contribution was ≥10,000 for SBS signatures, ≥500 for DBS 

signatures, or ≥1,000 for ID signatures. For each cancer type, for each etiology, we performed pairwise 

testing only for cases where there were ≥5 hypermutator samples for either metastatic or primary tumors. 

Each pairwise test involved calculating p-values using two-sided Fisher’s exact tests, and effect sizes by 

multiplying Cramer’s V by the sign of the log2(odds ratio) to calculate a signed Cramer’s V value that 

ranges from -1 to +1 (indicating enrichment in primary or metastatic respectively). We then used the 

p.adjust() base R function to perform multiple testing correction using Bonferroni’s method. 

 

SBS1-age correlations in primary and metastatic tumors 

 

To count the SBS1 mutations we relied on the definition from ref77 that is based on the characteristic 

peaks of COSMIC SBS1 signature profile: single base CpG > TpG mutations in NpCpG context. To ensure 

that these counts and the downstream analyses are not affected by differential APOBEC exposure in 

primary and metastatic cohorts, we excluded CpG > TpG in TpCpG which is also a characteristic peak in 

COSMIC SBS2 signature profile. Also, for skin melanoma CpG > TpG in [C/T]pCpG which overlaps with 

SBS7a was excluded. To obtain the SBS5 and SBS40 counts we relied on their exposures derived from the 

mutational signature analyses performed in this study (explained above). 

To assess the correlation between SBS1 burden and patient’s age at biopsy we performed a cancer type 

and cohort specific linear regression (i.e., separate regression for primary and metastatic tumor samples). 

To avoid spurious effects caused by hypermutated tumors, samples with TMB greater than 30,000 as well 

as those with SBS1 burden greater than 5,000 were excluded.  

For each cancer type and cohort we then computed 100 independent linear regressions by randomly 

selecting 75% of the available samples. We selected the median linear regression (based on the regression 

slope) as representative regression for further analyses. Similarly, confidence intervals were derived from 

the 1st and 99th percentile of the computed regressions.  

To evaluate the significance of the differences between primary and metastatic representative linear 

regressions (hereafter referred to as linear regression for simplicity) we first filtered out cancer types that 

failed to show a positive correlation trend between SBS1 burden and age at biopsy in both primary and 

metastatic tumors (i.e., Pearson’s correlation coefficient of primary and metastatic regression >0.1). Next, 

for each selected cancer type, we computed the regression residuals of primary and metastatic SBS1 

mutation counts using, in both cases, the primary linear regression as baseline. The primary and 



 

 

metastatic residual distributions were then compared using a Mann-Whitney test to evaluate significance. 

Cancer types with a Mann-Whitney p-value < 0.01 were deemed as significant. Finally, to ensure that the 

differences were uniform across different age ranges (i.e., not driven by a small subset of patients) we 

only considered significant cancer types where the metastatic linear regression intercept is higher than 

the primary intercept. 

SBS5/SBS40 correlations were computed following the same procedure and using the sum of SBS5 and 

SBS40 exposures for each tumor sample. If none of the mutations were attributed to SBS5/SBS40 

mutational signatures, the aggregated value was set to zero. In the ploidy corrected analyses we divided 

the SBS1 mutation counts (and SBS5/SBS40 mutation counts for the SBS5/40 ploidy corrected regression, 

respectively) by the PURPLE estimated tumor genome ploidy.  

For each cancer type the mean fold-change (fc) was defined as 𝑓𝑐 =
!
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 where MPredi and 

PPredi are the estimated number of SBS1 mutations for a given age i-th according to the metastatic and 

primary linear regressions, respectively. Similarly, the mean estimated SBS1 burden difference (SBS1diff) 

was defined as: 𝑆𝐵𝑆1𝑑𝑖𝑓𝑓 =
!

"#
∑$#
%&"# 𝑀𝑃𝑟𝑒𝑑𝑖	 − 	𝑃𝑃𝑟𝑒𝑑𝑖 .  

 

Clonality and timing of clock-like mutations  

 

SBS1 individual mutations were identified as described in the previous section. For SBS5 and SBS40 

mutations, we used a maximum likelihood approach to assign individual mutations to the SBS5 and SBS40 

mutational signatures in a cancer type specific manner.  

For every SBS1 (and SBS5/SBS40 mutation) we then assign the clonality according to the PURPLE subclonal 

likelihood estimation, where only mutations with SUBCL likelihood >= 0.8 were considered as such (see 

above). Likewise, the molecular timing of individual mutations (i.e., clonal early and clonal late) was 

computed using the MutationTimeR77 package. 

For each tumor sample the SBS1 clonality ratio (or respectively SBS5/SBS40 clonality ratio) was defined as 

the ratio between the proportion of clonal SBS1 mutations (
,-,!	/01230		45636%127

,-,!	45636%127
) divided by the total 

proportion of clonal alterations in the sample (
81630	/01230	45636%127

81630	45636%127
). Similarly, the SBS1 clonal late ratio 

was defined as the ratio between the proportion of clonal late SBS1 mutations (
,-,!	/01230		036*	45636%127

,-,!	/01230	45636%127
) 

divided by the total proportion of clonal late alterations in the sample (
81630	/01230	036*	45636%127

81630	/01230	45636%127
), where 

the total of clonal SBS1/total mutations was computed as the sum of clonal late, clonal early and 

unassigned clonal from MutationTimerR.  

 



 

 

 

Primary cell division rate and accelerated SBS1 mutagenesis in metastasis 

 

To assess the relationship of cell division rate of primary tumors with the accelerated SBS1 mutagenesis 

in the metastatic setting we relied on the SBS1 burden per year as a proxy of stem-cell division rates as 

was previously described in ref45. We thus computed for each primary cancer type the average number of 

SBS1 per year as the number of SBS1 mutations divided by the patient’s age at biopsy (only considering 

primary samples and excluding hypermutated samples as described above). We then used a Spearman’s 

correlation to assess its association with the estimated mean SBS1 mutation rate fold change in metastatic 

tumors (see above). Additionally, to exclude potential biases in our primary cohort, we repeated the same 

analysis relying on an independent measurement of primary cancer SBS1 yearly accumulation. 

Specifically, we used the best estimated accumulation of SBS1 per year from ref45 Supplementary Data 

Set 6 and regressed it to the fold change estimates for the matching cancer types present in both datasets.  

 

Structural variant (SV) analysis 

 

SV type definitions 

LINX53 chains one or more SVs and classifies these SV clusters into various event types (‘ResolvedType’). 

We defined deletions and duplications as clusters with a ResolvedType of ‘DEL’ or ‘DUP’ whose start and 

end breakpoints are on the same chromosome (i.e. intrachromosomal). Deletions and duplications were 

split into those <10kb and ≥10kb in length (small and large, respectively), based on observing bimodal 

distributions in these lengths across cancer types (Supp. Fig. 4a). We defined complex SVs as clusters with 

a ‘COMPLEX’ ResolvedType, an inversion ResolvedType (including: INV, FB_INV_PAIR, RECIP_INV, 

RECIP_INV_DEL_DUP, RECIP_INV_DUPS), or a translocation ResolvedType (including: RECIP_TRANS, 

RECIP_TRANS_DEL_DUP, RECIP_TRANS_DUPS, UNBAL_TRANS, UNBAL_TRANS_TI). Complex SVs were 

split into those with <20 and ≥20 SVs (small and large, respectively), based on observing similar unimodal 

distributions in the number SVs across cancer types whose tail begins at ~20 breakpoints (Supp. Fig. 4a). 

Lastly, we defined LINEs (long interspersed nuclear element insertions) as clusters with a ResolvedType of 

‘LINE’. For each sample, we counted the occurrence (i.e. SV burden) of each of the 7 SV types described 

above. Additionally, we determined the total SV burden by summing counts of the SV types. 

Comparing SV burden between primary vs. metastatic cancer 

We then compared the SV type burden between primary versus metastatic tumors as shown in Fig. 4a. 

Firstly, we performed Mann-Whitney tests per SV type and per cancer type to determine whether there 

was a significant difference in SV type burden between primary versus metastatic, and used p<0.01 as the 

significance threshold. Next, we calculated relative enrichment as follows: log10(median SV type burden 

in metastatic tumors + 1) − log10(median SV type burden in primary tumors + 1); and calculated fold change 



 

 

as follows: (median SV type burden in metastatic tumors + 1) / (median SV type burden in primary tumors 

+ 1). When calculating relative enrichment and fold change, the pseudocount of 1 was added to avoid the 

log(0) and divide by zero errors, respectively. Fold changes are displayed with a ‘>’ in Fig. 4a when the SV 

burden for primary tumors is 0 (i.e. when a divide by zero would occur without the pseudocount). 

Identifying features associated with SV burden increase in metastatic cancer 

To identify the features that could explain increased SV burden, we correlated SV burden with various 

tumor genomic features. This included: i) genome ploidy (determined by PURPLE); ii) HRd status 

(determined by CHORD50) and MSI status (determined by PURPLE); iii) the presence of mutations in 345 

cancer associated genes (excluding fragile site genes that are often affected by CNVs14), henceforth 

referred to as ‘gene status’; and iv) treatment history, including the presence of radiotherapy, the 

presence of one of the 79 different cancer therapies as well as the total number of treatments received. 

All primary samples as well as all metastatic samples without treatment information were considered to 

have no treatment. Genome ploidy and total number of treatments received were numeric features, 

whereas all of the remaining were boolean (i.e. true/false) features. In total there were 429 features. 

SV type burden was transformed to log10(SV type burden + 1) and was correlated with the 429 features 

using multivariate linear regression models (LM). This was performed separately for each of the 22 cancer 

types, and for each of the 7 SV types, resulting in a total of 154 (=22 cancer types x 7 SV types) LM models.  

Each LM model (i.e. per SV type and cancer type) involved training of three independent LMs with i) both 

metastatic and primary samples (primary+metastatic), ii) only Hartwig samples (metastatic-only), and iii) 

only primary samples (primary-only). This was done to filter out correlations between features and 

increased SV type burden solely due to differences in feature values between primary and metastatic 

tumors. We then required features that positively correlated with SV type burden in the 

primary+metastatic LM to independently show the same association in the metastatic-only or primary-

only LMs. Only genomic features that independently showed positive correlation with the SV burden were 

further considered as significant (i.e., represented in the lollipots). 

 Each of the 3 LMs was trained as follows: 

1. Remove boolean features with too few ‘true’ samples: 

a. For the primary+metastatic LM, remove gene status features with <15 ‘true’ samples. 

b. For the metastatic-only and primary-only LMs, remove gene status features with <10 

‘true’ samples. 

c. For the remaining boolean features, remove features with <5% ‘true’ samples. 

2. Fit a LM using the lm() base R function to correlate log10(SV type burden + 1) versus all features. 

For each LM analysis, we used the following filtering criteria to identify the features that were correlated 

with increased SV type burden: 

1. Only keep LM analyses where there was significant increase in SV type burden for the respective 

cancer type (p<0.01 as described in the previous section “Comparing SV burden between primary 

vs. metastatic cancer”) 



 

 

2. For primary+metastatic LM 

a. Regression p-value <0.01 

b. Coefficient p-value <0.01 

c. Coefficient >0 

3. For metastatic-only LM or primary-only LM: 

a. Coefficient p-value <0.01 

b. Coefficient >0 

Finally, to determine which features (of those correlated with increased SV type burden) were enriched 

in metastatic tumors compared to primary tumors (and vice versa), we calculated Cliff’s delta for numeric 

features and Cramer’s V for boolean features. Cliff’s delta ranges from -1 to +1, with -1 representing 

complete enrichment in primary tumors, whereas +1 represents complete enrichment in metastatic 

tumors. Cramer’s V only ranges from 0 to 1 (with 1 representing enrichment in either primary or 

metastatic tumors), the sign of the log(odds ratio) was assigned as the sign of the Cramer’s V value so that 

it ranges from -1 to +1. Features with an effect size >0 were considered as those that could explain the SV 

burden increase in metastatic cancer when compared to primary cancer. 

 

Driver alterations  

 

We relied on patient specific cancer driver catalogs constructed by PURPLE14 and LINX53. Only drivers with 

a driver likelihood > 0.5 were retained. Fusion drivers were filtered for those that were previously reported 

in the literature. Similarly, we manually curated the list of drivers and removed SMAD3 HOTSPOT 

mutations because of the high burden mutations in low mappability regions. The final driver catalog 

contained a total of 443 driver genes.  

 

We then combined fusions with the LINX driver variants to calculate a patient specific number of driver 

events. Drivers that concern the same driver gene but a different driver type were deemed to be individual 

drivers (e.g. TP53 mutation and TP53 deletion in the same sample were considered as one driver event). 

Cancer type specific Mann-Whitney test was performed to assess differences between primary and 

metastatic tumors. A p-value < 0.01 was deemed to be significant.  

 

A contingency matrix was constructed from the driver catalog, containing the frequency of driver 

mutations per driver type (i.e., deletion, amplification or mutations) and cancer type in each cohort 

(metastatic and primary). A second contingency matrix was constructed for the fusions. Partial 

amplifications were considered as amplifications while homologous disruptions were considered as 

deletions. These contingency matrices were filtered for genes which show a minimum frequency of 4 

mutated samples in either the primary or the metastatic cohorts. Then a Fisher’s exact test for each gene, 

cancer type and mutation type was performed and the p-value was adjusted for FDR per cancer type. 

Cramer’s V and the odds ratio were used as effect size measures. An adjusted p-value < 0.01 was deemed 

to be significant. 



 

 

Therapeutic actionability of variants  

 

To determine the amount of actionable variants observed in each sample, we compared our variants 

annotated by SnpEff78 to those derived from three different databases (OncoKB79, CIViC80 and CGI81) that 

were classified based on a common clinical evidence level 

(https://civic.readthedocs.io/en/latest/model/evidence/level.html) as described in Priestley et al. 201914. 

In our study we only considered A and B levels of evidence which represent variants that have been FDA 

approved for treatment and are currently being evaluated in a late stage clinical trial, respectively. A 

variant was determined to be “On-label” when the cancer type it was found in matches the cancer type 

the treatment was approved for or is being investigated for, and “Off-label” otherwise. Only actionable 

variants of the sensitive category were considered (i.e. tumors containing the variant are sensitive to a 

certain treatment). Sample-level actionable variants such as TMB high/low or MSI status were not 

evaluated, because of their tendency to overshadow the other variants, especially in the Off-label 

category. Further, wild-type actionable variants were not considered in this analysis for the same reason. 

Variants related to gene expression or methylation were not considered due to lack of available data. 

Additionally, we found actionable variants derived from leukemias to be very different from the solid 

tumors in our data set which is why we excluded them for this analysis. For the analysis of proportion of 

samples bearing therapeutically actionable variants we considered the highest evidence level was 

retained for each sample following the order A On/Off-label to B On/Off-label. To assess enrichment of 

actionable variants globally and on A On-label level in metastatic tumors, a Fisher’s exact test was 

performed pancancer-wide and per cancer type. A p-value < 0.01 was deemed to be significant. 

Percentage changes in frequency are only shown for significant cases. 

 

To determine which variants contribute the most to the observed significant frequency differences, 

individual actionable variants were tested for enrichment in metastatic tumors using a Fisher’s exact test 

per cancer type and tier level. P-values were FDR adjusted per cancer type and a q-value < 0.05 was 

deemed to be significant. In Supp. Fig. 6 only actionable variants that were found at a minimum frequency 

of 5% in either primary or metastatic cohort and a minimum frequency difference of 5% between them 

were shown. However, the differences across all screened variants is available as part of Supp. Table 7.  

 

Treatment enriched drivers  

 

We aimed to pinpoint drivers that are potentially responsible for lack of response to certain cancer 

treatments in the metastatic cohort. Hence, we devised a test that identifies driver alterations that are 

enriched in groups of patients treated with a particular treatment type compared to the untreated group 

of patients from the same cancer type (see Fig. 6a for illustration of the workflow).  

 

Treatments were grouped according to their mechanism of action so that multiple drugs with a shared 

mechanism of action were grouped into the mechanistic treatment category (e.g. Cisplatin, Oxaliplatin, 

Carboplatin as Platinum). We created 332 treatment and cancer type groups by grouping patients with 

treatment annotation according to their treatment record before the biopsy. One patient might be 



 

 

involved in multiple groups if they have received multiple lines of therapy or a simultaneous combination 

of multiple drugs. Only 62 treatment and cancer type groups with at least 10 patients were further 

considered in the analysis.  

 

Hence, for each cancer and treatment group we performed the following steps:  

 

1. We first performed a driver discovery analysis in treatment and cancer type specific manner. We 

explored three types of somatic alterations: coding mutations, non-coding mutations and copy 

number variants (see below for detailed description of each driver category). Driver elements 

from each alteration category were selected for further analysis. 

2. For each driver alteration from 1) we compared the alteration frequency in the treated group to 

the untreated group of the same cancer type. Each driver category (coding and non coding 

mutations and copy number variants) were evaluated independently. We performed a Fisher’s 

exact test to assess the significance of the frequency differences. Similarly, we computed the odds 

ratio of the mutation frequencies for each driver alteration. The p-values were adjusted with a 

multiple-testing correction using the Benjamini–Hochberg procedure (alpha=0.05). An adjusted 

p-value of 0.05 was used for coding mutations and copy number variants. Adjusted p-value of 0.1 

was used for non-coding variants due to the overall low mutation frequency of the elements 

included in this category, which hampered the identification of significant differences.  

3. We then annotated each driver element with information about the exclusivity in the treatment 

group. We labeled drivers as treatment exclusive if the mutation frequency in the untreated group 

was lower than 5%, we annotated as treatment enriched otherwise. Additionally, we manually 

curated the identified drivers with literature references of their association with each treatment 

category.  

4. Finally, the overlap of patients in multiple treatment groups (see above) in the same cancer type 

prompted us to prioritize the most significant treatment association for each driver gene in a 

particular cancer type. In other words, for each driver gene that was deemed as significantly 

associated with multiple treatment groups in the same cancer type, we selected the most 

significant treatment association, unless a driver-treatment annotation was clearly reported in 

the literature.  

 

The full catalog of TEDs and their mutation frequencies can be found in Supp. Table 8.  

 

 

Coding mutations drivers 

 

We used dNdScv82 with default parameters to identify cancer driver genes from coding mutations. A global 

q-value <0.1 was used as a threshold for significance. Mutation frequencies for each driver gene were 

extracted from the dndscv output. We defined the mutation frequency as the number of samples bearing 

non-synonymous mutations.  



 

 

Non-coding mutations drivers  

 

We used ActiveDriverWGS83 (v1.1.2, default parameters) to identify non-coding driver elements in five 

regulatory regions of the genome including 3’UTRs, 5’UTRs, lncRNAs, proximal promoters and splice sites. 

For each element category we extracted the genomic coordinates from Ensembl v101. Each regulatory 

region was independently tested. To select for significant hits, we filtered on adjusted p.values (FDR<0.1) 

and minimum of three mutated samples. We defined the mutation frequency as the number of mutated 

samples for each significantly mutated element in the treatment group.  

 

 

Copy number variant drivers 

 

We ran GISTIC284 (v2.0.23) on each of the 62 treatment and cancer type groups using the following 

settings:  

gistic2 -b <inputPath> -seg <inputSegmentation> -refgene 

hg19.UCSC.add_miR.140312.refgene.mat -genegistic 1 -gcm extreme -maxseg 4000 -

broad 1 -brlen 0.98 -conf 0.95 -rx 0 -cap 3 -saveseg 0 -armpeel 1 -smallmem 0 

-res 0.01 -ta 0.1 -td 0.1 -savedata 0 -savegene 1 -qvt 0.1. 

The focal GISTIC peaks (q ≤ 0.1 and < 1Mbp) were then annotated with functional elements using the 

coordinates from Ensembl v101. The frequency differences between treated and untreated cohorts on 

every gene was assessed with Fisher exact test as described above. For this, we first calculated the focal 

amplification and deep depletion status of every gene within each sample. A gene was amplified when 

the ploidy level of the gene was 2.5 ploidy levels higher than its genome-wide mean ploidy level (as 

measured by PURPLE), and deleted when the gene ploidy level was lower than 0.3 (i.e. deep deletion). 

We observed that the majority of the peaks contained multiple significant gene candidates (after multiple 

correction q < 0.05) and therefore we retained the gene most closely positioned to the peak summit, 

which is the most significantly enriched region across the treated samples. Next, we also found recurrent 

peaks across multiple treatment groups per cancer type that are not, or less, present in the untreated 

control group because most of the Hartwig samples have received multiple treatment types. We therefore 

merged peaks with overlapping ranges to produce a single peak per genomic region per cancer type. For 

each collapsed peak we selected the treatment type showing the lowest q-value for the gene near the 

peak summit. Deletion and amplification peaks were processed separately. 

 

Group level aggregation of treatment resistance associated variants  

 

To estimate the contribution of TEDs to the total number of drivers per sample in the metastatic cohort, 

we excluded any TED from the catalog of driver mutations (see above Driver alterations section) in a 

cancer type, gene and driver type specific manner. 
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academic use through standardized procedures. Request forms can be found at 

https://www.hartwigmedicalfoundation.nl. 

 

Somatic variant calls, gene driver lists, copy number profiles and other core data of the PCAWG cohort 

generated by the Hartwig analytical pipeline are available for download at 

https://dcc.icgc.org/releases/PCAWG/Hartwig. Researchers will need to apply to the ICGC data access 

compliance office (http://icgc.org/daco) for the ICGC portion of the dataset. Authentication of NIH eRA 

commons is required to access the TCGA portion of the dataset via https://icgc.bionimbus.org. Additional 

information on accessing the data, including raw read files, can be found at 

https://docs.icgc.org/pcawg/data/. 

 

Code availability 
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and implemented in Platinum (https://github.com/hartwigmedical/platinum). 
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