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Abstract
Background: Bioactive glasses (BGs) have attracted added attention in the structure of the scaffolds for
bone repair applications. Different metal ions could be doped in BGs to induce specific biological
responses. Among these ions, strontium (Sr) is considered as an effective and safe doping element with
promising effects on bone formation and regeneration.

Methods: In this experiment, we evaluated the antibacterial activities of the gelatin-BG (Gel-BG) and Gel-
BG/Sr scaffolds in vitro. The osteogenic properties of the prepared scaffolds were also assessed in rabbit
calvarial bone defects for 12 weeks. Alizarin Red, Hematoxylin & Eosin (H&E) and Masson’s Trichrome
staining were performed to assess bone regeneration and the obtained results were compared with those
without Sr. Also, histomorphometric data were obtained to evaluate the new bone, residual graft, and
connective tissue.

Results: Both scaffolds showed in vivo bone formation during 12 weeks with the newly formed bone area
in Gel-BG/Sr scaffold was higher than that in Gel-BG scaffolds after the whole period. Based on the
histological results, Gel-BG/Sr exhibited acceleration of early-stage bone formation in vivo. The results of
antibacterial investigation showed that although both Gel-BG/Sr and Gel-BG effectively inhibited the
growth of Escherichia coli (E. coli) but, only Gel-BG/Sr structure could lead to a 3 log reduction in
Staphylococcus aureus (S. aureus). Conclusions: Our results confirmed that Sr doped BG is a favorable
candidate for bone tissue engineering with superior antibacterial activity and bone regeneration capacity
compared with similar counterparts having no Sr ion.

Background
Almost 1.3 million people experience bone graft surgeries due to the skeletal defects made by either
accidents or diseases annually in the United States [1]. Obesity, genetic abnormalities, increased rate of
accidents as well as the aging population are all considered as reasons which increase the number of
bone lesions around the world[2]. Osteoporosis generated by decreased bone mineral density influences
more than 200 million people worldwide, with half of this population undergoing a minimum one fracture
during their lifetime[3]. Bone grafting either autografts or allografts are associated with limitations such
as additional surgery, potential risk of transmitting diseases, immunological response, and long period
issues[4]. Therefore, there is still a demand for developing safer and more effective alternatives. Bone
tissue engineering is a promising strategy that aims to fabricate interconnected porous graft substitutes
for bone defects reconstruction. Among material used for synthetic bone scaffolds, bioactive glasses
(BGs) have attracted more attention in the structure of bone repair scaffolds in many investigations due
to the properties such as osteogenesis, high level of bioactivity as well as the ability to bond with soft and
hard tissues[5, 6] The synergistic effects of Si, Ca and P ions released from BG, could promote
differentiation of osteoblasts via activation of osteogenesis-related signaling pathways[7]. Interestingly,
BGs have been clinically used to treat damages made by periodontal disease[8] as well as for ocular
surgery applications[9]. Bioactive ceramics scaffolds based on BGs have been utilized for clinical
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applications .Examples include commercial 45S5 for healing of long bone fracture, femoral repair, filler
and grafting implants , alveolar ridge augmentation [10] , S53P4 bioactive glass for craniofacial surgery
and treatment of osteomyelitis [11], and other type of BGs for healing of intra‐bony defects [12, 13] and
maxillary sinus floor augmentation [14].

Different metal ions could be doped in BGs to induce specific biological responses. Among these ions,
strontium (Sr) is an alkaline earth metal which is presently utilized for the treatment of osteoporosis[15].
Strontium Renelate has also been stated to decrease the rate of fractures in elderly patients having
osteoporosis[16] and has been clinically used to treat osteoporosis in postmenopausal patients[17].
Biomaterials containing Sr have been proved to enhance bone formation or/and remodeling[18]. Also, Sr
is considered as an effective and safe doping element which its effect on bone formation and remodeling
becomes more noticeable and different over time depending on the applied concentration[18].  This ion is
reported to accelerate osteogenesis[19] and mineralization, as well[20]. The effects of Sr on bone healing
and regeneration have been extensively studied in vitro and in vivo [21-23]. For example, Sr containing BG
microspheres (Sr-BGM) have been shown to significantly improve early angiogenesis via modulating
macrophages towards the M2 phenotype expressing a great value of platelet-derived growth factor-BB
(PDGF-BB). The authors assumed that this early vascularization could efficiently promote new tissue
regeneration , including bone formation[24]. Also, osteogenic capability of thermosensitive p (N-
Isopropylacrylamide-co-butyl Methylacrylate) hydrogel (PIB nanogel) was increased significantly
following the addition of mesoporous bioactive glass containing Sr (Sr-MBG). Scaffolds were inserted in
rat femur defect two months after making the osteoporosis model. PIB nanogel was considered an
excellent carrier for primary osteoblasts ,which, together with Sr-MBG, improved the regeneration of the
produced femur defects synergistically[3]. Addition of Sr and, or Li have also been shown to alter
physicochemical properties of BG porous scaffolds, promoting osseointegration and bone remodeling in
a rabbit femoral defect model[6]. The simultaneous effect of applying Sr and Co ions on the acceleration
of bone healing and vascularization was further confirmed by implanting Sr-Co-BG seeded with human
umbilical cord perivascular cells (HUCPVCs) in the knee defect of the rabbits for 12 weeks. The results
revealed significant improved angiogenic and regeneration potential of BGs after being doped with Sr and
Co[25]. Previously, our group demonstrated that BG/Sr containing scaffolds promote proliferation and
osteogenic differentiation of Mesenchymal Stem Cells (MSCs) as well as angiogenesis[21]. Here, we
further evaluated the osteogenic properties of the gelatin-BG/Sr scaffolds in rabbit calvarial bone defects
as well as their antibacterial features. The obtained results were compared with those without Sr.

Materials And Methods
Materials

All materials were purchased from Sigma- Aldrich (Germany) unless otherwise is specified. 

Scaffold fabrication
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Bioglass (BG) based on the CaO– SiO2– Na2O –P2O5 system and BG having strontium (BG/Sr) in a SiO2-
CaO-SrO-P2O5 system was fabricated according to our previous protocol by sol- gel method with Sr was
substituted for Ca at the percentage of 5 wt %[21]. Scaffolds were prepared via freeze drying method , as
previously explained[21]. Briefly, 15 % w/v of the synthesized BG powder was added to the 5 % (w/v)
aqueous solution of gelatin (Gel) and the obtained solution was then cast in a Teflon mold and frozen at
-20˚C and -80˚C for 5 and 12 h, respectively. The frozen samples were then lyophilized in a freeze drier
(Alpha 1-4 LDplus, Martin Christ, Germany) for 48 h to fabricate porous scaffolds. The same instructions
were used with BG/Sr powder to make the Gel- BG/Sr scaffolds (15 % w/v). Samples were cross linked
using 0.5 % glutaraldehyde for 24 h, followed by excessive washing in deionized water for three days and
further lyophilization. 

Investigational animals and surgical procedures

Animal investigations were approved by the Ethics Committee of Tarbiat Modares University, Iran
(IR.MODARES.REC.1398.070). Twelve New Zealand white rabbits of 2.6-3 kg in weight were used and
randomly divided into three investigational groups (n=4/group). A standard environment such as
humidity, temperature, 12/12 hours light/dark, and standard food and water were applied before and after
surgery. General anesthesia was accomplished with Xylazine (10 mg/Kg, 2%, Alfasan, Woerden-Holland)
and Ketamine (90 mg/Kg, 10%, Alfasan, Woerden-Holland). Rabbits were prepared and draped using
povidone iodide to sterilize the area. The calvaria were exposed by a skin incision (3 cm incision along
the midline of the scalp) and then, muscle and periosteum were resected. Three standardized defects (8
mm in diameter) were formed in the parietal bones with low rotation speed of surgical trephine using
sterile saline buffer to cool while clearing any residual debris. Two defects were filled with Gel-BG/Sr and
Gel-BG scaffold, and the third one was left unfilled as a control group. Attention was taken to avoid
displacement of the scaffolds into the other defects. At the end of the surgery, periosteum, muscle, and
skin were repositioned and closed with absorbable VICRYL ® (Johnson & Johnson Co., USA) sutures and
Tetracycline (Iran Darou, Iran) was sprayed on calvaria. Amoxicillin (0.1 ml/kg, 15%, Tolide Darou, Iran)
was also administrated intramuscularly to avoid infections. Animals were safe and kept warm in
separate cages until recovery. They were then guided to the holding room and ordered Ketorolac
Tromethamine (Tarasyn, Korea) for three days to control postoperative pain. 

Histological analysis

Rabbits were sacrificed at four, eight, and 12 weeks after surgery, and calvaria were taken for
macroscopic and microscopic studies. Samples were fixed in 10% neutral buffered formalin followed by
decalcification via immersing in 10% v/v nitric acid for 14 days (being refreshed every 48 h). Then,
dehydration was performed in a graded series of ethanol (80–100%). Each sample was embedded in
paraffin and sectioned (5 microns) by microtome (Leica Microsystems SP 1600, Nussloch, Germany) for
Alizarin Red , Hematoxylin & Eosin (H&E) and Masson’s Trichrome staining evaluations. At least, three
histological sections were selected and investigated using a light microscope (Leica Microsystems AG,
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Wetzlar, Germany). All histomorphometric data were obtained from Image J software (NIH, Maryland,
USA) to evaluate the new bone, residual graft, and connective tissue (n=6 sections/ each group). 

 In vitro antibacterial activity assay

Scaffolds were powdered, sterilized with Ultra Violet (UV) and added to 2 ml Nutrient Broth (NB) bacterial
culture medium at a final concentration of 175mg/ml. Each sample suspension was incubated at 37℃
for 48 hours under aerobic conditions, after which the samples were centrifuged (for 5 min at 15000
rpm). One ml from the supernatant was transferred to sterilized tubes, and separate tubes were
inoculated with each of the test microorganisms (Staphylococcus aureus ATCC28923 and Escherichia
coli ATCC28922) at a final concentration of 106 CFU. Free NB served as negative control, and bioglass
free NB culture of S. aureus and E. coli were used as positive controls. The inoculated samples were
incubated at 37̊C under aerobic conditions for an overnight after which samples were serially diluted and
an aliquot of 100 µl was cultured on Mueller-Hinton agar (MH) at 37 °C for 24h. The total viable count
was performed and the Colony Forming Unit (CFU) was determined on MH plates. The inhibition of
growth was calculated as the logarithmic reduction in colony counts on MH plates. 

Statistical analysis

All data were evaluated using the ANOVA test of SPSS (version 12.0.1, Chicago, USA). Differences were
considered significant at P values ≤ 0.05.

Results
Macroscopic and Histologic Evaluation

The osteogenic capability of the prepared scaffolds was investigated by implanting Gel-BG/Sr and Gel-
BG disks into 8 mm full-thickness calvarial defects after four, eight and 12 weeks. To do this experiment,
rabbits were sacrificed with an overdose of anesthetics and the cranial was carefully removed.
Macroscopically, the entire defect area was covered with the fibrous scar and no inflammation was
observed in all experimental groups. Defects treated with scaffolds appeared thinner than the
surrounding bone 12 weeks after implantation. However, those that had Gel-BG/Sr were contiguous, being
hardly detectable from the nearby bone tissue with no movement (Fig. 1). For H&E staining investigation,
the samples were studied with a light microscope at magnifications of ×40 and ×100. Defects filled with
the Gel-BG/Sr scaffolds presented immature bone development for four weeks. New bone creation was
noted to begin bridging the defects at eight weeks, with noticeable cell migration. The border of the
defects was hardly distinguishable from the nearby bone tissue. Although no noticeable cell permeation
or new bone formation was observed in Gel-BG treated defects at four weeks, cell impregnation, new bone
formation, and bridging in this group was started at eight weeks, which then were increased after twelve
weeks. The unfilled defects (control group) did not heal completely, and the new bone was only noted at
the defect margin with the fibrous tissue covered the rest of the defect (Fig. 2). Additionally, Masson’s
trichrome staining was used to confirm new bone formation (Fig. 3). For Gel-BG/Sr scaffolds, the

https://journals.sagepub.com/doi/full/10.1177/2280800018820490
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displacement of the mature collagen at the new bone formation zone was detected. Immature bone
formation was observed at four weeks, followed by the newly bone creation after eight and 12 weeks.
Unlikely, in defects contained Gel-BG scaffolds as well as the control group, immature bone formation
was not detected at four weeks. In defects treated with scaffolds, the newly produced bone was observed
on each lateral of the margin defects as well as between the implanted scaffolds. Although in all
experimental groups, the Masson’s trichrome images showed the development of new collagen fibers
(blue color), in the defects filled with Gel/BG-Sr, the number of synthesized collagen fibers was higher
compared to other groups following 12 weeks post-implantation.

Mineralization stages of the formed tissue were observed by Alizarin Red staining at specific time points.
As can be seen in figure 4, immature bone development was detected in Gel-BG/Sr at four weeks,
followed by considerable new bone formation and bridging at eight and 12 weeks. For the Gel-BG
scaffold, newly bone development was little, and most of the defects were clear. The new bone was only
noted at the margin with fibrous tissue was observed in the rest of the defect for the unfilled defect. Our
findings showed that implantation of Gel-BG/Sr could upgrade bone regeneration more successfully than
Gel-BG in this model. 

Histomorphometric analysis

The results of the histomorphometric analysis is presented in table 1 during four, eight, and 12 weeks. As
can be seen, the percentage of new bone was 49.10±1.03%, 33.88±0.35%, and 17.32±0.36% for Gel-
BG/Sr, Gel-BG, and control groups at 12 weeks, respectively (Table 1). Bone healing was significantly
increased in Gel-BG/Sr compared with other groups at 12 weeks (*P ≤05). The residual graft was, also,
gradually decreased in Gel-BG/Sr and Gel-BG groups reaching 41.50±0.20% and 51.34±0.06%,
respectively. Also, the amount of connective tissue of composite scaffolds (Gel-BG/Sr and Gel-BG) was
gradually decreased during 12 weeks, while the corresponding data changes were not apparent for the
unfilled groups. 

 Antibacterial investigations

The growth of E.coli was completely inhibited by each of the bioglass containing powder with no
bacterial growth on MH plates. S.aureus was partially inhibited by Gel-BG/Sr , which resulted in 1000
colony-forming units (CFU)/mL on MH plates, equivalent to 3 log reductions in growth index. However,
Gel-BG revealed no antibacterial effect on S.aureus as detected by more than 106 (CFU)/mL growth on
MH agar. Considering the more rigid structure of S. aureus cell was (as a representative of Gram-positive
bacteria), makes Gel-BG/Sr an achievement toward development of structures with wide-range
antimicrobial efficacy.

Table 1 Histomorphometric analysis of new bone, connective tissue and residual graft during 4, 8 and 12
weeks. NB: The percentage of New Bone; RG: The percentage of Residual Graft; CT: The percentage of
Connective Tissue.  
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  Gel-BG/Sr Gel-BG Control

 
NB (%)

4 weeks 11.71±0.84a 7.1±0.7b 4.2±0.42c

8 weeks 30.2±3.3 a 21.02±0.88 b 14.15±0.27 c

12 weeks 49.1±3.73 a 33.88±0.35 b 17.32±0.36 c

 
RG (%)

4 weeks  60.68±1.62 a 69.8±0.54 b 0.00 c

8 weeks  53.56±1.64 a 58.43±1.41 b 0.00 c

12 weeks  41.50±1.94 a 51.34±0.98 b 0.00 c

 
CT (%)

4 weeks  28.15±0.73 a 25.10±0.3 b 95.08±0.21 c

8 weeks  16.23±0.41 a 20.55±0.68 b 85.85±0.56 c

12 weeks  9.4±0.18 a 14.78±0.09 b 82.68±0.38 c

Data are represented as mean ±SD. Different letters in each row show P<0.001  
 

Discussion
Aiming to enhance bone formation with less adverse systemic side effects, Sr has been recently included
in many bone substitutes[18]. This ion is a trace element which induces bone development and hinders
bone resorption, simultaneously[26-28]. The safety and efficacy of Sr-doped biomaterials for inducing
bone formation and remodeling have significantly been reviewed[18]. In our earlier study, we also proved
hat Sr substitution for Ca in Gel/BG scaffolds improves the mechanical, biological, and angiogenic
properties of the scaffold[21]. Here, we additionally investigated the osteogenic potential of Gel-BG and
Gel-BG/Sr scaffolds in critically sized rabbit calvarial defects. Gelatin has been used in clinic as a filler for
bone regeneration [29] or even as drug delivery carrier [30] and wound dressing [31, 32].Other clinical
applications of this material involve  biological glue in acute aortic dissection [33], hemostatic matrix
sealant in many type of orthopedic, cardiovascular and liver surgeries [34].

In this experiment, histological assessments completed on the harvested scaffolds four, eight, and 12
weeks’ post-surgery. No chronic inflammation was observed following implantation of the scaffolds,
which confirms tissue compatibility of BG containing scaffolds[35, 36]. Analysis of decalcified samples
with Alizarin red staining presented much more new bone in defects filled with Gel/BG-Sr compared to
those contained Gel/BG and the control groups. This indicates that Sr substitution in BG could
remarkably increase bone regeneration capacity.

One reason that Sr promotes bone formation and remodeling could be its impact on the expression of
genes, including cytokine IL-6. This cytokine, a pro-inflammatory stimulator that recruits osteoclast and
induces bone reabsorption, is decreased by Sr effect[37]. Also, Sr induces genes and proteins involved in
the bone formation, such as bone morphogenetic proteins and osteocalcin [38].  It has been shown that
Sr ions can increase MSCs response as well as to hinder the differentiation of osteoclasts via inhibiting
the expression of receptor activator of nuclear factor Kappa-B (RANK) ligand in MSCs [27, 39]. Besides,
this ion can stimulate osteoprotegerin expression, which in turn stops the RANK and its ligand interaction,
inhibiting osteoclast activity[40, 41]. It has been demonstrated that the acceleration of osteoprogenitor
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cells differentiation into osteoblasts could be due to the activation of membrane-bound calcium sensing
receptor (CaSR) and the Wnt/β-Catenin signaling pathway[42, 43].

Interestingly, Sr has emerged to induce angiogenic factors expression, including vascular endothelial
growth factor[40]. Enhanced neovascularization caused by Sr substitution could also provide more
nutrients for bone-forming cells in bone defects[23]. Therefore, activation of osteogenesis and
angiogenesis could be considered as improving features for Sr containing scaffolds,  as has been
previously confirmed[23]. Apart from contributing factors mentioned above, the synergistic effect of the
released bioactive Sr and Si ions from BG is possibly another factor enhancing bone regeneration ability
of the Gel/BG-Sr scaffold[23]. In a study, it was confirmed that Sr and Si in the structure of BG could
synergistically activate the NFATC and Wnt/βCatenin signaling pathways, respectively, which in turn
mediate osteogenesis[44]. Zhao et al. assessed the osteogenic capability of Sr-MBG fabricated by three
dimensional (3D) printing method in critical-sized defects made in rat calvarial. Sr-MBG scaffolds
exhibited superior osteocunductivity and more new vessel formation compared to MBG scaffolds for
eight weeks[23].

The process of bone healing can be delayed due to the bacterial infection ,which can subsequently lead
to surgical failure by replacement or removal of the implanted biomaterials[45, 46].Therefore,
biomaterials with anti-infective properties are required in line with the specific clinical application[47].
Many studies have indicated that BGs, even without ionic additions, have growth-inhibitory influence
against several important pathogens[48, 49]. Although the exact antibacterial mechanisms for the BGs
remain unclear, one possible reason could be the fact that the glass sodium is being released, which is
unfavorable for bacteria and increases the pH level. In fact, increased osmotic pressure caused by
dissolution of ions, including silicon, calcium, sodium, and phosphate provides an undesirable
environment for the bacteria growth. Besides, several activities in the bacterial cell, including glycolysis,
trans membrane proton translocation and acid tolerance can be inhibited by dissolution ions such as zinc
form BGs depending on the concentration[50, 51].

Antibacterial studies of this experiment suggest that strontium substitution could increase the
bactericidal effectiveness against S. aureus and E. coli. The outcome was more pronounced against S.
aureus. It has been reported that Sr-BGs antibacterial activity could be a result of  the higher
concentration of Ca, P and Sr ions being released in the simulated body fluid (SBF) solutions and the
higher pH values compared to the BG samples[52]. In a study by Liu et al. , strontium-substituted BGs
significantly inhibited the growth of sub-gingival bacteria  depending on the ratio of strontium in the
glasses[53]. Interestingly, the authors stated that even the base glass with no Sr displays an apparent
antibacterial activity, which may be due to the increased amount of phosphate to 4 mol% compared to
the Bioglass®45S5  with 2.5 mol% P2O5[53].

Significant antimicrobial properties of strontium and silver-containing BG powder has also been formerly
confirmed against S.aureus and E.coli bacteria. Previously, antibacterial test results have shown that the
strontium substituted 58S BG could exhibit the antibacterial effect against methicillin-resistant
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staphylococcus aureus (MRSA) bacteria which are resistant to methicillin and other associated
antibiotics of the penicillin class. Bacterial activities ,including growth and reproduction, cell wall
synthesis, cell metabolism  as well as chromosomal replication can be inhibited by the release of  Sr2+

ions, as well[52, 54-56].

While Sr doped materials are safe and effective for stimulating bone formation and remodeling, this
effect may be more noticeable over time under the concentration applied[18]. Possible factors that could
affect the potential evaluation of results for Sr-enriched biomaterials activity are the rate in which Sr is
being released, Sr content, experimental animal models, size, location, type of the defects, as well as the
applied methods to evaluate the final response[18]. However, despite the good results , more information
is required about the safety and effectiveness of local Sr usage [18].  Precautions still need to be
considered as the safety of oral Strontium Renelate  for the cardiovascular system could be a matter of
concern [57, 58].

Conclusion
Bioactivity of biomaterial is an important factor to be considered as it can influence the scaffold
effectiveness to induce bone formation[22]. Inclusion of 15wt% of BG-Sr into a polymer bulk improved its
osteogenic ability compared with that containing only BG. While retaining antimicrobial efficacy against
E. coli, Sr incorporation effectively improved antibacterial activity against S. aureus, as well.However,
more detailed analysis is still required to elucidate the mechanisms of Sr dopant on improved bone
healing for clinical applications.
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Figures

Figure 1

Macroscopic vault appearance of the defects, showing Gel-BG/Sr and Gel-BG Scaffolds and Control
(unfilled) after A) 4; B) 8 and C) 12 weeks.
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Figure 2

Histological examination (H&amp;E staining) at 4, 8 and 12 weeks. IB( Intact Bone) , NB(New Bone)
(magnification ×40).



Page 16/16

Figure 3

Histological examination (Trichorm-Masson staining) at 4, 8 and 12 weeks. IB; Intact Bone, NB; New Bone
(magnification ×40).

Figure 4

Histological examination (Alizarin red staining), showing the stages of mineralization of formed tissue
after implantation of scaffolds at 4, 8 and 12 weeks. The dotted line indicates the border between intact
bone and scaffolds (Scale bar: 10 mm).


