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Abstract  

Serosurveillance provides a unique opportunity to quantify the proportion of the population that has been 1 

exposed to pathogens. Here, we developed and piloted Serosurveillance for Continuous, ActionabLe 2 

Epidemiologic Intelligence of Transmission (SCALE-IT), a platform through which we systematically 3 

tested remnant samples from routine blood draws in two major hospital networks in San Francisco for 4 

SARS-CoV-2 antibodies during the early months of the pandemic. Importantly, SCALE-IT allows for 5 

algorithmic sample selection and rich data on covariates by leveraging electronic medical record data. We 6 

estimated overall seroprevalence at 4.2%, corresponding to a case ascertainment rate of only 4.9%, and 7 

identified important heterogeneities by neighborhood, homelessness status, and race/ethnicity. 8 

Neighborhood seroprevalence estimates from SCALE-IT were comparable to local community-based 9 

surveys, while providing results encompassing the entire city that have been previously unavailable. 10 

Leveraging this hybrid serosurveillance approach has strong potential for application beyond this local 11 

context and for diseases other than SARS-CoV-2. 12 

 

Introduction 13 

The rapid spread of the SARS-CoV-2 virus has laid bare important gaps in routine infectious diseases 14 

surveillance. Serological data, particularly when collected at high spatial and temporal resolutions, are a 15 

key resource for addressing many  key epidemiological questions since they directly quantify the proportion 16 

of the population that has been infected by a pathogen1,2. For SARS-CoV-2, serology is particularly useful 17 

https://www.zotero.org/google-docs/?gn55qi
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given the high levels of disease under-ascertainment: serologic surveillance is the gold standard for 18 

estimating attack rates (the proportion of the population that has been infected) and highly complementary 19 

to virologic and syndromic surveillance systems for providing vital information on where a population is 20 

along the epidemic curve 3. Population-based serosurveys that employ a probabilistic sampling frame are 21 

considered to be the gold standard for estimating seroprevalence. However, performing large population-22 

based serosurveys can be prohibitively resource-intensive to initiate swiftly or perform repeatedly, 23 

especially during an ongoing outbreak, as demonstrated by the relative sparsity of population-based vs. 24 

convenience sampled serosurveys for SARS-CoV-2 that have been conducted to date3. For example, to 25 

date, no population-based serosurveys have been conducted for the city of San Francisco or wider Bay 26 

Area, and few have been conducted in the United States, limiting our ability to identify of risk factors for 27 

infection, understand population level immunity, and determine which populations and localities may be in 28 

need of targeted public health resources such as testing, contact tracing, or vaccine allocation4. 29 

Residual blood samples from readily available sources (e.g., blood donors or remnant samples collected 30 

from routine medical care visits), especially when linked to individual-level meta-data, provide a unique 31 

opportunity to address these limitations and to efficiently survey a population for antibodies over an 32 

extended period of time5,6. Such studies were found to be useful in the 2009 H1N1 influenza pandemic7–13, 33 

facilitating analyses on a broader spatial and temporal scale than typical cross-sectional serological surveys 34 

allow. However, in most studies that use residual blood samples the source population is unknown14. This 35 

presents a major limitation, as the results are difficult to interpret when it is not known whether the sampled 36 

population is representative of the population of interest.  37 

The San Francisco Bay Area has widely been recognized for taking an early and proactive response to 38 

COVID-19. San Francisco Bay Area counties introduced a shelter-in-place order on 17 March 2020, 39 

requiring residents to remain at home unless leaving the house for essential activities.  Relative to many 40 

other US cities, few cases were detected in San Francisco during the early months of the epidemic, a pattern 41 

which continued as the pandemic progressed. However, like many other areas, a high proportion of 42 

https://www.zotero.org/google-docs/?1b8Iy2
https://www.zotero.org/google-docs/?d8lddd
https://www.zotero.org/google-docs/?V6z7pV
https://www.zotero.org/google-docs/?SmuE9K
https://www.zotero.org/google-docs/?LKRCIC
https://www.zotero.org/google-docs/?oJs5QU
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asymptomatic infections and limited access to diagnostic testing during this time makes it difficult to 43 

interpret these numbers.  Results from an early San Francisco seroprevalence study conducted on 44 

convenience samples in late March to early April 2020 suggested that <1% of the population had been 45 

infected overall16, in contrast to  a seroprevalence of >6% estimated by a community study focusing on a 46 

specific neighborhood, particularly among the Hispanic/Latinx population17. The lack of citywide, 47 

representative seroprevalence estimates during this time period limits the ability to determine to what 48 

degree these discrepancies reflect heterogenous exposure or differences in study design. 49 

Here we present a blueprint and early results of the ongoing SCALE-IT study (Serosurveillance for 50 

Continuous, ActionabLe Epidemiologic Intelligence of Transmission), leveraging residual sera samples 51 

from two large hospital systems in San Francisco, California to quantify the prevalence of SARS-CoV-2 52 

antibodies.  Importantly, these remnant samples are linked to electronic medical records (EMRs) enabling 53 

careful algorithmic selection based on demographic and clinical variables, improving their 54 

representativeness to the general population. We tested over 5,000 samples collected from late March to 55 

June 2020 from San Francisco residents, and calculated raw and adjusted seroprevalence estimates over 56 

space, time, and socio-demographic indicators. These data provide estimates of the overall seroprevalence 57 

in San Francisco during the initial phase of the local SARS-CoV-2 outbreak and highlight spatial and 58 

demographic heterogeneities in transmission across the city.  59 

Methods 60 

Data Source 61 

Residual serum samples from routine blood draws from the University of California, San Francisco (UCSF) 62 

and San Francisco Department of Public Health (SFDPH) inpatient and outpatient healthcare systems were 63 

sampled from March 28, 2020 onward. UCSF Medical Center is a network of 3 hospitals with 64 

approximately 1.8 million outpatient visits annually19. The SFDPH hospital, Zuckerberg San Francisco 65 

General Hospital (ZSFG), is a city hospital which provides trauma, medical and surgical services to a 66 

https://www.zotero.org/google-docs/?TsKLUS
https://www.zotero.org/google-docs/?rG44L1
https://www.zotero.org/google-docs/?zf9UPj
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heterogeneous population of largely un- or underinsured patients, including the city’s homeless population, 67 

and serves roughly 100,000 patients per year20. 68 

 69 

We obtained daily EMRs for all patients in these networks undergoing routine blood testing, defined as 70 

blood chemistries and tests for sexually transmitted infections, rubella, and lead. EMR data included 71 

information on patient demographics, address, insurance provider, and diagnoses. We also obtained 72 

information on all tests for respiratory infections (including SARS-CoV-2) performed on patients in the 6 73 

months prior to the blood draw. 74 

 75 

Sampling Methodology 76 

We aimed to collect 2,000 samples monthly. We determined this sample size based on considerations of 77 

both statistical power and feasibility. To estimate seroprevalence with an absolute error of 5% and at Type 78 

I error of 5%, and a prior of 20% seroprevalence, a sample size of 246 individuals would need to be tested 79 

each month. We determined that an overall sample size of a minimum 1230 samples per month would be 80 

sufficient to allow stratification of results by five age groups (0-19, 20-39, 40-59, 60-79, 80+ years).  81 

 82 

From the full list of residual serum samples that were available, we restricted our sampling frame to samples 83 

from individuals undergoing routine blood testing. We included patients residing in San Francisco, 84 

including those experiencing homelessness. We excluded individuals who were tested for SARS-CoV-2 85 

during the visit when they received their blood draw (except if the test was for routine purposes, such as 86 

testing prior to an elective procedure or admittance to the hospital). We restricted our sample to outpatient 87 

and emergency department visits for adults; for the youngest age group, we included both inpatient and 88 

outpatient visits due to small numbers of available samples. Finally, we excluded samples if a sample from 89 

the same patient had been selected within the previous 30 days.  90 

 91 

https://www.zotero.org/google-docs/?jP8XR9
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After obtaining the list of eligible samples according to the above criteria, we selected serum samples for 92 

the study using a sampling algorithm aimed to ensure an adequate sample size for each of five age strata 93 

and to maximize geographic representativity. After setting a daily target sample size for our overall 94 

population, we divided this equally between five age bins to set a target sample size for each age bin. We 95 

also set a target sample size for each zip code which was proportional to its population size. For each 96 

zipcode with a larger number of eligible samples than its target size, we kept all samples from age groups 97 

with sample sizes below or at their target and obtained a random sample from any age group that had an 98 

eligible sample size above the target size. We intentionally over-sampled pregnant women as a healthy 99 

sentinel population by aiming to obtain up to 10% of the samples from pregnant women undergoing routine 100 

care, as defined by ICD-10 codes.    101 

 102 

Sample Processing 103 

Remnant samples were stored at +4 °C in outpatient laboratories at UCSF and ZSFG, and collected by our 104 

study team twice every week. After collection, samples were centrifuged for 15 minutes at 3500 g before 105 

aliquoting a working stock of 300 uL into 96 well barcoded tubes, diluting in 1:1 HEPES storage buffer, 106 

and storing at +4 °C. The remainder of the sample was aliquoted into 1.4 mL barcoded tubes and stored at 107 

-20 °C. 108 

 109 

Serologic Assays and Validation Data 110 

We used two serologic assays for this study in order to maximize assay specificity. First, we screened all 111 

samples using an in-house ELISA assay, and then performed confirmatory testing on a subset of samples 112 

above a threshold value using an in-house Luminex assay. The ELISA assay detected IgG to the receptor 113 

binding domain (RBD) of the spike (S) protein, based on published protocols with minor modifications21. 114 

Briefly, 1 ug of RBD was used to coat each well of 384-well high binding plates, secondary antibody was 115 

diluted 1:5,000 (Southern Biotech #2048-05), and OPD was used to develop the plates. Concentration 116 

values were calculated from the ELISA optical density (OD) using a plate-specific standard curve from 117 

https://www.zotero.org/google-docs/?eoNOgl
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serial dilutions of a pool of positive control samples22. Samples with an ELISA concentration value above 118 

0.049 were selected for confirmatory testing (see Supplementary Text 1). 119 

 120 

For confirmatory testing, we used a multiplex microsphere assay (Luminex platform) to detect IgG against 121 

the SARS-CoV-2 S protein, RBD, and the nucleocapsid (N) protein, based on a standardized serology 122 

protocol with minor modifications23. Briefly, plasma samples were diluted to 1:100 in blocking buffer A 123 

(1xPBS, 0.05% Tween, 0.5% bovine serum albumin (BSA), 0.02% sodium azide). Antigen concentrations 124 

used were as follows: S: 4 ug/mL, RBD: 2 ug/mL, and N: 3 ug/mL. As above, concentration values were 125 

calculated from the Luminex median fluorescent intensity (MFI) using a plate-specific standard curve from 126 

serial dilutions of a pool of positive control samples. A logistic regression model including the 127 

concentration values of the three antigens for each sample was determined to have the highest cross-128 

validation accuracy for classification, and was used to establish a cutoff for positivity (see Supplementary 129 

Text 1). 130 

 131 

Serologic assays were optimized using positive and negative controls from several sources. Serum samples 132 

from 127 patients with PCR confirmed SARS-CoV-2 infections (representing 266 total samples, with 1-4 133 

longitudinal monthly time points per individual beginning at 3 weeks post-symptom onset) were obtained 134 

from the Long-term Impact of Infection with Novel Coronavirus (LIINC) study 135 

(https://www.liincstudy.org/) and used as positive controls. Importantly, participants in this cohort 136 

represent a range of infection severities (ranging from asymptomatic to severe), age, sex, and ethnicity and 137 

race. Serum samples from 119 individuals obtained prior to the emergence of SARS-CoV-2 were used as 138 

negative controls. The overall sensitivity of our serial testing approach using positive and negative controls 139 

was 94.0% (95% CrI = 89.0%, 97.2%) and specificity was 99.8% ( 95% CrI = 98.2%, 100.0%) 140 

(Supplementary Table 1, Supplementary Text 1). 141 

 142 

 143 

https://www.zotero.org/google-docs/?F7GSeK
https://www.zotero.org/google-docs/?KGnWmK
https://www.liincstudy.org/
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Analytic Methods 144 

Raw seropositivity was determined as the proportion of all samples from unique individuals that tested 145 

positive on the confirmatory assay. We then produced estimates of seroprevalence adjusted for the 146 

sensitivity and specificity of the serial testing approach, incorporating potential conditional dependence of 147 

the tests as described in Gardner et al24 (see Supplementary Text 1). We stratified by covariates to obtain 148 

seroprevalence estimates for each stratum (age, sex, insurance status, ethnicity, and neighborhood). To 149 

identify neighborhoods, we geocoded sample addresses using the Google Cloud Geocoding API25. Samples 150 

(n=365 unique individuals) which could not be geocoded to rooftop (n=261) and/or were from homeless 151 

individuals (n=157) were excluded from neighborhood level estimates of seroprevalence, however 152 

estimates of seroprevalence were calculated for homeless individuals separately and provided alongside 153 

neighborhood level estimates of seroprevalence. All analysis was conducted using the R statistical 154 

software26 and the Stan programming language27. Code and data to reproduce all analyses are available at: 155 

https://github.com/EPPIcenter/scale-it. 156 

 157 

Institutional Review Board (IRB) Approval 158 

This study received expedited review approval by the UCSF IRB #20-30379 (‘Serological Surveillance of 159 

SARS-CoV-2 in Residual Serum/Plasma Samples’). The IRB did not require patient contact or written 160 

consent to use residual sera. The LIINC study (providing positive control samples) was approved by the 161 

UCSF (IRB #20-30479). Pre-pandemic samples used as negative controls came from the New York Blood 162 

Bank, and were de-identified and not subject to IRB review for use in this study. 163 

 164 

Results 165 

Between March 28 2020 and June 26 2020, we collected a total of 5,244 samples, representing 4,735 166 

individual patients, from UCSF Health (n=3037 patients) and ZSFG (n=1698 patients) (Figure 1). By 167 

design, the age distribution of sampled individuals remained consistent throughout the study period, and 168 

https://www.zotero.org/google-docs/?p4n6zX
https://www.zotero.org/google-docs/?D6yWtW
https://www.zotero.org/google-docs/?epgBq5
https://www.zotero.org/google-docs/?ga1BUG
https://github.com/EPPIcenter/scale-it
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the geographic distribution of residents matched the proportion of the San Francisco population living in 169 

each zip code (Figure 2). Our sample did not achieve the target sample size for the youngest age group due 170 

to the limited number of children receiving routine phlebotomy in the UCSF and ZSFG health systems 171 

(Table 1). Our results were relatively representative of the San Francisco population by race and ethnicity, 172 

although our sample overrepresented those who identified as Black/African American and slightly 173 

underrepresented those who identified as Asian. 174 

 175 

Overall, from 5,244 samples we identified 192/4,735 positive samples from unique patients for a raw 176 

seroprevalence of 4.1%. After weighting for age group and sex to match the population structure of San 177 

Francisco and correcting for test performance characteristics (overall sensitivity of 93.7% and specificity 178 

of 99.6%), this corresponds to an estimated population seroprevalence of 4.2% (95% Credible Interval 179 

[CrI]: 2.1%-6.3%). Based on the number of cases reported during the period covered by the study, we 180 

estimate that only 4.9% of all infections were ascertained by the reporting system (95% CrI: 3.3%-9.9%) 181 

(Supplementary Text 1).  Amongst pregnant women seeking routine care (N=268), we estimated a raw 182 

seroprevalence of 3.4% (9/268 seropositive), and after adjusting for test performance characteristics we 183 

estimate 3.5% (95% CrI: 1.1 – 6.4%) seroprevalence amongst this group. This estimate in our sentinel 184 

population group is consistent with the estimates across our overall population of samples.  185 

 186 

We did not observe statistically significant differences in seroprevalence by age (Figure 3A) or hospital 187 

system (Supplementary Table 2). We found seroprevalence to be nearly twice as high in uninsured 188 

individuals (6.3%, 95% CrI: 3.1 - 9.9%)) than in those with some form of insurance, [Private/Commercial: 189 

3.4% (95% CrI: 1.6 - 4.7%);  Government: 4.0% (95% CrI: 2.3 - 5.0%)]  (Figure 3B). With respect to 190 

race/ethnicity, seroprevalence was highest in those identifying as Hispanic (6.3%, 95% CrI: 4.4-8.3%) 191 

followed by Black or African American (4.8%, 95% CrI: 2.8-7.0%), and lowest in those who identified as 192 

Asian (2.3%, 95% CrI: 0.8-3.5%) (Figure 3C). Seroprevalence was almost twice as high in those 193 

identifying as Male (5.3%, 95% CrI: 3.7%-6.6%) compared to Female (2.7%, 95% CrI: 1.1%-3.6%) 194 
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(Figure 3D). Although these samples were obtained over a three-month collection period, given the 195 

relatively low attack rate during these initial stages of the pandemic in San Francisco, we were not able to 196 

detect meaningful differences in seroprevalence over time (Supplementary Table 2). 197 

 198 

Geographically, we found seroprevalence to be highest in the Bayview neighborhood in the southeast region 199 

of the city, at 8.1% (95% CrI: 4.6%, 12.3%) (Figure 4A, Supplementary Table 3). Although several other 200 

neighborhoods had similarly high seroprevalences, there was much more uncertainty around these estimates 201 

(Figure 4B). These findings are consistent with patterns of incidence in the city during this period of time 202 

(Figure 4C).  We identified 157 individuals who were homeless in our study, and amongst this group 203 

seroprevalence was estimated to be 10.8% (95% CrI: 6.1%, 16.5%).  204 

 205 

As validation of the representativity of our approach using curated remnant samples, we compared results 206 

from this study to two contemporaneous community-based serosurveys conducted in specific 207 

neighborhoods of San Francisco. First, we compared these results to a cross-sectional serosurvey carried 208 

out in a census tract within the Mission District (census tract 022901, zip code 94110) between April 25 209 

and April 28, 202017. Chamie et al tested 2,545 census tract residents for SARS-CoV-2 antibodies and 210 

estimated seroprevalence to be 3.1% (95% CI: 2.5-3.9%). This is consistent with our findings of 3.8% 211 

seroprevalence (95% CrI: 1.8-6.3%) between April and June 2020 in the broader Mission District 212 

neighborhood. Second, we compared our results to a cross-sectional serosurvey carried out in two census 213 

tracts in San Francisco’s 10th District between May 30 and June 2, 2020 (https://unitedinhealth.org/sf-214 

district-10), located in the Bayview neighborhood. Among the nearly 1,600 individuals tested for 215 

antibodies, seroprevalence was estimated at 5.6% in Latinx participants (n=320), 2.3% in Black participants 216 

(N= 397) and 0.4% in white participants (n=231). The relatively high seroprevalence we detected in the 217 

Bayview neighborhood through our study is comparable to the results of this community-based study, and 218 

the disparities by race/ethnicity were similar in direction, though different in magnitude, to those identified 219 

through our remnant sample study as well. It is worth noting that the community studies available for 220 

https://www.zotero.org/google-docs/?eiJ4Rq
https://unitedinhealth.org/sf-district-10
https://unitedinhealth.org/sf-district-10
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comparison also rely upon convenience sampling as participation in the studies was voluntary, and therefore 221 

may contain inherent selection biases themselves.  222 

 223 

 224 

 225 

Figure 1: Flow diagram of sampling algorithm  226 
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 227 

Table 1. Socio-demographic characteristics of patients sampled in SCALE IT and of the San Francisco 

population (2019). 

 
UCSF 

(n=3,037) 

ZSFG 

(n=1,698) 

Total sampled 

individuals  

(n=4,735) 

SF Population 

(ACS 2019) 

Sex         

Female 1,733 (57.1%) 758 (44.6%) 2,491 (52.6%) 49.3% 

Male 1,302 (42.9%) 929 (54.7%) 2,231 (47.1%) 50.8% 

Unknown 2 (0.1%) 11 (0.6%) 13 (0.3%) N/A 

Age      

0-19 246 (8.1%) 35 (2.1%) 281 (5.9%) 15.0% 

20-39 836 (27.5%) 425 (25.0%) 1,261 (26.6%) 38.0% 

40-59 731 (24.1%) 591 (34.8%) 1,322 (27.9%) 25.3% 

60-79 834 (27.5%) 556 (32.7%) 1,390 (29.4%) 17.3% 

80+ 390 (12.8%) 91 (5.4%) 481 (10.2%) 4.3% 

Race/Ethnicity         

American Indian or Alaska Native 3 (0.1%) 9 (0.5%) 12 (0.3%) 0.3% 

Asian 783 (25.8%) 423 (24.9%) 1,206 (25.5%) 34.6% 

Black or African American 283 (9.3%) 308 (18.1%) 591 (12.5%) 5.2% 

Other 214 (7.0%) 73 (4.3%) 287 (6.1%) 4.5% 

Other Pacific Islander 28 (0.9%) 17 (1.0%) 45 (1.0%) 0.4% 

White 1,317 (43.4%) 358 (21.1%) 1,675 (35.4%) 39.8% 

Unknown or Declined 43 (1.4%) 18 (1.1%) 61 (1.3%) N/A 

Hispanic* 366 (12.1%) 492 (29.0%) 858 (18.1%) 15.2% 

Insurance Type         

Uninsured 119 (3.9%) 150 (8.8%) 269 (5.7%) N/A 

Government 1,462 (48.1%) 1,475 (86.9%) 2,937 (62.0%) N/A 

Private or Employer 1,351 (44.5%) 70 (4.1%) 1,421 (30.0%) N/A 

Unknown 105 (3.5%) 3 (0.2%) 108 (2.3%) N/A 

*Hispanic includes respondents of any race. Other categories are non-Hispanic. 

 228 
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 229 

 230 

Figure 2: Distributions of SCALE-IT samples by A) epidemiological week and age group, B) zip code and 231 

percentage below the poverty line, and C) map of counts of samples collected by  zip code. 232 
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  233 

Figure 3: Stratified seroprevalence by A) age, B) insurance type, C) ethnicity (groups with N <50 were 234 

excluded from plot) and D) sex. Estimates are adjusted for test performance, and error bars show 95% 235 

credible intervals.  For C), stars (*) indicate the ethnic groups where the 2.5% and 97.5% quantiles of 236 

(Figure 3 continued) the differences in posterior estimates for seroprevalence between samples from 237 

Hispanic patients and that group did not cross zero. Crosses (†) indicate the ethnic groups where the 238 

2.5% and 97.5% quantiles of the differences in posterior estimates for seroprevalence between samples 239 

from Black or African American patients and that group did not cross zero. For D) a star (*) indicates 240 

that the 2.5% and 97.5% quantiles of the differences in posterior estimates for seroprevalence between 241 

Males and Females did not cross zero.  242 
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  243 

Figure 4: Multipanel map showing A) seroprevalence by neighborhood, adjusted for test performance. 244 

Box shows adjusted seroprevalence in individuals experiencing homelessness. B) range of 95% Credible 245 

interval of estimates, C) cumulative incidence by planning neighborhood from March - June 2020, using 246 

data from SFDPH (https://data.sfgov.org/COVID-19/COVID-19-Cases-by-Geography-and-Date/d2ef-247 

idww). For A) and B), estimates for neighborhoods with under 50 samples from unique individuals are 248 

not plotted and shown in grey.  249 

https://data.sfgov.org/COVID-19/COVID-19-Cases-by-Geography-and-Date/d2ef-idww
https://data.sfgov.org/COVID-19/COVID-19-Cases-by-Geography-and-Date/d2ef-idww
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Discussion 250 

In this study, we developed and piloted a scalable and systematic pipeline using remnant samples from two 251 

major hospital networks in San Francisco to select, collect, and test specimens for SARS-CoV-2 antibodies 252 

(SCALE-IT). Through this effort, we estimated seroprevalence during the early months of the epidemic to 253 

be relatively low throughout San Francisco (4.2%), but still representing more than 20 times the number of 254 

infections identified by PCR-confirmed cases at that time. This may be due to the limited availability of 255 

PCR testing during the beginning of the pandemic and the lack of testing of asymptomatic individuals. We 256 

also identified important disparities in seroprevalence at the neighborhood level, with highest 257 

seroprevalence in the Bayview neighborhood in the southeast region of the city, as well as 258 

disproportionately higher seroprevalence in individuals experiencing homelessness and those identifying 259 

as Hispanic, Black/African American, or male. Leveraging this hybrid serosurveillance approach has 260 

potential for broad application beyond this local context and for diseases other than SARS-CoV-2.  261 

 262 

The heterogeneities in seroprevalence we observed by race/ethnicity and socio-economic status -- here 263 

obtained from EMR data on health insurance status and whether individuals were housed -- echo patterns 264 

which have been highlighted over the course of the pandemic at national and global levels29,30. Specific to 265 

San Francisco, our results provide estimates of SARS-CoV-2 cumulative exposure at a granular spatial 266 

resolution with a scope covering the entire city; despite low overall seroprevalence, we identified specific 267 

neighborhoods with disproportionately higher seroprevalence. Interestingly, we also found seroprevalence 268 

to be approximately twice as high in those identifying as male compared to female. Potential explanations 269 

for this difference include differential pathogen exposure by sex, which is supported by findings of other 270 

studies in San Francisco, finding PCR positivity rates of   1.2% (20/1658)  in women and 3.3%  (63/1908) 271 

in men, with an odds ratio of 2.71 (1.64-4.69) for PCR positivity in males, and also that the majority (74%,) 272 

of those who tested positive by PCR or were seropositive for SARS-CoV-2  were frontline workers and 273 

unable to shelter-in-place17, it has been found that males and females mount different immune responses 274 

and infection severity31, which could affect assay sensitivity, however we believe this is unlikely to explain 275 

https://www.zotero.org/google-docs/?1DjCj2
https://www.zotero.org/google-docs/?As575K
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the large difference we see in our estimates as we do not see sex-based differences in the sensitivity of our 276 

assay on the positive controls used in the study, which represent a range of disease severities.  277 

 278 

While a key strength of our approach was leveraging residual sera from two large health system networks 279 

and using data from EMRs to algorithmically select samples for inclusion, there are limitations to this type 280 

of surveillance that require consideration. Most obviously, patient samples may not be fully representative 281 

of the underlying population. This may be particularly true during “shelter-in-place” periods, when 282 

behavioral changes may affect the availability and characteristics of the patient population. These issues 283 

can ideally be mitigated by careful sample selection, as done here by focusing on a subset of outpatients, 284 

with the possibility of further refinement by inclusion of additional selection criteria (e.g., by restricting or 285 

weighting sampling to consider specific visit types or underlying conditions). Representativity of the 286 

serosurveillance system could also be enhanced by including a broader network of local health systems. 287 

We also recognize that the generalizability of our findings may differ by age groups, and is likely to be 288 

lower in children who were under-represented in our sample set despite the stratified sampling framework. 289 

Additional study designs, such as school-based serosurveys, could be leveraged to augment these data to 290 

prospectively assess seroprevalence in specific age-groups, possibly by using non-invasive, saliva-based 291 

antibody testing32. Despite including over 5,000 samples, our study was not powered to detect differences 292 

between covariates or by time in a multiple regression framework, in part due to San Francisco’s success 293 

in maintaining low transmission and thus low seroprevalence during this time period. Lastly, while we 294 

validated our estimates against results from a couple of available community based studies, further 295 

validation would be ideal to assess validity of results and findings. 296 

 297 

In this pilot study, we developed and implemented a SARS-CoV-2 serosurveillance system to detect 298 

population-level pathogen exposure in near-real time, and demonstrated how data collected through this 299 

platform were comparable to results from more resource intensive community-based serological studies 300 

and incidence data. The appeal of this hybrid approach is that it achieves many of the strengths of 301 

https://www.zotero.org/google-docs/?vm9p27
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population-based surveys and provides rich data, while leveraging existing infrastructure to allow for much 302 

greater efficiencies often seen in convenience sampling approaches. Using EMR data, we were able to 303 

develop a stratified sampling frame, ensuring improved representativeness of the results in contrast to 304 

serosurveys performed using convenience samples without these key pieces of information14. At the same 305 

time, we used these data to identify important spatial and demographic heterogeneities in seroprevalence 306 

within our study site; serosurveys performed on residual samples are often limited to coarser levels of meta-307 

data on the sampled population33. The relative ease with which SCALE-IT can be implemented means that 308 

it can be deployed over a broad geographic scale, continuously over time, and dynamically adjusted to 309 

address specific surveillance needs.  310 

 311 

We envision multiple lines of work for future directions. First, the samples that we have selected, collected, 312 

and processed in this work could serve as a valuable biorepository for future applications. The ability to 313 

link rich EMR data to a large bank of well-curated serum samples opens up opportunities for additional 314 

analysis including longitudinal studies of patients. Second, as serosurveillance efforts will be fundamental 315 

to monitor SARS-CoV-2 transmission rates and evaluate the impact of control interventions (both NPIs and 316 

pharmaceuticals) over the coming months and years, future work could leverage these and prospective 317 

serological data to parametrize mechanistic models and to study the effects of control strategies on infection 318 

rate. Third, as discussed by others1,2, our local SCALE-IT platform could easily be expanded to contribute 319 

to a ‘Global Immunological Observatory’ to perform serosurveillance for other pathogens beyond the 320 

SARS-CoV-2 virus. Data generated by such an observatory could be used to address specific public health 321 

gaps including serosurveillance for seasonal pathogens such as influenza or emerging infections. Lastly, 322 

the insights gained from developing this platform could serve as a blueprint for adoption by other health 323 

systems in various contexts. 324 

  325 

https://www.zotero.org/google-docs/?F5hJxx
https://www.zotero.org/google-docs/?hlJlts
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Figures

Figure 1

Flow diagram of sampling algorithm



Figure 2

Distributions of SCALE-IT samples by A) epidemiological week and age group, B) zip code and
percentage below the poverty line, and C) map of counts of samples collected by zip code.



Figure 3

Strati�ed seroprevalence by A) age, B) insurance type, C) ethnicity (groups with N <50 were excluded from
plot) and D) sex. Estimates are adjusted for test performance, and error bars show 95% credible intervals.
For C), stars (*) indicate the ethnic groups where the 2.5% and 97.5% quantiles of (Figure 3 continued) the
differences in posterior estimates for seroprevalence between samples from Hispanic patients and that
group did not cross zero. Crosses (†) indicate the ethnic groups where the 2.5% and 97.5% quantiles of
the differences in posterior estimates for seroprevalence between samples from Black or African
American patients and that group did not cross zero. For D) a star (*) indicates that the 2.5% and 97.5%
quantiles of the differences in posterior estimates for seroprevalence between Males and Females did not
cross zero.



Figure 4

Multipanel map showing A) seroprevalence by neighborhood, adjusted for test performance. Box shows
adjusted seroprevalence in individuals experiencing homelessness. B) range of 95% Credible interval of
estimates, C) cumulative incidence by planning neighborhood from March - June 2020, using data from
SFDPH (https://data.sfgov.org/COVID-19/COVID-19-Cases-by-Geography-and-Date/d2ef- idww). For A)
and B), estimates for neighborhoods with under 50 samples from unique individuals are not plotted and
shown in grey.
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