
Fast Training of a Transformer for Global Multi-
horizon Time Series Forecasting on Tensor
Processing Units
J. Luis García-Nava (jose.garcia@umich.mx)

Universidad Michoacana de San Nicolás de Hidalgo
Juan J. Flores

Universidad Michoacana de San Nicolás de Hidalgo
Victor M. Tellez

Universidad Michoacana de San Nicolás de Hidalgo
Felix Calderon

Universidad Michoacana de San Nicolás de Hidalgo

Research Article

Keywords: Deep Learning, Self-attention, Cloud Computing, TPU

Posted Date: August 11th, 2022

DOI: https://doi.org/10.21203/rs.3.rs-1813490/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

https://doi.org/10.21203/rs.3.rs-1813490/v1
mailto:jose.garcia@umich.mx
https://doi.org/10.21203/rs.3.rs-1813490/v1
https://creativecommons.org/licenses/by/4.0/

Springer Nature 2021 LATEX template

Fast Training of a Transformer for Global

Multi-horizon Time Series Forecasting on

Tensor Processing Units

Garćıa-Nava J-Luis1*, Flores Juan J1,2, Tellez Victor M1

and Calderon Felix1

1*School of Electrical Engineering, Universidad Michoacana de
San Nicolás de Hidalgo, Morelia, 58030, Michoacán, México.

2University of Oregon, Eugene, 97403, OR, USA.

*Corresponding author(s). E-mail(s): jose.garcia@umich.mx;
Contributing authors: juan.flores@umich.mx;
0906214j@umich.mx; felix.calderon@umich.mx;

Abstract

Time Series Forecasting (TSF) is essential to key domains, and the
transformer neural network has advanced the state-of-the-art on global,
multi-horizon TSF benchmarks. The quadratic time and memory com-
plexity of the vanilla transformer (VT) hinders its application to big
data environments; therefore, multiple efficient variants of the VT that
lower complexity via sparse self-attention have been proposed. How-
ever, less complex algorithms do not directly produce faster executions,
and machine learning models for big data are typically trained on
accelerators designed for dense-matrix computation that render slower
performance with sparse matrices. To better compare the accuracy-
speed trade-off of the VT and its variants, it is essential to test
them on such accelerators. We implemented a cloud-based VT on Ten-
sor Processing Units to address this task. Experiments on large-scale
datasets show that our transformer outperforms two reference models on
accuracy while reducing training times from hours to under two minutes.

Keywords: Deep Learning, Self-attention, Cloud Computing, TPU

1

Springer Nature 2021 LATEX template

2 Fast Training of a Transformer for Global Multi-horizon TS Forecasting on TPUs

1 Introduction

Time Series Forecasting (TSF) is essential to decision-making in various crucial
domains such as science, engineering, business, and economics. Over the last
two decades Machine Learning (ML) algorithms consolidated as an effective
approach to TSF. Two factors contributed to this situation: (1) the increas-
ing size, quality, and availability of time series historical datasets, and (2)
the sustained development of powerful ML-oriented computing frameworks.
Aditionally, progressive advances in Deep Learning (DL) provided innovative
neural network architectures able to produce state-of-the-art results in TSF
[1], including Convolutional Neural Networks (CNN), Recurrent Neural Net-
works (RNN), Long Short-Term Memory networks (LSTM), attention-based
mechanisms and, among the latter, transformers. The transformer is a novel
neural network architecture based on an effective self-attention mechanism
that entirely leaves out convolutional or recurrent components. Transformers
have consistently shown the ability to produce state-of-the-art results in fields
like natural language processing (NLP) and computer vision (CV). Based on
their success, the number of projects based on transformers has increased expo-
nentially since its first entrance in [2], leading to the publication of numerous
papers and multiple specialized surveys [3], [4], [5]. Concerning TSF, self-
attention enables transformers to build predictions by focusing on the most
significant parts of the time series history. Moreover, as self-attention does not
involve sequential processing, TSF transformers are entitled to a parallelization
extent that is out of the reach of other architectures.

As a result of the Big Data era, the canonical TSF problem evolved from
predicting one step ahead on a single time series to making predictions for
multiple time steps into the future (multi-horizon forecasting) over large sets
of related time series (multi-series or global forecasting) [6]. Figure 1 shows
the general process of global multi-horizon forecasting: for each element i in
a set of related time series, previous observations zi, associated time-based
covariates xi, and static covariates si are passed as inputs to a single forecast
model. Once trained, the model can predict a given number of time steps into
the future of any time series in the set. Time-dependent covariates (i.e. hour,
weekday, or month-based encodings) generate a temporal alignment, which
can be used to find patterns across time series dynamics. Static covariates
(i.e. geographical location, customer identity, or item category), in conjunction
with proper embeddings, enable the model to group time series into sub-sets
with similar behavior.

Recently, transformer architectures have been extensively applied to the
global multi-horizon TSF problem [8], [9], [7]. A lot of this effort addresses two
well known concerns that hinder the application of the original vanilla trans-
former (VT) [2] to practical TSF environments. First, the full self-attention
mechanism makes the VT’s speed and memory complexities quadratic on the
input sequence length L − O(L2). Second, concerning multi-step-ahead fore-
casting strategies [10], the VT inference over a multi-horizon is iterative (also

Springer Nature 2021 LATEX template

Fast Training of a Transformer for Global Multi-horizon TS Forecasting on TPUs 3

Fig. 1 Global Multi-horizon Forecasting. For each element in a set of related time series,
observed inputs zi, time-dependent covariates xi, and static covariates si are passed as
inputs to a single model. The model is able to predict multiple time steps into the future
for any time series in the set. Figure based on [7].

called recursive ormulti-stage), thus considerable slower than theMIMO infer-
ence available in other architectures. A significant proportion of recent research
in TSF transformers is devoted to addressing the first challenge by design-
ing variants of self-attention that apply more advanced attention strategies
and simultaneously lower the quadratic-complexity computational and mem-
ory cost. However, less complexity does not directly traslate into more speed,
and the fact that low-complexity, efficient transformers perform faster than
dense-matrix-based transformers in practical TSF situations remains unclear.
It is worth to notice the specialized hardware accelerators that usually exe-
cute ML workloads are designed for dense-matrix computation, and sparsity, a
crucial characteristic of ligther self-attention mechanisms, often makes matrix
multiplication slower on these devices[11]. Interesting research lines propose to
adapt dense-matrix calculation devices for efficient sparse-matrix computation
[12]. Still, it is crucial to investigate the direct implementation and execution
of dense-matrix TSF transformers on well-suited hardware accelerators. The
results of such a research work will serve as a baseline for future compari-
son with low-complexity, sparse-attention transformers when both types are
trained on predominantly used ML hardware.

This work addresses the task by implementing a dense, full-self-attention,
multi-layer, encoder-decoder transformer on a complete computational ecosys-
tem for ML hardware-acceleration based on Tensor Processing Units (TPU).
We train a global, multi-horizon TSF model based on the VT architecture

Springer Nature 2021 LATEX template

4 Fast Training of a Transformer for Global Multi-horizon TS Forecasting on TPUs

on two widely-known datasets using a specific cloud computing services inte-
gration to ensure TPU performance. The main contributions of this research
are:

• To implement a fast transformer for global, multi-horizon TSF on a cloud
computing ecosystem in full accordance with TPU operation.

• Our transformer generates results close to the state-of-the-art, at a small
fraction of the computation time reported by the reference models.

• To our knowledge, this is the first implementation of a dense, full-self-
attention, encoder-decoder, multi-layer transformer for TSF on TPUs.

The remainder of this paper is organized as follows. Section 2 discusses
related research work concerning two fields: the application of transformers to
TSF, and the application of TPUs to transformers or TSF. Section 3 describes
the materials and methods employed in implementing the proposed architec-
ture. Section 4 reports the experimental results. Finally, Section 5 presents
conclusions and future work.

2 Related Work

In this section we discuss previous work that is related to our research con-
cerning two specific fields: the application of transformer-based deep neural
networks to TSF problems and TPU-accelerated computation to implement
forecasting applications or transformers. With the intersection of these two
research areas, we approximate a proper context for our work since we have
not found in the literature projects that exhibit a closer or more direct relation
to it.

2.1 Transformers for Time Series Forecasting

The Deep Transformer [13] implements the basic architecture of the origi-
nal NLP transformer [2] adapted to the TSF domain, providing a practical
context to discuss further model improvements. This basic (vanilla) trans-
former, is a sequence-to-sequence model with an encoder-decoder architecture,
multiple layers featuring multi-head self-attention, layer normalization and
residual connections, and an iterative strategy for multi-horizon predic-
tion. The Temporal Fusion Transformer [7] implements an interpretable
multi-head attention block on top of a sequence-to-sequence, LSTM-based
encoder-decoder. This two-layer architecture for temporal processing learns
both short- and long-term dependencies on time series data. It uses a direct
strategy for multi-horizon forecasting and can learn regime-specific tempo-
ral dynamics from time series. A vital research line includes projects that
improve the transformer performance by replacing the canonical full self-
attention mechanism with a sparse mechanism. The LogSparse Transformer

[8] implements a decoder-only architecture that employs convolutional self-
attention to provide queries and keys with enhanced locality knowledge. It also

Springer Nature 2021 LATEX template

Fast Training of a Transformer for Global Multi-horizon TS Forecasting on TPUs 5

introduces LogSparse self-attention, which reduces the transformer complex-
ity from O(L2) to O(L(logL)2), where L is the input sequence length. The
Adversarial Sparse Transformer (AST) [14] implements a sparse attention
mechanism by replacing the softmax activation function in the attention heads
with the α-entmax activation. It uses an encoder-decoder architecture for pri-
mary forecasting tasks and further utilizes it as the generator of a Generative
Adversarial Network (GAN). The discriminator of the GAN is trained with
predicted and ground truth time series that classifies them as generated or real.
A composite loss function, including the generator and the discriminator losses,
is optimized during adversarial training of the complete network. This training
mitigates the error accumulation on further iterative inference. The Informer
[9] proposes ProbSparse self-attention which reduces the transformer complex-
ity to O(L(logL)). It also introduces a self-attention distilling operation across
the transformer layers. This self-attention mechanism decreases memory usage,
and a generative-style decoder produces all the prediction outputs with only
one forward step. A recent research line includes projects implementing series
decomposition as a built-in block of the transformer architecture and entirely
replacing the canonical or sparse self-attention mechanism. The Autoformer

[15] introduces time series decomposition to seasonal and trend-cyclical sub-
series as an internal operation of the TSF model. It also replaces self-attention
with an Auto-Correlation mechanism, which focuses on period-based relation-
ships at the sub-series level. The ETSformer [16] replaces self-attention with
exponential smoothing attention and frequency attention and also redesigns
the transformer architecture with modular decomposition blocks that allow the
model to learn to decompose the time series into interpretable components.

2.2 Applications of Tensor Processing Units to

Transformers and Forecasting

The massive computing requirements placed by ML workloads led to the con-
tinuous development of specialized hardware, like high-performance CPUs,
GPUs, and more recently, TPUs. Since its public release, TPU accelerators
have been applied to various research topics that demand very high process-
ing and memory capabilities. Examples of those domains are DNN training
subject to large batch sizes and specialized learning rate algorithms [17],
[18], distributed evolution strategies for meta-learning [19], acceleration of
explainable machine learning [20], and simulation of quantum physics [21], to
mention a few. Regarding the transformer, NLP and CV projects constitute
the majority of TPU-assisted research using this architecture, partially due
to the high availability of pre-trained models and TPU-ready software imple-
mentations. Examples of the application of TPU-assisted transformers can be
found in machine translation [22], language modeling [23], image generation
[24], and visual recognition [25]. Regarding TSF research, TPUs have been
applied to weather forecasting via convolutional networks enriched with a one-
layer self-attention encoder block [26], and short-term wind speed forecasting
via symbolic regression [27]. However, to the extent of our knowledge, our

Springer Nature 2021 LATEX template

6 Fast Training of a Transformer for Global Multi-horizon TS Forecasting on TPUs

project is the first implementation of a complete, multi-layer, encoder-decoder
transformer for TSF on TPUs.

3 Materials and Methods

This section covers the materials and the methodology employed in our
research. First, the global, multi-horizon TSF problem is defined. On this basis,
the transformer neural network is proposed to model the prediction function.
Next, we present TPUs as a convenient computation resource to deal with
the huge workload required by the transformer-based TSF model. Afterward,
this section explains the transformer implementation based on the previous
elements. Finally, we present our experimental study in detail.

3.1 Global Multi-horizon Time Series Forecasting

This subsection defines the global, multi-horizon TSF problem based on the
background provided in [8], with minor adjustments to fit our transformer
implementation. Let {zi,1:t0}Ni=1 be a collection of N related univariate time
series, where zi,t ∈ R is the value of time series i at time t. Let zi,1:t0 =
[zi,1, zi,2, · · · , zi,t0] be the conditioning range for time series i, and let τ ∈ N

be the forecast horizon. We will predict the next τ time steps (or prediction

range) for all time series, i.e. {zi,t0+1:t0+τ}Ni=1 Also, let {xi,1:t0+τ}Ni=1 be a set
of associated time-based covariate vectors with dimension dx that are known
over the entire time period, e.g. hour-of-the-day or day-of-the-week. Finally, let
{si}Ni=1 be a set of associated static covariate vectors of dimension ds that are
known and constant over the entire time period, e.g. a time series identifier.
We intend to model the following conditional distribution:

p(zi,t0+1:t0+τ | zi,1:t0 ,xi,1:t0+τ , si; Φ)1 =

t0+τ
∏

t=t0+1

p(zi,t | zi,1:t−1,xi,1:t, si; Φ)

(1)
where Φ denotes the learnable parameters shared by all time series in the
collection. The problem defined in (1) is reduced to learning a one-step-ahead
prediction model p(zi,t | zi,1:t−1,xi,1:t, si; Φ), as multiple steps ahead can be
iteratively calculated by adding previously predicted values as new inputs. To
fully use observations and covariates, they are concatenated into an augmented
matrix as follows:

yi,t = [zi,t−1 ◦ xi,t ◦ si] ∈ R
dx+ds+1, Yt = [y1, · · · ,yt]

T ∈ R
t×(dx+ds+1)2

(2)
where [· ◦ ·] represents concatenation along the t axis.

1For simplicity we omit the fact that this is the conditional distribution of the prediction range
of time series i given the conditioning range of time series i, as well as the conditioning and
prediction ranges of all other time series in the collection. We consider this situation implicit since
the parameters Φ are learned jointly from all the time series in the collection.

2Since the model applies to all time series, the subscript i is omitted for simplicity.

Springer Nature 2021 LATEX template

Fast Training of a Transformer for Global Multi-horizon TS Forecasting on TPUs 7

3.2 Transformer Architecture

We use a transformer-based model f to predict zt given Yt as zt ∼ f(Yt) (see
Figure 2). First an internal dimension dmodel is defined for the transformer and
the augmented matrix Yt is linearly projected from R

t×(dx+ds+1) to R
t×dmodel .

Notice in Figure 2 (left-block) that the conditioning range passed as input to
this model is split into an encoder input with dimension e and a decoder input
with dimension d, where the value of t from (2) is given as t = e+ d+ 1 (the
last value of the encoder input overlaps the first value of the decoder input,
the decoder output is the decoder input shifted one time step to the right, and
the only predicted value is the last time step in the decoder output).

Fig. 2 Architecture of the transformer-based model. Left-block: Main architecture. Center-
block: Multi-head attention. Right-block: Scaled Dot-product attention

Then a Multi-head Attention (MHA) layer (Figure 2, center-block) is used

to transform Y into H distinct query matrices Qh = YW
Q
h , key matrices

Kh = YWK
h , and value matrices Vh = YWV

h , with h = 1, · · · , H. The weight

matrices WQ
h ,W

K
h ∈ R

dmodel×dk and WV
h ∈ R

dmodel×dv are learnable param-
eters. The Scaled Dot-product attention (Figure 2, right-block) computes a
sequence of vector outputs:

Oh = Attention(Qh,Kh,Vh) = softmax(
QhK

T
h√

dk
)Vh (3)

Springer Nature 2021 LATEX template

8 Fast Training of a Transformer for Global Multi-horizon TS Forecasting on TPUs

The output of the MHA layer is calculated as follows

MultiHeadAttention(Q,K,V) = [O1, · · · ,Oh]W
O (4)

where WO ∈ R
hdv×dmodel .

Finally, the MHA output is passed to a Position-wise Feed-forward Network
(FFN) with two dense layers (fully-connected). The first dense projects dmodel

to a given dff using a ReLU activation, while the second dense returns the
projection to dmodel. Additional Add and Layer-normalization layers provide
residual connections that allow the gradients to skip the MHA and/or FFN
layers if they do not improve the model.

3.3 Tensor Processing Units

A TPU is an application-specific integrated circuit (ASIC) developed by
Google to accelerate large-scale ML. Google Cloud (GC) first released TPU v1
in 2018, and at the time of this writing, its highest publicly available version
is TPU v3. Each one of the 8 cores in a TPU v3 board provides a Matrix Mul-
tiplier Unit (MXU) with 65,536 8-bit multiply-and-add units, a Unified Buffer
(UB) with 24MB of SRAM, and an Activation Unit (AU) with hardwired
activation functions. These computational resources are designed to process
basic neural network-related operations at a very low level: the MXU per-
forms matrix operations, while the UB holds intermediate results, and the
AU performs the nonlinear operations over the MXU output [28]. A Complex
Instruction Set Computer (CISC) controls the TPU resources with an instruc-
tion set also designed for neural network-specific operations. The core of TPU
logic is a systolic array [29]. This chip architecture accelerates matrix multi-
plications on the MXU by making input values flow through fixed patterns
of multiply-and-add units, substantially reducing read-write operations to the
UB (see Figure 3). TPU ML-accelerators are only available via Cloud TPU, a
high-performance computing service of GC.

Cloud TPU provides a TPU board connected via PCI to a host virtual
machine (VM). Inside this combination, the TPU runs the consuming model
tranining and evaluation stages in parallel. TPU computing performance is
extremely high (up to 420 TFLOPS) and data infeed usually becomes an
operation bottleneck. For this reason, the host VM is used to execute code
that feeds data to the TPU as fast as possible. TPU hardware is language-
agnostic, so an Accelerated Linear Algebra (XLA) compiler maps the ML-code
representations from a specific programming language to TPU machine code.
The XLA compiler is designed for linear algebra and vector computations; any
programming construct that relies on different operations has to be directed
to the host VM’s CPU. The MXUs of a TPU can perform at mixed precision,
combining different numerical formats in the same computational workload.
TPU cores can use bfloat16 format for multiplications and float32 format
for results accumulation. As most deep learning applications do not need a high
precision to get the target application accuracy [17], floating point operations,
and consequently the training process, are accelerated if weights, gradients,

Springer Nature 2021 LATEX template

Fast Training of a Transformer for Global Multi-horizon TS Forecasting on TPUs 9

Fig. 3 Systolic data flow of the MXU. Weights are pre-loaded from the Weight Fetcher
Interface into the computation cells inside the MXU. Data flows in at regular intervals
from the vertical stack of systolic data setup blocks (left). A given 256-element multiply-
accumulate operation moves through the matrix as a diagonal wavefront. Partial sums are
collected on the horizontal stack of accumulators (bottom). Results flow out the MXU at
the bottom-right corner into the Activation Unit [28].

data, and activations are represented in bfloat16 format. Figure 4 compares
float32, bfloat16, and float16 numerical formats.

Fig. 4 Comparison of the float32, bfloat16, and float16 numerical formats. The bfloat16
format implements the same range as the float32 format but with a lower precision. TPUs
build mixed precision as a combination of bfloat16 and float32, while GPUs commonly used
for ML workloads use a combination of float16 and float32.

3.4 Implementation

Figure 5 shows the cloud-based TPU computing pattern implemented for train-
ing the transformer. We programmed our transformer with TensorFlow [30] as

Springer Nature 2021 LATEX template

10 Fast Training of a Transformer for Global Multi-horizon TS Forecasting on TPUs

front end, based on the Multi-head Attention (MHA) layer from TensorFlow
AddOns. This layer is a subclass of the Keras Layer class that expresses the
query, key, and value tensors as linear transformations based on the tf.einsum
tensor contraction. The encoder and decoder layers that integrate the trans-
former are also defined as subclasses of Keras Layer. To improve the TPU
performance and to ensure the model scalability, the transformer was coded
using TPUEstimator, a high-level Application Programming Interface (API)
that simplifies TPU usage by handling numerous low-level, hardware-specific
details.

Fig. 5 Cloud-based TPU computing pattern for training the transformer. The TensorFlow
TPUEstimator API allows decoupling the input fn from the model fn for CPU-based exe-
cution of the former and TPU-based execution of the latter. Dotted boxes represent cloud
computing services.

TPUEstimator is built on the basis of Estimator, a high-level API for Ten-
sorFlow. TPUEstimator presents an interface similar to Scikit-learn, and
some adaptations to simplify its deployment to production stages [31]. The
Estimator class is the base for executing the different stages of the ML model
(training, evaluation, and prediction) from the same base-code expressed in a
model fn function. A user-defined function called input fn produces the input
for the Estimator, decoupled from the model fn. Based on this decoupling,
the TPU runs the model fn, which encloses anything involving trainable vari-
ables or gradients. The host VM’s CPU runs the input fn, which focuses on
data preparation and infeed. The TPUEstimator API implements all-reduce

syncrhronous data parallelism, which means it evenly splits the training batch
among the workers (cores) of the TPU board. Conversely, the ML model is not
distributed and every worker keeps a replication of the TensorFlow computa-
tion graph. Workers operate synchronously, with each worker performing the
same step simultaneously. A reduction operation is performed across all the

Springer Nature 2021 LATEX template

Fast Training of a Transformer for Global Multi-horizon TS Forecasting on TPUs 11

workers once the training step is completed. For this cloud-based implementa-
tion of the transformer, we built an advanced architecture by leveraging several
services of GC. A development VM retrieves TensorFlow scripts and param-
eters from cloud storage, spins-up a Cloud TPU as a training co-processor,
sends the TensorFlow computation graph to the TPU’s host VM and, during
training, writes the resulting serialized model back to cloud storage. TPU’s
host VM pulls data directly from cloud storage and distributes it to the TPU
cores.

3.5 Experimental Study

This subsection covers the datasets, data preprocessing, model parametriza-
tion, and testing metrics used in our experimental study.

3.5.1 Datasets and Data Preprocessing

We trained our transformer on two widely-known datasets: electricity3 that
contains hourly time series of the electricity consumption of 370 customers,
and traffic4 which is composed of 963 time series with hourly readings of
car lane occupancy of San Francisco bay area freeways. Figure 6 illustrates
the data setup of the transformer. Dynamic inputs to the model include all of
the univariate time series zt, and, for each time series, two positional encoding
functions f1(xk,t) and f2(xk,t), k ∈ [1, j] of j time-dependent covariates, where
f1 and f2 define sine- and cosine-based cycles over the period length of the
covariate, e.g. 24 for the hour of day. The part of the time series to the left of
the green vertical line is the data that is presented to the model for training.
The part to the right of the green line is the data used to test the model once
it is trained. The bisected red horizontal lines represent time windows used as
data examples: the left section of the red line is the data passed as input to the
model (conditioning range), while the right section is the data used as target or
output from the model (prediction range). (a) During training, time windows
are required to completely lie to the left of the green line, as only seen data

can be used for training or evaluation purposes. (b) During forecasting, the
prediction range of the data examples passed to test the model must entirely
lie to the right of the green line (unseen data).

Data setup is completed with two additional components (not shown in
the figure): a time-dependent covariate with the consecutive value of hour
on the observation timestamp measured from the time series starting point
(age-covariate), and a scalar time series identifier which is passed as a static
covariate for the model, then conformed into a learnable embedding which
provides a finite-dimensionality space for time series with similar behavior to
group. Datasets were split for training and test stages using date ranges as in
[32]. Min-max normalization to [0, 1] was applied to both datasets, in order to
compensate for the large difference in time series values in electricity, and to

3http://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
4http://archive.ics.uci.edu/ml/datasets/PEMS-SF

Springer Nature 2021 LATEX template

12 Fast Training of a Transformer for Global Multi-horizon TS Forecasting on TPUs

Fig. 6 Data setup for the transformer model. In the first row, a single univariate time series
to forecast zt. In the second and third rows, two exemplary sine-based positional encodings
based on the hour of the day x1,t and the day of the week x2,t of the observation timestamp.
Figure based on [32]

speed up the model convergence in traffic. Proper normalization scalers were
acquired only from training data to avoid leaking information from the future
into the model. Once preprocessed and separated, data was persisted to cloud
storage as sequences of binary strings (TFRecords) in accordance with best-
TPU-performance guidelines. A data ingestion pipeline for training the model
was defined on the basis of the tf.data.dataset TensorFlow API. Prefetchig
was also used for parallel preprocessing, that means to start preparing the
next batch while still training the current batch. To ensure good throughput
during ingestion from cloud storage, individual TFRecord files were prepared
for each time series identifier, resulting in 370 50-MB files for electricity

and 963 33-MB files for traffic.

3.5.2 Model Parametrization

The transformer was trained using the Adam optimizer [33] with β1 = 0.9,
β2 = 0.98, and ϵ = 10−8, and a custom learning rate lrate = d−0.5

model ·
min(step num−0.5, step num · warmup steps−1.5) which results in increas-
ing the learning rate linearly for the first warmup steps training steps, and
decreasing it thereafter proportionally to the inverse square root of the step
number [2]. The Mean Squared Error (MSE) was used as the training loss
function, defined as MSE = 1

|Ωtrain|

∑

(i,t)∈Ωtrain

|ẑi,t − zi,t|2 where Ωtrain is the

collection of readings for all t timesteps in all i time series in the training
dataset, and |Ωtrain| is the number of readings in that collection. The dynamics
of the used learning rate schedule is shown in Figure 7.

3.5.3 Inference

After training the transformer, we tested it using 24 hours (one day) and
168 hours (one week) as forecasting horizons. To exactly match the specific
one-week inference interval reported by the reference models, 7 rolling-day

Springer Nature 2021 LATEX template

Fast Training of a Transformer for Global Multi-horizon TS Forecasting on TPUs 13

Fig. 7 Learning rate schedule for the Transformer model.

predictions of one day ahead were produced on each dataset. Following the
convention in literature we labeled these inference results as electricity1d
and traffic1d. In order to study the predictive performance of our model on a
longer horizon, we also produced one-time predictions of seven days ahead for
each dataset, and labeled them as electricity7d and traffic7d. Normalized
Deviation (ND) and Normalized Root Mean Squared Error (NRMSE) were
used as metrics for testing the transformer model, and are defined as follows:

ND =

∑

(i,t)∈Ωtest

|ẑi,t − zi,t|
∑

(i,t)∈Ωtest

|zi,t|
NRMSE =

√

1
|Ωtest|

∑

(i,t)∈Ωtest

|ẑi,t − zi,t|2

1
|Ωtest|

∑

(i,t)∈Ωtest

|zi,t|

where Ωtest is the collection of readings for all t timesteps in all i time
series in the test dataset, and |Ωtest| is the number of readings in that collec-
tion. Table 1 shows the complete dataset statistics as well as the architecture,
training, and testing parameters used in the transformer.

4 Results and Discusion

This section presents the results of our experiments with the transformer. First,
two well-renowned TSF models are presented as the baseline for evaluation.
Next, forecasting accuracy and computation times obtained are compared with
the baseline.

4.1 Baseline

Two robust DL-based models were used as baseline to evaluate the perfor-
mance of the transformer: (a) DeepAR [32] is an autoregressive model for
probabilistic forecasting with a RNN-based architecture, and (b) TRMF [34] is
a temporal regularized matrix factorization framework for high-dimensional
time series problems (including TSF) with missing values. DeepAR represents

Springer Nature 2021 LATEX template

14 Fast Training of a Transformer for Global Multi-horizon TS Forecasting on TPUs

Table 1 Dataset statistics and Transformer parameters.

electricity traffic

dataset statistics

of time series 370 963
time granularity hour hour
domain R+ [0, 1]

architecture parameters

encoder length 168 168
decoder length 168 168
input embedding dimension 370 963
ouput embedding dimension 24 24
of layers 2 2
of heads 4 4
model dimension 256 256
feed-forward dimension 512 512

training parameters

of training samples 1.8 M 3.1 M
batch size [128, 256, 512, 1024] [128, 256, 512, 1024]
warmup steps 5000 5000
of epochs 1.07 0.82

testing parameters

forecasting horizon [24, 168] [24, 168]

a very useful baseline for our transformer because it not only provides a ref-
erence for point-forecasting accuracy but also for computation times on the
selected datasets.

4.2 Forecasting Accuracy

Our transformer consistently reaches convergence at a very fast pace, after
training it for roughly one epoch on the complete dataset, that is 1.8 million
samples for electricity and 3.1 million samples for traffic. Our model
outperforms TRMF and DeepAR on electricity1d (Table 2) after 1.07 training
epochs.

Table 2 Forecasting accuracy comparison for
electricity1d (rolling-day prediction of 7 days).

Metric TRMF DeepAR Ours

ND ↓ 0.161 0.071 0.070 ± 0.004
NRMSE ↓ 1.151 1.001 0.546 ± 0.049

1Results from [32].

Springer Nature 2021 LATEX template

Fast Training of a Transformer for Global Multi-horizon TS Forecasting on TPUs 15

Concerning traffic1d, our model outperforms TRMF and ties DeepAR (Table
3) after 0.82 training epochs. The fact that our model achieves a good predic-
tive performance on traffic even though the dataset was not entirely passed
to the model during training, supports the assumption that this transformer
is able to learn patterns across time series that exhibit similar behavior.

Table 3 Forecasting accuracy comparison for
traffic1d (rolling-day prediction of 7 days).

Metric TRMF DeepAR Ours

ND ↓ 0.201 0.171 0.167 ± 0.019
NRMSE ↓ 0.431 0.421 0.422 ± 0.015

1Results from [32].

Figures 8 and 9 show the test metrics for different training batch sizes
of our transformer on electricity1d and traffic1d, respectively. On both
datasets and for the two selected inference metrics, the transformer produces
the best results when trained with a batch size of 256.

Fig. 8 Test metrics for electricity1d (rolling-day prediction of 7 days) at different training
batch sizes. Best values for both ND and NRMSE are obtained with a batch size of 256.

Regarding the seven-day forecasting horizon, our transformer outperforms
TRMF and ties DeepAR on electricity7d, as shown in Table 4. Our model
exhibits predictive performance degradation due to error accumulation on the
iterative inference process for traffic7d, which suggests the need for training
for more epochs if longer forecasting horizons are planned for this dataset.
Figure 10 shows that the best inference metrics for a seven-day forecasting
horizon are also produced by the transformer trained with a batch size of 256.

Springer Nature 2021 LATEX template

16 Fast Training of a Transformer for Global Multi-horizon TS Forecasting on TPUs

Fig. 9 Test metrics for traffic1d (rolling-day prediction of 7 days) at different training
batch sizes. Best values for both ND and NRMSE are obtained with a batch size of 256.

Table 4 Forecasting accuracy comparison (ND values
only) for electricity7d and traffic7d (one-time
prediction of 7 days ahead).

Dataset TRMF DeepAR Ours

electricity7d 0.0871 0.0821 0.082 ± 0.006
traffic7d 0.2021 0.1791 0.203 ± 0.032

1Results from [8].

Fig. 10 Test metrics (ND only) for electricity7d (left) and traffic7d (right), one-time
prediction of 7 days ahead at different training batch sizes. Best ND values for both datasets
are obtained with a batch size of 256.

Springer Nature 2021 LATEX template

Fast Training of a Transformer for Global Multi-horizon TS Forecasting on TPUs 17

4.3 Computation Time

Concerning computation time, our transformer clearly outperforms the models
in the baseline, as shown in Table 5. Our model takes only 89 seconds of train-
ing wall-time5 on electricity and 119 seconds on traffic to consistently
reach the accuracy metrics reported above. This represents an outstanding
improvement over the 7 hours and 3 hours of total running time reported
by DeepAR, respectively. The extreme reduction on training computation
time achieved by our model does not exclusively apply to DeepAR, a DL
architecture that exhibits a very close predictive performance to ours. The
Temporal Fusion Transformer (TFT) [7] reported a training computation
time, on GPU-accelerated hardware, that is slightly over 360 minutes, for the
electricity dataset. In the same line, training times close to 480 minutes
are reported for both LogSparse Transformer and Informer in [9], when
these models are trained with the encoder length set to 168 (as in our main
experiment) on electricity and three other similar datasets, using GPU-
accelerated hardware. It is important to emphazise that we did not attempt a
direct comparison with the TFT or LogSparse models, as their functionalities
are very different, and their reported forecasting accuracies are superior than
the ones achieved by our transformer, so far. Instead we use their reported
results to illustrate the huge training times usually required by most DL-based,
hardware-accelerated TSF models to deal with a problem we solved in under 2
minutes wall-time. Inference computation times for our transformer are highly
dependent on the infrastructure where prediction is served and, due to the
iterative nature of our model, this inference process is not suitable for TPU-
based implementation. Instead, a parallel execution based on separated time
series processing was prototyped to obtain inference computation times that
are comparable in magnitude to those required by training.

Table 5 Computation time comparison.

Dataset TRMF DeepAR Ours

electricity23 - 420 min1 1.5 min

traffic - 180 min1 2.0 min

1Results from [32]. Reported as total running time, it
is assumed it includes training and inference stages.
TRMF computation times not available.
2A training computation time (GPU-accelerated) over
360 minutes is reported for TFT in [7] ror this dataset.
3Training times close to 480 minutes (GPU-accelerated)
are reported for LogSparse Transformer and Informer

in [9] for this dataset and three other similar datasets.

5Elapsed real time or wall-clock time, is the actual time taken to complete the training process.
Training wall time is reported by Tensorboard and does not include the time spent on evaluation
or checkpoint-related operations.

Springer Nature 2021 LATEX template

18 Fast Training of a Transformer for Global Multi-horizon TS Forecasting on TPUs

5 Conclusions and Future Work

Real-world TSF applications demand ML-based models to be not only accu-
rate, but also fast. Low-complexity, sparse variants of the VT have consistently
advanced the state-of-the-art on TSF but do not consistently report their speed
metrics. This situation hinders the analysis on the accuracy-speed trade-off
of ML-based models, which is an invaluable tool for operating TSF processes
on modern production environments. In this work, we present in detail the
accelerated training of a transformer for global, multi-horizon TSF. We imple-
mented our transformer on a cloud computing ecosystem that follows the best
practices for TPU operation, such as decoupled input- and model-function,
model training with mixed-precision arithmetics, cloud-based artifact storage,
and efficient serialization (TFRecord file-based) for data infeed. Experiments
on two widely-known, large-scale datasets show that our dense-matrix, full
self-attention, multi-layer, encoder-decoder transformer outperforms two close
to the state-of-the-art reference models in accuracy, while reducing training
computation times from several hours to under 2 minutes wall-time. As the
training computation times of the models used as baseline in this paper are
comparable to most of the DL models currently proposed to solve the global,
multi-horizon TSF problem, our work provides a basis for further research
aimed to produce a more balanced comparison, in terms of both predictive
performance and speed, of the original VT and its sparse variants. Future
work in this direction includes the following two research lines: adding sparsity
and enhanced locality to our transformer’s self-attention mechanism via the
design of convolutional filters (as in [8]) and activation functions (as in [14]);
and downsampling the input sequence as it passes through the model’s self-
attention layers (as in [9]). These contributions have already proved to increase
the transformer accuracy on TSF problems, therefore they constitute a good
benchmark to evaluate the impact that moving the computation process out-
side the dense-matrix domain will have in the speed of our TPU-accelerated
transformer.

Declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and materials

The datasets analysed during the current study are
available in the UCI Machine Learning Repository, at
http://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014

Springer Nature 2021 LATEX template

Fast Training of a Transformer for Global Multi-horizon TS Forecasting on TPUs 19

(electricity), and http://archive.ics.uci.edu/ml/datasets/PEMS-SF
(traffic). The datasets generated during the current study are available on
request from the corresponding author.

Competing interests

All authors certify that they have no affiliations with or involvement in any
organization or entity with any financial interest or non-financial interest in
the subject matter or materials discussed in this manuscript.

Funding

J. Luis Garćıa-Nava’s Sc.D. program is supported by a National Scholarship
granted by the Consejo Nacional de Ciencia y Tecnoloǵıa (National Council
of Science and Technology) under the CVU No. 737505. Victor M. Tellez’
Sc.D. program is supported by a National Scholarship granted by the Consejo
Nacional de Ciencia y Tecnoloǵıa (National Council of Science and Technology)
under the CVU No. 816803.

Authors’ contributions

All authors contributed to the research conceptualization and design. Data
were collected, reviewed and prepared by J. Luis Garćıa-Nava, Juan J. Flo-
res, and Victor M. Tellez. Software was developed, deployed in the cloud,
and executed by J. Luis Garćıa-Nava. Results analysis was performed by J.
Luis Garćıa-Nava, Juan J. Flores, and Felix Calderon. The first draft of the
manuscript was written by J. Luis Garćıa-Nava and Juan J. Flores. All authors
commented on previous versions of the manuscript. All authors read and
approved the final manuscript.

Acknowledgments

This research was supported by the Consejo Nacional de Ciencia y Tecnoloǵıa
(National Council of Science and Technology) of Mexico.

References

[1] Lim, B., Zohren, S.: Time-series forecasting with deep learning: a survey.
Philosophical Transactions of the Royal Society A 379(2194), 20200209
(2021)

[2] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez,
A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. Advances in
Neural Information Processing Systems 30 (2017)

[3] Khan, S., Naseer, M., Hayat, M., Zamir, S.W., Khan, F.S., Shah, M.:
Transformers in vision: A survey. ACM Computing Surveys (CSUR)
(2021)

Springer Nature 2021 LATEX template

20 Fast Training of a Transformer for Global Multi-horizon TS Forecasting on TPUs

[4] Lin, T., Wang, Y., Liu, X., Qiu, X.: A Survey of Transformers. arXiv
(2021). https://doi.org/10.48550/ARXIV.2106.04554. https://arxiv.org/
abs/2106.04554

[5] Tay, Y., Dehghani, M., Bahri, D., Metzler, D.: Efficient transformers: A
survey. ACM Computing Surveys (CSUR) (2020)

[6] Hewamalage, H., Bergmeir, C., Bandara, K.: Global models for time series
forecasting: A simulation study. Pattern Recognition, 108441 (2021)

[7] Lim, B., Arık, S.Ö., Loeff, N., Pfister, T.: Temporal fusion transformers for
interpretable multi-horizon time series forecasting. International Journal
of Forecasting (2021)

[8] Li, S., Jin, X., Xuan, Y., Zhou, X., Chen, W., Wang, Y.-X., Yan,
X.: Enhancing the locality and breaking the memory bottleneck of
transformer on time series forecasting. Advances in Neural Information
Processing Systems 32, 5243–5253 (2019)

[9] Zhou, H., Zhang, S., Peng, J., Zhang, S., Li, J., Xiong, H., Zhang,
W.: Informer: Beyond efficient transformer for long sequence time-series
forecasting. In: Proceedings of AAAI (2021)

[10] Taieb, S.B., Bontempi, G., Atiya, A.F., Sorjamaa, A.: A review and com-
parison of strategies for multi-step ahead time series forecasting based on
the nn5 forecasting competition. Expert systems with applications 39(8),
7067–7083 (2012)

[11] Fournier, Q., Caron, G.M., Aloise, D.: A Practical Survey on Faster and
Lighter Transformers. arXiv (2021). https://doi.org/10.48550/ARXIV.
2103.14636. https://arxiv.org/abs/2103.14636

[12] He, X., Pal, S., Amarnath, A., Feng, S., Park, D.-H., Rovinski, A., Ye,
H., Chen, Y., Dreslinski, R., Mudge, T.: Sparse-TPU: Adapting systolic
arrays for sparse matrices. In: Proceedings of the 34th ACM International
Conference on Supercomputing, pp. 1–12 (2020)

[13] Wu, N., Green, B., Ben, X., O’Banion, S.: Deep Transformer Mod-
els for Time Series Forecasting: The Influenza Prevalence Case. arXiv
(2020). https://doi.org/10.48550/ARXIV.2001.08317. https://arxiv.org/
abs/2001.08317

[14] Wu, S., Xiao, X., Ding, Q., Zhao, P., Wei, Y., Huang, J.: Adversar-
ial sparse transformer for time series forecasting. Advances in Neural
Information Processing Systems 33 (2020)

https://doi.org/10.48550/ARXIV.2106.04554
https://arxiv.org/abs/2106.04554
https://arxiv.org/abs/2106.04554
https://doi.org/10.48550/ARXIV.2103.14636
https://doi.org/10.48550/ARXIV.2103.14636
https://arxiv.org/abs/2103.14636
https://doi.org/10.48550/ARXIV.2001.08317
https://arxiv.org/abs/2001.08317
https://arxiv.org/abs/2001.08317

Springer Nature 2021 LATEX template

Fast Training of a Transformer for Global Multi-horizon TS Forecasting on TPUs 21

[15] Xu, J., Wang, J., Long, M., et al.: Autoformer: Decomposition trans-
formers with auto-correlation for long-term series forecasting. Advances
in Neural Information Processing Systems 34 (2021)

[16] Woo, G., Liu, C., Sahoo, D., Kumar, A., Hoi, S.: ETSformer: Expo-
nential Smoothing Transformers for Time-series Forecasting. arXiv
(2022). https://doi.org/10.48550/ARXIV.2202.01381. https://arxiv.org/
abs/2202.01381

[17] You, Y., Zhang, Z., Hsieh, C.-J., Demmel, J., Keutzer, K.: Fast deep
neural network training on distributed systems and Cloud TPUs. IEEE
Transactions on Parallel and Distributed Systems 30(11), 2449–2462
(2019)

[18] Wongpanich, A., Pham, H., Demmel, J., Tan, M., Le, Q., You, Y.,
Kumar, S.: Training EfficientNets at supercomputer scale: 83% ImageNet
top-1 accuracy in one hour. In: 2021 IEEE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW), pp. 947–950
(2021). IEEE

[19] Sheng, A., He, J.Y.D.: Distributed evolution strategies using tpus for
meta-learning. In: 2020 IEEE Symposium Series on Computational
Intelligence (SSCI), pp. 721–728 (2020). IEEE

[20] Pan, Z., Mishra, P.: Hardware acceleration of explainable machine learn-
ing. In: 2022 Design, Automation And Test in Europe Conference
And Exhibition DATE, pp. 1127–1130 (2022). https://doi.org/10.23919/
DATE54114.2022.9774739

[21] Hauru, M., Morningstar, A., Beall, J., Ganahl, M., Lewis, A., Vidal, G.:
Simulation of quantum physics with Tensor Processing Units: brute-force
computation of ground states and time evolution. arXiv (2021). https://
doi.org/10.48550/ARXIV.2111.10466. https://arxiv.org/abs/2111.10466

[22] Xu, H., Van Durme, B., Murray, K.: BERT, mBERT, or BiBERT? a
study on contextualized embeddings for neural machine translation. In:
Proceedings of the 2021 Conference on Empirical Methods in Natural
Language Processing, pp. 6663–6675 (2021)

[23] Alrowili, S., Vijay-Shanker, K.: BioM-transformers: building large
biomedical language models with BERT, ALBERT and ELECTRA. In:
Proceedings of the 20th Workshop on Biomedical Language Processing,
pp. 221–227 (2021)

[24] Zhao, L., Zhang, Z., Chen, T., Metaxas, D., Zhang, H.: Improved
transformer for high-resolution GANs. Advances in Neural Information
Processing Systems 34, 18367–18380 (2021)

https://doi.org/10.48550/ARXIV.2202.01381
https://arxiv.org/abs/2202.01381
https://arxiv.org/abs/2202.01381
https://doi.org/10.23919/DATE54114.2022.9774739
https://doi.org/10.23919/DATE54114.2022.9774739
https://doi.org/10.48550/ARXIV.2111.10466
https://doi.org/10.48550/ARXIV.2111.10466
https://arxiv.org/abs/2111.10466

Springer Nature 2021 LATEX template

22 Fast Training of a Transformer for Global Multi-horizon TS Forecasting on TPUs

[25] Srinivas, A., Lin, T.-Y., Parmar, N., Shlens, J., Abbeel, P., Vaswani,
A.: Bottleneck transformers for visual recognition. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
16519–16529 (2021)

[26] Abdellaoui, I.A., Mehrkanoon, S.: Deep multi-stations weather fore-
casting: explainable recurrent convolutional neural networks. arXiv
(2020). https://doi.org/10.48550/ARXIV.2009.11239. https://arxiv.org/
abs/2009.11239

[27] Abdellaoui, I.A., Mehrkanoon, S.: Symbolic regression for scientific discov-
ery: an application to wind speed forecasting. In: 2021 IEEE Symposium
Series on Computational Intelligence (SSCI), pp. 01–08 (2021). IEEE

[28] Jouppi, N.P., Young, C., Patil, N., Patterson, D., Agrawal, G., Bajwa,
R., Bates, S., Bhatia, S., Boden, N., Borchers, A., et al.: In-datacenter
performance analysis of a Tensor Processing Unit. In: Proceedings of the
44th Annual International Symposium on Computer Architecture, pp.
1–12 (2017)

[29] Kung, H., Leiserson, C.E.: Systolic arrays (for VLSI). In: Sparse Matrix
Proceedings 1978, vol. 1, pp. 256–282 (1979). Society for industrial and
applied mathematics

[30] Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin,
M., Ghemawat, S., Irving, G., Isard, M., et al.: TensorFlow: A system for
large-scale machine learning. In: OSDI, vol. 16, pp. 265–283 (2016)

[31] Cheng, H.-T., Haque, Z., Hong, L., Ispir, M., Mewald, C., Polosukhin,
I., Roumpos, G., Sculley, D., Smith, J., Soergel, D., et al.: TensorFlow
estimators: Managing simplicity vs. flexibility in high-level machine learn-
ing frameworks. In: Proceedings of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 1763–1771
(2017)

[32] Salinas, D., Flunkert, V., Gasthaus, J., Januschowski, T.: DeepAR: Prob-
abilistic forecasting with autoregressive recurrent networks. International
Journal of Forecasting 36(3), 1181–1191 (2020)

[33] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: 3rd
International Conference on Learning Representations, ICLR 2015, San
Diego, CA, USA,May 7-9, 2015, Conference Track Proceedings (2015)

[34] Yu, H.-F., Rao, N., Dhillon, I.S.: Temporal regularized matrix factor-
ization for high-dimensional time series prediction. Advances in Neural
Information Processing Systems 29, 847–855 (2016)

https://doi.org/10.48550/ARXIV.2009.11239
https://arxiv.org/abs/2009.11239
https://arxiv.org/abs/2009.11239

	Introduction
	Related Work
	Transformers for Time Series Forecasting
	Applications of Tensor Processing Units to Transformers and Forecasting

	Materials and Methods
	Global Multi-horizon Time Series Forecasting
	Transformer Architecture
	Tensor Processing Units
	Implementation
	Experimental Study
	Datasets and Data Preprocessing
	Model Parametrization
	Inference

	Results and Discusion
	Baseline
	Forecasting Accuracy
	Computation Time

	Conclusions and Future Work

