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Abstract: The problem of soil consolidation was first studied by Terzaghi who formulated the well-known one-dimensional 

consolidation theory. However, this widely used method was found to provide poorly accurate estimations, since Terzaghi 

considered the assumption of constant permeability and consolidation coefficient. The poor accuracy is also due to the low 

resemblance between laboratory results and field actual measurements. In order to overcome this issue, many researchers 

proposed new approaches to estimate and predict soil settlement more accurately. Among these approaches, field-based 

methods are particularly promising. For instance, the Asaoka method (1978), Sridharan (1987) method, Tan (1995) method, 

Chunlin’s method (2014), and recent methods of Guo et al. (2017, 2018b) and Guo et al. 2018(a,). This paper aims to assess 

and discuss the results of some recent methods using a field consolidation monitoring data set. 
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1. Introduction  

The prediction of soil settlement has always been an issue in soil mechanics. Terzaghi (1948) formulated the famous one-

dimensional consolidation theory, which revealed to be not that accurate in terms of estimating consolidation settlement, 

mainly because the coefficient of consolidation obtained in laboratory is usually different from the field value. Hence, many 

researchers attempted to propose new approaches in order to improve the accuracy of the prediction of soil settlement. In the 

beginning, many works focused on a way to determine a value of coefficient of consolidation that is close to the field value. 

For instance, the standard methods of Casagrande logarithmic of time fitting method and Taylor square root of time fitting 

method can be mentioned. More recently, promising approaches based on field monitoring data were proposed. The idea of 

using real field settlement data has been explored by Asaoka (1978), Sridharan (1987), Tan (1995), Chunlin (2014), Guo & 

Chu (2017) and Guo et al. (2018(a, b)). Asaoka’s method which is based on Mikasa’s consolidation theory uses the concept 
of linear regression. Tan’s hyperbolic and Sridharan rectangular hyperbola methods are curve fitting methods that assume 
the curve Uv vs Tv (Uv: degree of vertical consolidation, Tv: vertical factor of time) as an hyperbolic curve. Chunlin’s method 
is based on Terzaghi’s 1-D consolidation theory which allows a better estimation of the settlement without using the initial 

consolidation. Guo & Chu (2017) and Guo et al. (2018(b)) proposed a method for predicting the soil final settlement using 

linear regression, by fitting the settlement curve to the Chapman–Richards equation. And more recently, Guo et al. (2018(a)) 

published a modification of the procedure of the hyperbolic method with a new chart.  

Among all these new methods and approaches one can legitimately ask which one should be used, and in which situation.  

This paper aims to show and share a comparison between Guo & Chu (2017), Guo et al. (2018(b)), and Guo et al.(2018(a)) 

methods, using a set of field soil settlement monitoring data. As a reference, Asaoka’s method was also processed for the 

same data set. 

2. Asaoka’s method: 
The method proposed by Asaoka (1978) is an observational procedure, in which the future settlement is predicted using 

previous settlement observations. 

Asaoka adopted Mikasa’s equation: 𝜀̇ = 𝑐𝑣 𝜀𝑧𝑧 (1) 𝜀(𝑡, 𝑧) is the vertical strain 𝜀̇ = 𝜕𝜀/𝜕𝑡 𝜀𝑧𝑧 = 𝜕²𝜀/𝜕𝑧² 

 

By introducing two function of time, the solution of the previous equation is written as: 

 𝜀(𝑡, 𝑧) = 𝑇 + 12! (𝑧2𝑐𝑣 �̇�) + 14! (𝑧4𝑐𝑣2  �̈�) + ⋯ + 𝑧𝐹 + 13! (𝑧3𝑐𝑣 �̇�) + 15! (𝑧5𝑐𝑣2 𝐹 ̈ ) + ⋯ (1) 

Where cv is the coefficient of vertical consolidation. 

 T = ε(t, z = 0) F = ∂∂z  ε(t, z = 0). 
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By considering the two boundary conditions; drainage from both top and bottom boundaries, and upward drainage the 

following equations were derived: 

For double drainage: 

δ + 13! (H2cv δ̇) + 15! (H4cv2 δ̈) + ⋯ = H2 (ε̅ + ε) (3a) 

In the case of upward drainage: 

δ + 12! (H2cv δ̇) + 14! (H4cv2 δ̈) + ⋯ = Hε̅ (3b) 

Where :δ is the settlement, ε(t, z = 0) = ε̅ ∶ constant and ε(t, z = H) = ε ∶ constant. 
For both cases, Asaoka (1978) after neglecting the higher order differential terms, adopted the following n-th order 

approximation equation: δ + c1δ̇ + c2δ̈ + ⋯ + cnδ(n) = C (4) 

Which led the first order approximation  δ + c1 δ̇ = C (5) 

Where c1, c2, … , cn and C are unknown constants   

By introducing discrete time : { tj = Δt . j Δt ∶ constant (6) 

The settlement at time t can be expressed as: δj = β0 + β1δj−1 (7) 

Where δj and δj−1  are the settlement at time j and j-1, β0 and β1 are unknown parameters. 

When the settlement approaches its final value δf, a stable state is observed which can be expressed as: δj = δj−1 = δf (8) 

Form Eq.8, when the values of δj are plotted against the values of δj−1, the finale settlement δf can be determined by 

identifying graphicly the intersection of the plot δj vs δj−1 with the straight 45° line presented by the equation (y = x). 

Form Eq.7 and Eq.8 The final settlement can be predicted also by finding the values of β1 and β0 from the extrapolated plot, β1 corresponding to its slope, and β0 corresponding to the intersection with the ordinate axis. And then the final settlement 

can be calculated by substituting the values of β1 et β2 in Eq.7. this leads to the equation below: 

δult = β01 − β1 (9) 

Hence, the settlement at time t = Δt ∙ j can be expressed by the following equation δj = β01−β1 − ( β01−β1 − δ0) (β1)j (10a)  

3. The observational method of Guo et al.(2017,2018(b)):  

For vertical drainage, the relationship of Uv vs Tv from Terzaghi one dimensional consolidation theory, is given as (Terzaghi 

et al. 1996): 

Uv = 1 − 4π² ∑ 2M2 exp(−M2Tv)n=∞
n=0 (11) 

Where M = (2n + 1) ∗ π/2, ( n: integer) 



Tv: The Factor of time (Tv = cvt/H²) t  : Consolidation time 

H: the thickness of the layer 

The equation for calculating the average degree of consolidation for pure horizontal drainage case was given by Hansbo 

(1981) as  Uh = 1 − exp ( − 8Thμ ) 12a 

Where the time factor is given by: Th = chtD2 12b 

And μ: 

μ = n2n2 − 1 log n − 3n2 − 14n2 12c n: drainage spacing ration D/d; D: diameter of an equivalent cylinder of soil influenced by each drain, D = 1.13s for a square 

pattern and = 1.05s for a triangular pattern (s: vertical drain spacing), d: diameter of a sand drain d = 2(b + t′)/π (b =width, t′ = thickness of drain cross section). 

Carrillo (1942) proposed an expression of the average degree of consolidation for combined vertical and horizontal drainage Uvh  as: U = 1 − (1 − Uv)(1 − Uh) 13 

The expression of Uvh is then obtain by substituting Eq.11 and Eq.12a into Eq.13 which gives: 

Uvh = 1 − ∑ 2M2 exp[−M2Tv − 2νhvTv]n=∞
n=0 14 

Where: νhv is the ratio of time factors in horizontal and vertical directions, according to Guo et al. 2018(a,b), It is calculated 

as: 

νhv = 4μ chcv H2D2 15 

Solving Eq.14 for different values of vhv gives the Uvh vs Tv curves as shown in Fig.1(a). The case of Terzaghi’s one 
dimensional equation is represented by the curve where νhv = 0.  

 

Fig.I: a) Effect of 𝜈ℎ𝑣  on the 𝑈𝑣ℎ  versus 𝑇𝑣 curves. b) Effect of 𝜈ℎ𝑣 on the constants of curve fitting 𝜉{ Guo et al. 2018(b)} 

In this method, Guo et al. (2017 and 2018(b)) adopted the model Chapman-Richards to fit the Uvh − Tv curve. The 

mathematical expression of Chapman-Richards’ model can be written as: y = η[1 − κ exp(−μt)]λ + ε 16 



Where: η is the amplitude of the curve. ε is the offset from zero. κ, μ, and λ are rate constants. 

Guo et al. (2017 and 2018(b)) found out that the values of κ, η, and ε are 1.0, 1.0 and 0 respectively.  The value of μ is 2. 

Therefore, when Eq.16 is used to fit Terzaghi’s consolidation curve, Eq.16 becomes of the following form: Uvh = [1 − exp(−2(νhv + 1)Tv)]ξ 17 

Where ξ is a curve fitting constant. 

The relationship between the constant ξ and νvh is illustrated in Fig.1(b) . It should be noted that the case where νvh = 0 and ξ = 1, represent the case of Terzaghi’s one dimensional consolidation curve as pointed out by Guo & Chu (2017). 

By combining Eq.15 and Eq.17, the relationship between soil settlement and time can be written as: δ = δult[1 − exp(−2(νhv + 1)Tv)]ξ 18 

According to Guo et al. (2018b), Eq.17 was derived using excess pore pression distribution. Thus, the settlement estimations 

by eq8 are more accurate where the degree of consolidation is above 40%. 

Eq.18 is then used as an observational model to predict δult and cv using the observed settlement data. Guo & Chu (2017) 

adopted the same procedure as Asaoka, selecting settlement data δ1, δ2, … , δn at constant time intervals Δt = tn+1 − tn  , and 

then expressing the relationship between δn+1 and δn.This yields to: 

δi = δult [1 − exp (−2(νhv + 1) cvH2 ti)]ξ 19 

δi+1 = δult [1 − exp (−2(νhv + 1) cvH2 ti+1)]ξ 20 

δi: settlement at time ti = Δt. i ( i is an integer) 

After combining Eq.19 and Eq.20 the relationship between δn+1 and δn  can be expressed as: δi+11/ξ = α + βδi1/ξ 21 

Where: α = (1 − β)ρult1/ξ 22 

β = exp (−2(νhv + 1) cvH2 Δt) 23 

From Eq.21, when the curve of δn+11/ξ
 vs δn1/ξ

  is plotted, a straight line is obtained where β is the slope and α is the intercept. 

Therefore, the final settlement 𝛿𝑢𝑙𝑡 can be estimated by the following expression: 

𝛿𝑢𝑙𝑡 = ( 𝛼1 − 𝛽)𝜉 24 

Furthermore, the coefficient of consolidation in the vertical direction can be estimated by: 

𝑐𝑣 = − 𝐻2 𝑙𝑛 𝛽2𝛥𝑡 11 + 𝜈ℎ𝑣 25 

And the coefficient of consolidation by: 

𝑐ℎ = − 𝜇𝐷𝑒2 𝑙𝑛 𝛽8𝛥𝑡 𝜈ℎ𝑣1 + 𝜈ℎ𝑣 26 

The equation Eq.21 to Eq26 can be used as observational model to predict the values of 𝛿𝑢𝑙𝑡, 𝑐𝑣, and 𝑐ℎbased on monitored 

settlement data. The procedure is similar to that used in Asaoka’s method, it consists of the following steps: 

 Calculate the ratio of time factors in horizontal and vertical directions 𝜈ℎ𝑣  

 Identify the value of 𝜉 from Fig.1(b) 

 Select settlement data set ( 𝛿1, 𝛿2, … 𝛿𝑛) where 𝛿𝑛 is the settlement at time 𝑡𝑛, in a way that 𝛥𝑡 = 𝑡𝑛 − 𝑡𝑛−1 is constant 

 Plot 𝛿𝑛+11𝜉
 vs  𝛿𝑛1𝜉 curve and use linear regression to get the slope of the line 𝛽 and the intercept with the vertical axis 𝛼 



 Calculate the finale settlement 𝛿𝑢𝑙𝑡, 𝑐𝑣, and 𝑐ℎ using Eq.24, Eq.25 and Eq.26 

As an addition, in order to test the influence of the sampling period on the prediction using the proposed method, Guo & 

Chu(2017) adopted the same aspect as Edil et al. (1991), where the number of samples needed to achieve 95% of 

consolidation 𝑗95 is used. Guo & Chu (2017) adopted a similar parameter 𝑁90 , which is defined as the number of samples 

needed to achieve a 90% degree of consolidation, where: 

[1 − 𝑒𝑥𝑝 (−2(𝜈ℎ𝑣 + 1) 𝑐𝑣𝐻2 𝑁90𝛥𝑡)]𝜉 = 90% 27 

From eq13 and eq17 the number of sampling points 𝑁90 is: 

𝑁90 =  𝑙𝑛 (1 − 0.91𝜉)𝑙𝑛 𝛽 28 

Although Guo & Chu (2017) found out that the sampling period doesn’t have much of an effect on the prediction, yet the 
number of sampling points 𝑁90 should have a value greater than 20, in order to achieve a high value of the coefficient of 

regression for the least-squares linear regression. 

4. The modified hyperbolic method of Guo et al. (2018(a)) 

This method is based on the hyperbolic method developed by (Sridharan et al., 1987; Tan et al.,1991). In this method a new 

parameter 𝜈ℎ𝑣  was introduced, which is defined as the ratio of time factors in the horizontal and vertical directions. This 

parameter is used to redefine the relationship between 𝑈𝑣ℎ and 𝑇𝑣. 

Let’s remind that the hyperbolic approach uses the linear settlement segment produced when settlement data between 𝑈60 

and 𝑈90 are plotted as 𝑡/𝛿 vs 𝑡, this segment represent the relationship: 𝑡𝛿 = 𝛼𝑡 + 𝛽 (28) 

Where 𝛼 is the slope, and 𝛽 is the intercept of the linear segment between 𝑈60 and 𝑈90, 𝑡 is the consolidation time, and 𝛿 is 

the monitored settlement. 

From Eq.28 the final consolidation settlement can be obtained as: 𝛿𝑢𝑙𝑡 = 1𝛼 (29) 

Furthermore, when radiating lines are drawn from the origin to 𝑈60 and 𝑈90 points, the slopes of these lines are 1/0.6 and 

1/0.9 respectively. By plotting these lines, direct identifications of 𝑈60 and 𝑈90 are performed. Once 𝛿60 and 𝛿90 are identified 

from 𝑡/𝛿 vs 𝑡 plot, the estimation of the final settlement is possible by using the equations: 𝛿𝑢𝑙𝑡 = 10.6 ∗ 𝛿60 (30) 

And 𝛿𝑢𝑙𝑡 = 10.9 ∗ 𝛿90 (31) 

The advantage of the hyperbolic method is that it can be extended to clay deposits treated with vertical drains. According to 

Tan (1996) in reference to Hansbo (1981), for ideal drains the average degree of consolidation can be described as in Eq12a 

, Eq12b, and Eq12c. 

Tan (1993) used the equation for the average degree of consolidation obtained from Carrillo (1942), which is expressed by 

Eq.13 above. 

Using Terzaghi’s solution for 𝑈𝑣 , Eq.12a, Eq.12b, Eq.12c, and Eq.13, Tan (1993,1994,1995) used different documented 

history cases in order to produce theoretical hyperbolic settlement-time curves for any practical vertical drain problem. From 

these case histories. And thus, Fig.2 was obtained. 



 

Fig. 2. Relationship of slopes (𝛼) of initial linear (between 𝑈60 and 𝑈90) segments of theoretical hyperbolic plots with 

parameters n, H/D and 𝑐ℎ/𝑐𝑣. {From Tan.1995} 

The slopes 𝛼 for the first theoretical first linear segment between 𝑈60 and 𝑈90 are dependent on soil and drain parameters, 

the slopes can be obtained from Fig.2 (Tan1995). Therefore, if the initial slopes of segments of the field hyperbolic plots 

between 𝑈60 and 𝑈90 can be determined through observations, then the slopes of radiating lines are given by: 𝑆60 = 10.6 𝑆𝑖𝜆 (32) 

and 

𝑆90 = 10.9 𝑆𝑖𝜆 (33) 𝜆: the slope of the theoretical segment between 𝑈60 and 𝑈90 𝑆𝑖: the slope of the experimental segment between 𝛿60 and 𝛿90 𝑆60 and 𝑆90 are the slopes of the radiating lines used to identify 𝛿60 and 𝛿90 

By constructing radiating lines with the slopes described above, 𝛿60 and 𝛿90 can be located. Hence, the ultimate settlement 

can be predicted using the equations Eq.30, Eq.31 and the following equation: 𝛿𝑢𝑙𝑡 = 𝜆𝑆𝑖 (34) 

For vertical drainage, the relationship of 𝑈𝑣 vs 𝑇𝑣 from Terzaghi one dimensional consolidation theory, is given as: 

𝑈𝑣 = 1 − ∑ 2𝑀2 𝑒𝑥𝑝(−𝑀2𝑇𝑣)𝑛=∞
𝑛=0 (35) 

The expression of 𝑈𝑣ℎ is then obtained as in Eq.14, where: 

𝑈𝑣ℎ = 1 − ∑ 2𝑀2 𝑒𝑥𝑝[−𝑀2𝑇𝑣 − 2𝜈ℎ𝑣𝑇𝑣]𝑛=∞
𝑛=0 (36) 

Fig.2 shows plots of 𝑈𝑣ℎ vs 𝑇𝑣 calculated from Eq.36 with 𝑛 = 0 𝑡𝑜 50 for different values of 𝜈ℎ𝑣 .  

Just like in the hyperbolic method, the relationship of 𝑈𝑣ℎ − 𝑇𝑣  is plotted as 𝑇𝑣/𝑈𝑣ℎ vs 𝑇𝑣, so 𝜆 can be identified between 𝑈60 

and 𝑈90 , and thus 𝜆 can be used to predict the final settlement in the hyperbolic method. Values of 𝜆 were calculated for 

different cases of 𝜈ℎ𝑣  values, Guo et al. (2018(a)) reported a curve representing the relationship 𝜆 vs 𝜈ℎ𝑣  illustrated in Fig.3 



 

Fig. 3. Effect of 𝜈ℎ𝑣  on 𝜆 values.{ from Guo et al. (2018(a)) } 

Fig.3 shows that 𝜆 decreases nonlinearly as 𝜈ℎ𝑣  increases in the logarithmic scale. By using the curve in Fig.3 𝜆 can be 

identified and thus the value of the final settlement can be predicted. 

Since the procedure of predicting the consolidation settlement by the hyperbolic method is only valid for settlement data 

between 𝑈60 and 𝑈90. Guo et al. 2018(b) also suggested a new procedure to improve the hyperbolic method. This procedure 

focus on the identification of the slope of the theoretical curve, it is executed by following the steps below: 

1. Calculate the value of 𝜈ℎ𝑣  using Eq.15 and proceed to the identification of 𝜆 from Fig.3 . 

2. Plot the 𝑡/𝛿 vs 𝑡 curve, select a linear segment in the curve, and by a linear regression determine the slope 𝑆𝑖 of 

the linear segment. 

3. Substitute the values of 𝜆 and 𝑆𝑖 in the equations: 𝑆60 = 10.6 𝑆𝑖𝜆  and 𝑆90 = 10.9 𝑆𝑖𝜆 . 

4. Draw two lines from the origin with the slopes 𝑆60 and 𝑆90 and locate the intersection of these lines with the 𝑡/𝛿 

vs 𝑡 curve to obtain the values of 𝑡60 and 𝑡90 corresponding to 𝑈60 and 𝑈90 respectively. 

5. Check if the linear segment selected in step 2 falls in the range between 𝑡60 and 𝑡90 from step 4. If there is a 

disagreement, reselect a linear segment to get a new 𝑆𝑖 and repeat steps 2 to 4, until a good agreement between 

what was selected and the determined intervals is obtained. 

6. The slope achieved from the last step is the targeted slope. Calculate 𝜌𝑓 by substituting the obtained 𝜆 and 𝑆𝑖 in the 

Eq.33. 

5. Case study 

The three methods discussed above have been processed on a real observational soil settlement data set. The studied soil is 

under an embankment on the motorway penetrating Bejaia, Algeria(Fig.4). 

 

Fig. 4. Synoptic map of the motorway project penetrating Béjaia. 

The studied segment is part of the section 1 (Pk0 to Pk21+400) between the port of Bejaia and the famous Algerian east-west 

highway (Fig.5b). In this particular zone, the Soumam River is limited from the east and the west, respectively, by the national 

road 75 (RN75), the RN12 and the railway. The route passes close to the industrial facilities of Sonatrach Petroleum 



Company, Bejaia airport and El Kseur city industrial area. The layout is a 2x3 lane, which runs entirely on embankments, 

hence the unique symmetrical cross type profile shown in Fig.5. 

The section of the motorway follows the Soummam River and passes through swampy agricultural areas requiring, sometimes 

the use of massive backfill on soft ground. The main problem posed by these embankments is the settlement of the foundation 

soils. This vertical movement must be known with precision for backfill preparation and implementation. This is why a test 

embankment was carried out, and instrumented over a period of 360 days; on a marshy area of this section in order to study 

in situ the real settlement. 

 

Fig. 5. (a)Typical cross section of the project.  (b) Plan projection (left) and longitudinal profile (right) for conducted tests 

at PK13+000. 

The Bejaia motorway test embankment was realized and instrumented for 360 days. The obtained data enabled us to carry 

out this comparative study in order to better understand the phenomenon of consolidation settlement, in particular, which 

remains the most difficult to estimate accurately. 

The geotechnical in situ survey has been carried out at the Pk13+000.  The foundation is mainly composed, top down, of: 

 A thin layer of topsoil with a thickness of 0 to 1m. 

 A layer of wet and slightly plastic clay with thickness variable from 1 to 3m 

 A layer of saturated and poorly plastic clay exceeding 15m of thickness. 

It should be noted that the water table is, on average, at 2.16m depth in the study area. 

The settlement observations carried on the embankment started on 22/04/2014 and stopped on 17/04/2015 at this point the 

settlements were already stabilized at 40.64 cm. the settlement observations curve and Soil parameters are illustrated in Fig.6. 



 

Fig. 6. (a) settlement observation curve at PK 12+970 (LCTP, 2013). (b) Embankment profile at PK 12+970. 

5.1 Computation of stress and settlement due to embankment by Terzaghi’s method: 

According to the theory of Terzaghi, the total or final settlement 𝛿𝑢𝑙𝑡 of a soil consists of primary settlement 𝛿𝑝, secondary 

settlement 𝛿𝑠 and settlement induced by lateral displacements of the considered soil 𝛿𝑙𝑎𝑡. Also, the primary settlement has 

two components: an immediate settlement 𝛿𝑖 and a deferred settlement associated with consolidation 𝛿𝑐. Hence the overall 

formula (Costet and Sanglerat, 1981):  𝛿𝑢𝑙𝑡 = 𝛿𝑝 + 𝛿𝑠 + 𝛿𝑙𝑎𝑡 = 𝛿𝑖 + 𝛿𝑐 + 𝛿𝑠 + 𝛿𝑙𝑎𝑡 37 

Where: 𝛿𝑝: primary settlement, 𝛿𝑠 : secondary settlement, 𝑆𝑙𝑎𝑡: lateral displacement induced settlement, 𝑆𝑖 : immediate 

settlement, 𝑆𝑐: consolidation settlement. 

The consolidation settlement is calculated using the expressions from (Costet and Sanglerat, 1981), and the soil stresses are 

calculated using the expressions from Holtz, et al. (1981). 

Taking into account the correction of Skempton and Bjerrum (1957), the calculated values of the components of settlement 

are: 𝛿𝑐 = 40.15𝑐𝑚, 𝛿𝑖 = 12.4𝑐𝑚, 𝛿𝑠 = 7.1𝑐𝑚, 𝑆𝑙𝑎𝑡 = 3.3𝑐𝑚 

Hence, the final settlement is: 𝑆𝑇𝑒𝑟𝑧𝑎𝑔ℎ𝑖  =  62.95 𝑐𝑚 

The degree of consolidation at 360 days can be calculated using the coefficient of consolidation, as follows (Terzaghi, 1925): 𝑇𝑣 = 3.28 ∗ 10−7(27.82 )2 ∗ 360 ∗ 24 ∗ 3600 = 0.052 



In this case Tv < 0.5, hence, according to the approximation of Casagrande:   𝑈 =  1.128 √𝑇𝑣 38 𝑈 =  26 % 

The settlement at 360 days, is given by: 

 𝑆360  =  𝑈 × (𝑆𝑐) + 𝑆𝑖 = 0.26 × (40.15) + 12.4 = 22.84 cm 𝑆360 = 22.84 𝑐m 

5.2 Predicting final settlement by the procedure of Guo et al. (2017&2018(b)) 

For this procedure, consecutive settlement should be considered. For this case, successive settlement measurements were 

taken every day, so Δt=1 day, therefore, Fig.7 is obtained, and then used to predict the final settlement. 

For this case, no drains were installed in the field, Therefore, this is a Terzaghi one dimensional consolidation case. So, the 

values of 𝜈𝑣ℎ and 𝜉 are (𝜈𝑣ℎ = 0, and = 0.6 ). Hence, for the observation procedure, Eq.19 is used to obtain Fig.7. 

 

Fig. 7. Regression curve (using MATLAB) obtained by the application of the method of Guo & Chu (2017) and 

Asaoka(1978) {data up to 100% were used} 

From Fig. 7, and by a graphical identification, the line formed by settlement data for the method Guo & Chu (2017), has the 

following equation: 𝛿𝑛+11.667 = 0.99294 𝛿𝑛1.667 + 3.7497 (39𝑎) 

Where the slope β=0.99294, and the intercept α=3.7497. 

the line formed by settlement data for Asaoka’s method the line formed by settlement data for: 𝛿𝑛 = 0.9868 𝛿𝑛−1 + 0.5344 (39𝑏) 

Where: 𝛽1 = 0.9868 𝑎𝑛𝑑 𝛽0 = 0.5344 

From Eq.39a the predicted final settlement is 43.16 cm. comparing it to the measured settlement at 360 days indicates an 

over estimation of 6%. 

The error was calculated as follows: 𝐸𝑟𝑟𝑜𝑟% = (𝛿𝑒−𝛿𝑟𝑒𝑎𝑙𝛿𝑟𝑒𝑎𝑙 ) × 100; 𝛿𝑒: 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑠𝑒𝑡𝑡𝑙𝑒𝑚𝑒𝑛𝑡. 

The number of sampling point 𝑁90 is greater than 20 which means that the condition for this procedure to achieve a higher 

accuracy is respected. 

On the other hand, the prediction using Asaoka’s method yielded a value of 40.48 cm. when compared with the measured 

settlement value at 360 days, the predicted value has an error of 0.4%.  



5.3 Predicting settlement by the procedure of Guo et al. 2018(a) 

In this method, Settlement data are plotted as the 𝑡/𝛿 vs 𝑡. The procedure concentrates on the linear part of the obtained 

curve, which has the form of Eq.28. 

The obtained curve and the selected linear segment are illustrated in Fig.8 (a). The segment has the following expression: 𝑌 = 0.02489 𝑥 + 0.8448. 

 

Fig. 8. curve of the suggested procedure for the hyperbolic method (Guo et al. 2018) used to predict the final settlement (a) 

first attempt (b) final phase 

In this case of embankments, no vertical drains were installed. So, the slope 𝜆 of the theoretical curve would be equal to that 

of the case of the one-dimensional consolidation of Terzaghi which is according to Guo et al. 2018(a) equal to 0.82. having 

the value of 𝜆 will allow us to construct the lines needed to locate 𝛿60 and 𝛿90. And thus Fig.8 (a) is obtained, where it’s clear 
that the segment doesn’t fall in the range of 𝛿60 and 𝛿90 which requires a reselection of the segment as suggested in the 

procedure of the method. 

After few attempts of the reselection of the segment a successful attempt curve is obtained (Shown in Fig.8(b)), in which the 

selected segment has a slope equal to 0.02020, it is located between 𝑈60 and 𝑈90, where the lines constructed to locate 𝛿60 

and 𝛿90 have the slopes 𝑆60 = 0.0410 and 𝑆90 = 0.0273. Hence, the final settlement can be predicted using either Eq.32, 

Eq.33, or Eq.34. So: 𝛿𝑢𝑙𝑡 = 𝜆𝑆𝑖 = 0.820.0202 = 40.59𝑐𝑚 (40) 

6. Results and discussions 

Table 1 shows the comparison results between the methods processed above.  It shows the predicted final settlement with the 

associated error compared to field value. Also, the intermediate settlement at (360 days) estimates for each method are given. 

Table 1: results of the prediction of the final settlement and estimation of settlement after 360 days by the methods of 

(Terzaghi (1948), Asaoka (1978), Guo, & Chu (2017,2018b), Guo et al. (2018a) 

Method Terzaghi (1948) Asaoka (1978) Guo et al. 2017 

& 2018(b) 

Guo et al. 2018 

(a) 

Field final 

settlement 𝜹𝒖𝒍𝒕 
Predicted 𝜹𝒖𝒍𝒕 (cm) 62.95 𝑐m 40.48 cm 43.16 cm 40.59cm 40.64 cm 

Error % |𝛅𝐞𝐬𝐭𝐢𝐦𝐚𝐭𝐞𝐝−𝛅𝐫𝐞𝐚𝐥𝛅𝐫𝐞𝐚𝐥 | × 𝟏𝟎𝟎 
54.89% 0.4% 6.2% 0.1% 

- 

Settlement at 360 days 22.84 cm 40.12 cm 41.10 cm 34.47 cm - 

Measured settlement 

at 360 days 
40.64 cm 

 

 



For the estimation of the settlement at 360 days Eq. 39b was used for Asaoka’s method by considering the settlement at 10 

days as a starting point, Eq.18 for Guo et al (2017,2018b), and for Guo et al. 2018 (a) the following expression was used: 

δ(t) = λ × tα × t + β 41 

From Table 1, it can be noted that the observational methods (Asaoka (1978), Guo et al. (2017,2018b), Guo et al. (2018a) 

show better accuracy in predicting the final settlement than Terzaghi’s method which has an error of 54.89%. 

As for the observational methods, it can be noted that their errors associated with these methods are comparable, although 

Guo et al. 2018a is better. 

Now, concerning the observational methods’ results, it can be concluded that the methods of Asaoka (1978) and Guo et al. 

(2017,2018b) seems to be better than the method of Guo et al. 2018 (a), due to the fact that the first two methods are less 

demanding in terms of observational data. Indeed, these approaches are functional even if fewer measurements of settlement 

are available, meanwhile Guo et al. 2018a requires at least settlement observations beyond 60% of consolidation. 

On the other hand, for the intermediate settlement at 360 days, the estimation by Terzaghi’s method yielded value that is 

equivalent to 56% of the actual measured value. For the method of Guo et al. 2018 (a) it yielded a value of 34.5 cm which 

represents 85% of the actual settlement although the predicted final settlement is the most accurate. As for Asaoka (1978), 

and Guo et al. (2017,2018b) the estimated settlements at 360 days are reasonably accurate, which confirms the previous 

conclusion. 

7. Conclusion 

In this paper, two recent and promising methods for final soil settlement prediction were tested on a real settlement data set, 

and compared with the prediction by Terzaghi’s, and Asaoka’s method. At first, it was clear that the methods based on field 

data have better accuracy than those based on laboratory test in term of predicting the final soil settlement. It is also noticed 

that the prediction error for the final settlement by Guo et al. (2018a) method was far smaller than Guo et al. (2017, 2018b). 

Furthermore, for the intermediate settlement at 360 days the estimations showed that Guo et al. (2018a) yielded an 

underestimation, unlike the method of Guo et al. (2017, 2018b) which is found to be more accurate. 

It can be concluded that the method of Guo et al. (2017, 2018b) is preferred for the estimation of intermediate settlements, 

whereas, Guo et al. (2018a) is preferable for the prediction of final settlements, despite its complicated procedure. 
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