

Preprints are preliminary reports that have not undergone peer review. They should not be considered conclusive, used to inform clinical practice, or referenced by the media as validated information.

Induced pluripotent stem cell-derived dendritic cell vaccine therapy genetically modified on the ubiquitin-proteasome system

Shinta Tominaga

Wakayama Medical University

Toshiyasu Ojima (🗹 tojma@wakayama-med.ac.jp)

Wakayama Medical University

Motoki Miyazawa

Wakayama Medical University

Hiromitsu lwamoto

Wakayama Medical University

Junya Kitadani

Wakayama Medical University

Shimpei Maruoka

Wakayama Medical University

Keiji Hayata

Wakayama Medical University

Hiroki Yamaue

Second Department of Surgery, Wakayama Medical University, School of Medicine, Wakayama 641-8510, Japan

Article

Keywords:

Posted Date: August 22nd, 2022

DOI: https://doi.org/10.21203/rs.3.rs-1821680/v1

License: (c) This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License

1	Induced pluripotent stem cell-derived dendritic cell vaccine therapy genetically
2	modified on the ubiquitin-proteasome system
3	
4	Shinta Tominaga, MD ¹ , Toshiyasu Ojima, MD, PhD ¹ , Motoki Miyazawa, MD, PhD ¹ ,
5	Hiromitsu Iwamoto, MD, PhD ¹ , Junya Kitadani, MD, PhD ¹ , Shimpei Maruoka, MD,
6	PhD ¹ , Keiji Hayata, MD, PhD ¹ , and Hiroki Yamaue, MD, PhD ¹
7	
8	¹ Second Department of Surgery, Wakayama Medical University, Wakayama, Japan.
9	
10	Corresponding author:
11	Toshiyasu Ojima, MD, PhD, Second Department of Surgery, School of Medicine,
12	Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8510, Japan.
13	Phone: 81-73-441-0613, Fax: 81-73-446-6566,
14	E-mail: tojima@wakayama-med.ac.jp
15	
16	Short running head: iPS-DC therapy using Ub-PS system
17	
18	

1 Abstract

2	We previously reported that dendritic cells (DCs) transduced with the full-length tumor-
3	associated antigen (TAA) gene induced TAA-specific cytotoxic T lymphocytes (CTLs)
4	to elicit antitumor responses. To overcome the issue of quantity and quality of DCs
5	required for DC vaccine therapy, we focused on induced pluripotent stem cells (iPSCs)
6	as a new tool for obtaining DCs and reported efficacy of iPSCs-derived DCs (iPSDCs).
7	However, in clinical application of iPSDC vaccine therapy, further enhancement of the
8	antitumor effect is necessary. In this study, we targeted mesothelin (MSLN) as a
9	potentially useful TAA, and focused on the ubiquitin-proteasome system to enhance
10	antigen-presenting ability of iPSDCs. The CTLs induced by iPSDCs transduced with
11	MSLN gene (iPSDCs-MSLN) from healthy donors showed cytotoxic activity against
12	autologous lymphoblastoid cells (LCLs) expressing MSLN (LCLs-MSLN). The CTLs
13	induced by iPSDCs transduced ubiquitin-MSLN fusion gene exhibited higher cytotoxic
14	activity against LCLs-MSLN than the CTLs induced by iPSDCs-MSLN. The current
15	study was designed that peripheral T-cell tolerance to MSLN could be overcome by the
16	immunization of genetically modified iPSDCs simultaneously expressing ubiquitin and
17	MSLN, leading to a strong cytotoxicity against tumors endogenously expressing
18	MSLN. Therefore, this strategy may be promising for clinical application as an effective

- 1 cancer vaccine therapy.
- 2

3 Introduction

4	Dendritic cells (DCs) are the most potent professional antigen-presenting cells. The
5	presentation of peptides generated by the ubiquitin-proteasome pathway on MHC class I
6	molecules, known as cross-presentation, is essential for the initiation of antigen-specific
7	CD8+ T cells responses [1]. The cross-presentation is an extremely useful feature for
8	antitumor immune responses. We previously reported that DCs transduced with the full-
9	length tumor-associated antigen (TAA) gene induced TAA-specific cytotoxic T
10	lymphocytes (CTLs) to elicit antitumor responses [2-5]. However, the DC vaccine
11	therapy has not reached breakthrough in the cancer treatment, it requires a large quantity
12	of DCs generated from peripheral blood monocytes of patients with cancer. Frequent
13	apheresis must be performed, which is burdensome upon such patients [6]. Moreover,
14	the function of DCs such as maturation, antigen-presenting ability, and migration is
15	diminished in patients with cancer [7]. To overcome these problems of DC vaccine
16	therapy, we focused on induced pluripotent stem cells (iPSCs) as a new tool for
17	obtaining DCs. Several reports have highlighted methods for differentiating DCs from
18	iPSCs (iPSDCs) in mouse and human studies [8-12]. Our previous study reported that

1	mouse iPSDCs transduced with TAA gene have a capacity for TAA-specific antitumor
2	immunity equal to that of bone marrow-derived DCs [13]. In another study, we reported
3	that iPSDCs transduced with carcinoembryonic antigen (CEA) gene have the capacity
4	for CEA-specific antitumor immunity in our mouse and human models [14].
5	Furthermore, in vitro CTLs obtained by transfecting tumor-derived RNA into iPSDCs
6	from patients with colorectal cancer showed potent tumor-specific killing effect [15].
7	However, we have not been able to create an iPSDC vaccine that exerts a strong
8	antitumor effect. In clinical application of iPSDC vaccine therapy, further enhancement
9	of the antitumor effect is necessary.
10	In the current study, we targeted mesothelin (MSLN) as a potentially useful TAA,
10 11	In the current study, we targeted mesothelin (MSLN) as a potentially useful TAA, and focused upon the ubiquitin-proteasome system to enhance antigen-presenting ability
11	and focused upon the ubiquitin-proteasome system to enhance antigen-presenting ability
11 12	and focused upon the ubiquitin-proteasome system to enhance antigen-presenting ability of iPSDCs. MSLN is a CA125 (Carbohydrate Antigen 125)-binding protein. CA125
11 12 13	and focused upon the ubiquitin-proteasome system to enhance antigen-presenting ability of iPSDCs. MSLN is a CA125 (Carbohydrate Antigen 125)-binding protein. CA125 might contribute to the peritoneal metastasis of ovarian cancer by initiating cell
11 12 13 14	and focused upon the ubiquitin-proteasome system to enhance antigen-presenting ability of iPSDCs. MSLN is a CA125 (Carbohydrate Antigen 125)-binding protein. CA125 might contribute to the peritoneal metastasis of ovarian cancer by initiating cell attachment to the mesothelial epithelium via binding to MSLN [16]. Co-expression of
 11 12 13 14 15 	and focused upon the ubiquitin-proteasome system to enhance antigen-presenting ability of iPSDCs. MSLN is a CA125 (Carbohydrate Antigen 125)-binding protein. CA125 might contribute to the peritoneal metastasis of ovarian cancer by initiating cell attachment to the mesothelial epithelium via binding to MSLN [16]. Co-expression of MSLN and MUC16 (Mutin16, CA125) is related to the invasion process in pancreatic

1	cells and high expression in several solid tumors including gastrointestinal tumors [19].
2	For cancer immunotherapy targeting MSLN, there are reports of dendritic cell vaccine
3	[5], a peptide vaccine [20] [21], and a DNA vaccine [22] in basic research. Miyazawa et
4	al. reported that CTLs induced by monocytes-derived DCs (MoDCs) transfected with
5	whole MSLN gene elicited MSLN-specific cytotoxicity against pancreatic cancer cell
6	line[5]. In clinical practice, phase I/II trials of antibody therapy have been conducted
7	and some efficacy has been shown [23].
8	The ubiquitin was originally identified as the signal to target proteins for
9	proteasomal degradation [24]. The addition of a ubiquitin monomer sequence to an
10	adenoviral transgene as a source of antigen increased both in vivo specific CD8
11	immunogenicity and in vitro MHC class I-restricted presentation by DCs of the encoded
12	peptides [25]. In tumor immunity, the use of ubiquitin-fused epitopes reportedly
13	enhanced the antitumor effect in mouse DNA vaccines [26] [27] [28] and in human DC
14	vaccines [29].
15	We investigated whether genetically modified human iPSDCs expressing MSLN
16	could induce MSLN-specific CTLs. Furthermore, we assessed whether the induction of
17	ubiquitin-MSLN fusion gene into iPSDCs enhanced the antigen-presenting ability
18	through the ubiquitin- proteasome system and whether it enhanced the cytotoxic ability

1	of CTLs.	

2

3 Materials and Methods

4 Cell line

5	Autologous Epstein-Barr virus (EBV)-transfected B-lymphoblastoid cells (LCLs) were
6	generated from healthy donor peripheral blood mononuclear cells (PBMC), as
7	previously described [3]. LCLs were cultured in RPMI-1640 medium containing 2 mM
8	L-glutamine supplemented with 10% fetal bovine serum, 100U/mL penicillin and
9	100µg/mL streptomycin.
10	Generation of human iPSDCs
11	iPSCs were derived from PBMCs using Cyto Tune-iPS 2.0 (ID Pharma, Tokyo, Japan).
12	PBMCs were obtained from healthy volunteers. The differentiated protocol of the
13	human iPSDCs was performed as previously described [15]. Briefly, in step 1,
14	undifferentiated iPSCs were disseminated onto a 100-mm culture dish coated with
15	growth factor-reduced Matrigel (Corning, NY) in mTeSR Plus-cGMP medium

- 16 (Stemcell Technologies, Vancouver, BC) supplemented with 80 ng/mL rhBMP4 (R&D
- 17 Systems, Minneapolis, MN). In step 2, on day 4, mTeSR Plus-cGMP medium was
- 18 replaced with StemPro-34 serum-free medium (Thermo Fisher Scientific, Waltham,

1	MA) containing 2 mM L-glutamine supplemented with 80 ng/mL rhVEGF (R&D
2	Systems), 25 ng/mL basic FGF (Fujifilm Wako Pure Chemical Corporation, Osaka,
3	Japan), and 100 ng/mL rhSCF (Peprotech, Cranbury, NJ). In step 3, on day 6, the
4	cytokines in StemPro-34 were changed to cytokines mixed with 50 ng/mL rhSCF, 50
5	ng/mL rhIL-3 (R&D Systems), 5 ng/mL rhTPO (Peprotech), 50 ng/mL rhM-CSF
6	(Peprotech), and 50 ng/mL rhFlt-3 ligand (Peprotech). In step 4, on day 13, the cytokine
7	in StemPro-34 were changed to cytokines mixed with 50 ng/mL rhM-CSF, 25 ng/mL
8	rhGM-CSF (Peprotech), and 50 ng/mL rhFlt3 ligand. CD14 positive monocytic lineage
9	cells were sorted using an autoMACS Pro Separator with CD14 MicroBeads, human
10	(Miltenyi Biotec GmbH, Bergisch Gladbach, Germany) on days 16 to 28. In step 5, 1.5
11	$\times 10^{6}$ CD14 positive monocytic cells/well in 6-well Ultra-Low Attachment Surface
12	plates (Corning) were cultured in the StemPro-34 medium containing 25 ng/mL rhGM-
13	CSF and 40 ng/mL rhIL-4 (R&D Systems) for five days for differentiation into
14	immature iPSDCs.
15	Recombinant adenoviral vector construction and gene transfer into DCs
16	The recombinant adenoviral vector AxCAMSLN, encoding MSLN, was generated by
17	the cosmid-terminal protein complex (COS-TPC) method, as previously described [5].
18	AxCALacZ, encoding β -gal, was also generated by the COS-TPC method. The

1	ubiquitin gene was amplified by PCR from PBMC genomic DNA, using the 5' primer
2	(5' AGT CCG CTA GCC GCC ACC ATG CAG ATC TTC GTG AAG ACC 3') and the
3	3' primer (5' TAG TCC GTC GAC GTA TTT AAA TCG ACC CCC CCT CAA GCG
4	CAG GAC 3'). The 5' primer contained Nhe I restriction site, the Kozak sequence
5	(CGCCACC), and the ATG start codon. The 3' primer added an arginine to the N
6	terminal extremity of ubiquitin protein and contained Swa I restriction site [25] [28].
7	The monomer ubiquitin cDNA was inserted into the cosmid vector pAxCAwt to yield
8	the ubiquitin-expressing recombinant cosmid. The MSLN gene was inserted into the
9	Swa I restriction site to prepare the ubiquitin-MSLN gene expression recombinant
10	cosmid. AxCAubiquitin-MSLN, encoding ubiquitin-MSLN, was generated by the COS-
11	TPC method (Fig. 1). Immature DCs were transfected with each recombinant adenoviral
12	vector using the centrifugal method at 100 multiplicity of infection (MOI) [2] [4]. The
13	genetically modified DCs were placed at 1.5×10^6 cells/well in 6-well Ultra-Low
14	Attachment Surface plate in the presence of 100 ng/mL rhIL-6, 10ng/mL rhIL-1 β , 10
15	ng/mL rhTNF- α , and 1µg/mL PGE2 to induce final maturation for 48 hours [14].
16	Immunohistochemistry for MSLN
17	MSLN protein expression was examined by immunohistochemical staining in MSLN

1	iPSDCs were collected using Smear Gell (GenoStaff, Tokyo, Japan). The endogenous
2	peroxidase activity was suppressed by a solution of 0.3% hydrogen peroxide in
3	methanol for 30 min. After being rinsed in Tris-buffered saline (TBS), the sections were
4	incubated with a blocking reagent; Protein block (Dako, Kyoto, Japan) for 20 min at
5	room temperature. The sections were incubated for 30 min at room temperature with the
6	primary antibody, a 1:1500 dilution of an anti-human MSLN monoclonal antibody
7	(EPR19025-42, Abcam, Cambridge, UK). After rinsing in TBS, the primary antibody
8	was visualized using anti-rabbit antibody (Dako) for 60 min at room temperature, and
9	DAB kit (Nichirei, Tokyo, Japan).
10	Induction of MSLN-specific CTLs from PBMCs and MSLN pentamer assay
10 11	Induction of MSLN-specific CTLs from PBMCs and MSLN pentamer assay Autologous PBMCs from healthy donors were used as responder cells. MSLN cDNA-
11	Autologous PBMCs from healthy donors were used as responder cells. MSLN cDNA-
11 12	Autologous PBMCs from healthy donors were used as responder cells. MSLN cDNA- transduced iPSDCs (iPSDCs-MSLN), LacZ cDNA-tranduced iPSDCs (iPSDCs-LacZ),
11 12 13	Autologous PBMCs from healthy donors were used as responder cells. MSLN cDNA- transduced iPSDCs (iPSDCs-MSLN), LacZ cDNA-tranduced iPSDCs (iPSDCs-LacZ), and ubiquitin-MSLN fusion cDNA-transduced iPSDCs (iPSDCs-UbMSLN) were used
11 12 13 14	Autologous PBMCs from healthy donors were used as responder cells. MSLN cDNA- transduced iPSDCs (iPSDCs-MSLN), LacZ cDNA-tranduced iPSDCs (iPSDCs-LacZ), and ubiquitin-MSLN fusion cDNA-transduced iPSDCs (iPSDCs-UbMSLN) were used as stimulator cells. On day 0, a total of 4×10^6 responder cells and 2×10^5 stimulator
 11 12 13 14 15 	Autologous PBMCs from healthy donors were used as responder cells. MSLN cDNA- transduced iPSDCs (iPSDCs-MSLN), LacZ cDNA-tranduced iPSDCs (iPSDCs-LacZ), and ubiquitin-MSLN fusion cDNA-transduced iPSDCs (iPSDCs-UbMSLN) were used as stimulator cells. On day 0, a total of 4×10^6 responder cells and 2×10^5 stimulator cells were mixed in AIM-V medium containing 10 ng/mL rhIL-7 and cultured in 24-

1	AIM-V medium containing 20U/mL of rhIL-2 was added every 2-3 days. After three
2	cycles of re-stimulation, CD8+ cells as CTLs were sorted from the stimulated PBMCs
3	on day 21 using an autoMACS Pro Separator. The CTLs were stained with the PE-
4	labelled pentamers of HLA-A2-binding MSLN epitope peptides, SLLFLLFSL (A2 $_{(20-1)}$
5	28)) and VLPLTVAEV (A2(530-538)) respectively (ProImmune, Oxford, UK) in
6	combination with FITC-conjugated anti-CD8 antibody (Becton Dickinson), and
7	analyzed using flow cytometry.
8	Cytotoxicity assay
9	The cytotoxic activity was analyzed using a 4h ⁵¹ Cr release assay. The protocol of a 4h
10	⁵¹ Cr release assay was modified from a previously established protocol [2]. Briefly, the
11	target cells were labeled with ⁵¹ Cr for 1 hour. The target cells were plated at a
12	concentration of 1×10^3 cells/well with 4×10^4 /well unlabeled K562 cells and CTLs as
13	effector cells at various E/T ratio at 37° C in a 5% CO2 atmosphere for 4 hours. The
14	supernatant was collected and measured for released ⁵¹ Cr. MSLN cDNA-transduced
15	LCLs and Lac-Z cDNA-transduced LCLs were used as target cells. MSLN peptides that
16	were HLA-A24 or HLA-A2 restricted CTL epitope, as previously described [20] [30],
17	were synthesized and purified to >95% purity (Sigma-Aldrich, St. Louis, MO). HLA-
18	A24-binding MSLN epitope peptides, AFYPGYLCSL (A24(442-451)), FYPGYLCSL

2	peptides, SLLFLLFSL (A2(20-28)), VLPLTVAEV (A2(530-538)) were synthesized for the
3	experiments. LCLs pulsed with these MSLN epitope peptides were also used as target
4	cells.
5	Flow cytometric analysis
6	PE-conjugated anti-human CD11c (Becton Dickinson) was used for monocyte-derived
7	DCs (MoDCs) and iPSDCs staining. Intracellular staining with an anti-human MSLN
8	monoclonal antibody (EPR19025-42, Abcam) and Alexa Fluor 488 conjugated goat
9	anti-rabbit IgG antibody (Abcam) was performed using a Fixation and Permeabilization
10	Solution Kit (Becton Dickinson).
11	
12	Results
13	Expression of MSLN in genetically modified DCs
14	Immature DCs were transduced with recombinant adenoviral vector by centrifugal
15	method at 100 MOI. The genetically modified DCs were analyzed using intracellular
16	MSLN-staining flow cytometry to compare the transfection efficiency of the MSLN
17	gene between MoDCs-MSLN and iPSDCs-MSLN. The percentage of positively stained
18	cells among the MoDCs and iPSDCs was 83% and 84%, respectively (Fig. 2a).

(A24₍₄₃₅₋₄₄₃₎), LYPKARLAF (A24₍₄₇₅₋₄₈₃₎), and HLA-A2-binding MSLN epitope

1

1	Cytotoxic activity of CTLs induced by MoDCs-MSLN and iPSDCs-MSLN
2	CTLs induced by MoDCs-MSLN from healthy donors 1, 2, and 3 showed cytotoxic
3	activity against autologous LCL-MSLN. CTLs induced by iPSDCs-MSLN from healthy
4	donor A, B, and C also showed comparable cytotoxic activity against autologous LCL-
5	MSLN (Fig. 2b).
6	MHC class 1-restricted MSLN-specific CTLs response by iPSDCs-MSLN
7	To investigate whether CTLs recognize MSLN-derived epitope peptides restricted to the
8	HLA-A types, the cytotoxic activity of CTLs against MSLN epitope peptide-pulsed
9	LCLs was examined. CTLs induced by iPSDCs-MSLN from the HLA-A2/A24-positive
10	donor (donors A and B) showed cytotoxic activity against LCLs pulsed with the HLA-
11	A2 binding MSLN peptides, A2(20-28), A2(530-538), and the HLA-A24 binding MSLN
12	peptides, A24(442-451), A24(435-443), A24(475-483). CTLs induced by iPSDCs-MSLN from
13	the HLA-A2/A2-positive donor (donor C) showed cytotoxic activity against LCLs
14	pulsed with the HLA-A2 binding MSLN peptides, A2(20-28), A2(530-538), and no cytotoxic
15	activity against LCLs pulsed with the HLA-A24 binding MSLN peptides. These CTLs
16	showed no cytotoxic activity against LCLs pulsed with HLA-A2 binding WT1 peptide
17	(Fig. 2c). These findings suggests that these genetically modified iPSDCs-MSLN
18	induced an MHC class 1-restricted MSLN-specific CTLs response.

1 Effect of DCs transduced ubiquitin and MSLN fusion gene

2	To investigate whether MSLN protein degradation is enhanced within the DCs
3	transduced ubiquitin-MSLN fusion gene, immunohistochemistry and intracellular FACS
4	were examined 48 hours after gene transfer. Cytoplasm was stained in MoDCs-MSLN,
5	whereas cytoplasm was not stained in MoDCs-UbMSLN. Cytoplasm was stained in
6	MoDCs-UbMSLN with MG132, a proteasome inhibitor. The percentage of positively
7	stained cells among the MoDCs-MSLN, MoDCs-UbMSLN, and MoDCs-UbMSLN
8	with MG132 was 56% , 2%, and 46% respectively in intracellular FACS (Fig. 3a).
9	Cytoplasm was stained in iPSDCs-MSLN, whereas cytoplasm was not stained in
10	iPSDCs-UbMSLN. Cytoplasm was stained in iPSDCs-UbMSLN with MG132. The
11	percentage of positively stained cells among the iPSDCs-MSLN, iPSDCs-UbMSLN,
12	and iPSDCs-UbMSLN with MG132 was 82% , 48% , and 64% respectively in
13	intracellular FACS (Fig. 3b).
14	Induction of MSLN-specific CTLs from PBMCs by iPSDCs-UbMSLN and MSLN
15	pentamer assay
16	To assess the possibility of iPSDCs inducing MSLN-specific CTLs, a pentamer assay
17	was performed. Of autologous PBMCs stimulated with iPSDC-LacZ, iPSDC-MSLN, or
18	iPSDC-UbMSLN, 0.07%, 1.17%, and 2.27% were stained with pentamer, respectively

1	(Fig. 3c). The population of MSLN-specific CTLs increased approximately two-fold
2	with the introduction of the Ub-MSLN fusion gene into iPSDCs compared to MSLN-
3	only transgenic iPSDCs.
4	Cytotoxic activity of CTLs induced by MoDCs-UbMSLN and iPSDCs-UbMSLN
5	The CTLs induced by MoDCs-UbMSLN exhibited cytotoxic activity against LCLs-
6	MSLN , 46%, 39%, and 24% in E/T ratio 50, 25, and 12.5 respectively. Whereas the
7	CTLs induced by MoDC-MSLN exhibited cytotoxic activity against LCLs-MSLN,
8	37%, 27%, and 19% in E/T ratio 50, 25, and 12.5. The cytotoxicity of the CTLs induced
9	by MoDCs-UbMSLN were higher than the cytotoxicity of the CTLs induced by
10	MoDCs-MSLN in all E/T ratio. The CTLs induced by iPSDCs-UbMSLN exhibited
11	cytotoxic activity against LCLs-MSLN , 20%, 16%, and 11% in E/T ratio 50, 25, and
12	12.5 respectively. Whereas the CTLs induced by iPSDCs-MSLN exhibited cytotoxic
13	activity against LCLs-MSLN, 16%, 11%, and 6% in E/T ratio 50, 25, and 12.5. The
14	cytotoxicity of the CTLs induced by iPSDCs-UbMSLN were also higher than the
15	cytotoxicity of the CTLs induced by iPSDCs-MSLN in all E/T ratio (Fig. 4).
16	Experiments were performed three times to confirm the reproducibility of the results,
17	and similar results were obtained.
18	

1 Discussion

2	Our results showed that the CTLs induced by genetically modified DCs expressing
3	MSLN could induce MSLN-specific cytotoxic activity. MSLN is the optimal cancer
4	vaccine target for many gastrointestinal cancers[5] [19] [20] [21] [22] [23]. The strategy
5	of this study using DCs-MSLN are expected to be applied to the treatment of
6	gastrointestinal cancer expressing MSLN.
7	Not only the genetically modified naïve DCs-MSLN but iPSDCs-MSLN could
8	induce MSLN-specific CTLs with cytotoxic activity against autologous LCL-MSLN. In
9	addition, CTLs induced by iPSDCs-MSLN also showed cytotoxic activity against
10	MSLN-specific epitope peptide pulsed LCL in the HLA-A type restricted manner. CTLs
11	induced by iPSDCs transfected with whole MSLN gene were indicated to recognize
12	multiple MSLN-derived epitope peptides in an HLA-A type restricted manner. We
13	previously reported a gene-based vaccination strategy using iPSDCs transduced with
14	the whole TAA gene[13] [14]. This study also clearly showed that iPSDCs had a
15	capacity equal to that of naïve DCs as antigen-presenting cells.
16	In the current study, iPSCs-derived DCs were adenovirally transduced
17	simultaneously with ubiquitin gene and TAA gene, and it was examined whether the <i>in</i>
18	vitro CTLs immunized with these genetically modified DCs induce a strong cytotoxic

1	activity against LCLs expressing TAA in healthy volunteers. Our result showed that the
1	activity against LCL's expressing TAA in hearing volunteers. Our result showed that the
2	in vitro immunization of iPSDCs-Ub-MSLN elicited a more potent cytotoxic activity
3	than the <i>in vitro</i> immunization of iPSDCs-MSLN. This is the first report of production
4	of the recombinant adenovirus expressing the ubiquitin-MSLN fusion gene. To ensure
5	that ubiquitin functions properly, the primers were provided with Kozak sequences
6	(CGCCACC) that are important during eukaryotic translation. In addition, arginine was
7	placed at the N-terminus of ubiquitin. The use of arginine as a linker enhances
8	proteolysis of the fusion gene. This is known as the N-end rule [28]. To investigate
9	whether the ubiquitin-MSLN fusion gene was functioning normally, MSLN protein
10	expression in DCs was assessed by immunohistochemistry and intracellular FACS. In
11	the DCs transduced ubiquitin-MSLN fusion gene, MSLN is forced into the ubiquitin-
12	proteasome system and MSLN proteolysis is enhanced because the MSLN protein is
13	thought to be expressed in a form in which ubiquitin is pre-bound to the MSLN protein.
14	As a result, MSLN protein expression in DCs-UbMSLN is thought to decrease. In
15	contrast, inhibition of proteasome function with MG132, proteasome inhibitor, did not
16	reduce MSLN protein expression in DCs-UbMSLN. The ubiquitin-MSLN fusion gene
17	transfer enhanced MSLN proteolysis in DCs-UbMSLN, suggesting that proteolysis is
18	proteasome-dependent. Pentamer assay showed that increased MSLN proteolysis

1	enhan	ced the antigen-presenting capacity of MSLN-derived epitope peptides in DCs-		
2	UbM	SLN and induced more MSLN-specific CTLs. In addition, it was suggested that		
3	ubiquitin-MSLN fusion gene-transfected DCs may also enhance cytotoxic activity. To			
4	solve the problem of insufficient cytotoxic activity of iPSDC vaccines, it may be useful			
5	to introduce ubiquitin-MSLN fusion gene into iPSDCs.			
6	In conclusion, the current study was designed that peripheral T-cell tolerance to			
7	MSLN could be overcome by the immunization of genetically modified iPSDCs			
8	simultaneously expressing ubiquitin and MSLN, leading to a strong cytotoxicity agains			
9	tumors endogenously expressing MSLN. Therefore, this strategy may be promising for			
10	clinic	al application as an effective cancer vaccine therapy.		
11				
12	Data	Availability		
13	The d	ata are available upon reasonable request.		
14				
15	Refer	rences		
16	1.	Joffre OP, Segura E, Savina A, Amigorena S: Cross-presentation by dendritic cells.		
17		Nat Rev Immunol 2012, 12 (8):557-569.		
18	2.	Nakamura M, Iwahashi M, Nakamori M, Ueda K, Matsuura I, Noguchi K, Yamaue H:		
19		Dendritic Cells Genetically Engineered to Simultaneously Express Endogenous		
20		Tumor Antigen and Granulocyte Macrophage Colony-stimulating Factor Elicit		
21		Potent Therapeutic Antitumor Immunity. Clinical Cancer Research 2002, 8:2742-		

1		2749.
2	3.	Ojima T, Iwahashi M, Nakamura M, Matsuda K, Nakamori M, Ueda K, Naka T, Ishida
3		K, Primus FJ, Yamaue H: Successful cancer vaccine therapy for carcinoembryonic
4		antigen (CEA)-expressing colon cancer using genetically modified dendritic cells
5		that express CEA and T helper-type 1 cytokines in CEA transgenic mice. Int J
6		Cancer 2007, 120 (3):585-593.
7	4.	Ojima T, Iwahashi M, Nakamura M, Matsuda K, Nakamori M, Ueda K, Naka T,
8		Katsuda M, Miyazawa M, Iida T et al: Streptococcal preparation OK-432 promotes
9		the capacity of dendritic cells (DCs) to prime carcinoembryonic antigen (CEA)-
10		specific cytotoxic T lymphocyte responses induced with genetically modified DCs
11		that express CEA. Int J Oncol 2008, 32(2):459-466.
12	5.	Miyazawa M, Iwahashi M, Ojima T, Katsuda M, Nakamura M, Nakamori M, Ueda K,
13		Naka T, Hayata K, Iida T et al: Dendritic cells adenovirally-transduced with full-
14		length mesothelin cDNA elicit mesothelin-specific cytotoxicity against pancreatic
15		cancer cell lines in vitro. Cancer Lett 2011, 305(1):32-39.
16	6.	Katsuda M, Miyazawa M, Ojima T, Katanuma A, Hakamada K, Sudo K, Asahara S,
17		Endo I, Ueno M, Hara K et al: A double-blind randomized comparative clinical trial
18		to evaluate the safety and efficacy of dendritic cell vaccine loaded with WT1
19		peptides (TLP0-001) in combination with S-1 in patients with advanced pancreatic
20		cancer refractory to standard chemotherapy. Trials 2019, 20(1):242.
21	7.	Poschke I, Mao Y, Adamson L, Salazar-Onfray F, Masucci G, Kiessling R: Myeloid-
22		derived suppressor cells impair the quality of dendritic cell vaccines. Cancer
23		Immunol Immunother 2012, 61(6):827-838.
24	8.	Choi KD, Vodyanik MA, Slukvin, II: Generation of mature human myelomonocytic
25		cells through expansion and differentiation of pluripotent stem cell-derived lin-
26		CD34+CD43+CD45+ progenitors. J Clin Invest 2009, 119(9):2818-2829.
27	9.	Senju S, Haruta M, Matsunaga Y, Fukushima S, Ikeda T, Takahashi K, Okita K,
28		Yamanaka S, Nishimura Y: Characterization of dendritic cells and macrophages
29		generated by directed differentiation from mouse induced pluripotent stem cells.
30		Stem Cells 2009, 27(5):1021-1031.
31	10.	Senju S, Haruta M, Matsumura K, Matsunaga Y, Fukushima S, Ikeda T, Takamatsu K,
32		Irie A, Nishimura Y: Generation of dendritic cells and macrophages from human
33		induced pluripotent stem cells aiming at cell therapy. Gene Ther 2011, 18(9):874-
34		883.
35	11.	Silk KM, Silk JD, Ichiryu N, Davies TJ, Nolan KF, Leishman AJ, Carpenter L, Watt
36		SM, Cerundolo V, Fairchild PJ: Cross-presentation of tumour antigens by human

1		induced pluripotent stem cell-derived CD141(+)XCR1+ dendritic cells. Gene Ther
2		2012, 19 (10):1035-1040.
3	12.	Yanagimachi MD, Niwa A, Tanaka T, Honda-Ozaki F, Nishimoto S, Murata Y, Yasumi
4		T, Ito J, Tomida S, Oshima K et al: Robust and highly-efficient differentiation of
5		functional monocytic cells from human pluripotent stem cells under serum- and
6		feeder cell-free conditions. PLoS One 2013, 8(4):e59243.
7	13.	Iwamoto H, Ojima T, Hayata K, Katsuda M, Miyazawa M, Iida T, Nakamura M,
8		Nakamori M, Iwahashi M, Yamaue H: Antitumor immune response of dendritic cells
9		(DCs) expressing tumor-associated antigens derived from induced pluripotent stem
10		cells: in comparison to bone marrow-derived DCs. Int J Cancer 2014, 134(2):332-
11		341.
12	14.	Kitadani J, Ojima T, Iwamoto H, Tabata H, Nakamori M, Nakamura M, Hayata K,
13		Katsuda M, Miyajima M, Yamaue H: Cancer Vaccine Therapy Using
14		Carcinoembryonic Antigen - expressing Dendritic Cells generated from Induced
15		Pluripotent Stem Cells. Sci Rep 2018, 8(1):4569.
16	15.	Maruoka S, Ojima T, Iwamoto H, Kitadani J, Tabata H, Tominaga S, Katsuda M,
17		Hayata K, Takeuchi A, Yamaue H: Tumor RNA transfected DCs derived from iPS
18		cells elicit cytotoxicity against cancer cells induced from colorectal cancer patients
19		in vitro. Sci Rep 2022, 12 (1):3295.
20	16.	Rump A, Morikawa Y, Tanaka M, Minami S, Umesaki N, Takeuchi M, Miyajima A:
21		Binding of ovarian cancer antigen CA125/MUC16 to mesothelin mediates cell
22		adhesion. J Biol Chem 2004, 279(10):9190-9198.
23	17.	Shimizu A, Hirono S, Tani M, Kawai M, Okada K, Miyazawa M, Kitahata Y, Nakamura
24		Y, Noda T, Yokoyama S et al: Coexpression of MUC16 and mesothelin is related to
25		the invasion process in pancreatic ductal adenocarcinoma. Cancer Sci 2012,
26		103 (4):739-746.
27	18.	Shin SJ, Park S, Kim MH, Nam CM, Kim H, Choi YY, Jung MK, Choi HJ, Rha SY,
28		Chung HC: Mesothelin Expression Is a Predictive Factor for Peritoneal Recurrence
29		in Curatively Resected Stage III Gastric Cancer. Oncologist 2019, 24(11):e1108-
30		e1114.
31	19.	Morello A, Sadelain M, Adusumilli PS: Mesothelin-Targeted CARs: Driving T Cells
32		to Solid Tumors. Cancer Discov 2016, 6(2):133-146.
33	20.	Tsukagoshi M, Wada S, Hirono S, Yoshida S, Yada E, Sasada T, Shirabe K, Kuwano H,
34		Yamaue H: Identification of a novel HLA-A24-restricted cytotoxic T lymphocyte
35		epitope peptide derived from mesothelin in pancreatic cancer. Oncotarget 2018,
36		9 (59):31448-31458.

1	21.	Yokokawa J, Palena C, Arlen P, Hassan R, Ho M, Pastan I, Schlom J, Tsang KY:
2		Identification of novel human CTL epitopes and their agonist epitopes of
3		mesothelin. Clin Cancer Res 2005, 11(17):6342-6351.
4	22.	Hung CF, Tsai YC, He L, Wu TC: Control of mesothelin-expressing ovarian cancer
5		using adoptive transfer of mesothelin peptide-specific CD8+ T cells. Gene Ther
6		2007, 14 (12):921-929.
7	23.	Alewine C, Ahmad M, Peer CJ, Hu ZI, Lee MJ, Yuno A, Kindrick JD, Thomas A,
8		Steinberg SM, Trepel JB et al: Phase I/II Study of the Mesothelin-targeted
9		Immunotoxin LMB-100 with Nab-Paclitaxel for Patients with Advanced
10		Pancreatic Adenocarcinoma. Clin Cancer Res 2020, 26(4):828-836.
11	24.	Shaid S, Brandts CH, Serve H, Dikic I: Ubiquitination and selective autophagy. Cell
12		<i>Death Differ</i> 2013, 20 (1):21-30.
13	25.	Rouard H, Klonjkowski B, Marquet J, Lahet C, Mercier S, Andrieu M, Maison P,
14		Molinier-Frenkel V, Eloit M, Farcet JP et al: Adenoviral transgene ubiquitination
15		enhances mouse immunization and class I presentation by human dendritic cells.
16		Hum Gene Ther 2003, 14(14):1319-1332.
17	26.	Zhang M, Obata C, Hisaeda H, Ishii K, Murata S, Chiba T, Tanaka K, Li Y, Furue M,
18		Chou B et al: A novel DNA vaccine based on ubiquitin-proteasome pathway
19		targeting 'self'-antigens expressed in melanoma/melanocyte. Gene Ther 2005,
20		12 (13):1049-1057.
21	27.	Duan X, Hisaeda H, Shen J, Tu L, Imai T, Chou B, Murata S, Chiba T, Tanaka K,
22		Fehling HJ et al: The ubiquitin-proteasome system plays essential roles in
23		presenting an 8-mer CTL epitope expressed in APC to corresponding CD8+ T cells.
24		Int Immunol 2006, 18(5):679-687.
25	28.	Eslami NS, Shokrgozar MA, Mousavi A, Azadmanesh K, Nomani A, Apostolopoulos V,
26		Day S, Amanzadeh A, Alimohammadian MH: Simultaneous immunisation with a
27		Wilms' tumour 1 epitope and its ubiquitin fusions results in enhanced cell
28		mediated immunity and tumour rejection in C57BL/6 mice. Mol Immunol 2012,
29		51 (3-4):325-331.
30	29.	Bontkes HJ, Kramer D, Ruizendaal JJ, Kueter EW, van Tendeloo VF, Meijer CJ,
31		Hooijberg E: Dendritic cells transfected with interleukin-12 and tumor-associated
32		antigen messenger RNA induce high avidity cytotoxic T cells. Gene Ther 2007,
33		14 (4):366-375.
34	30.	Thomas AM, Santarsiero LM, Lutz ER, Armstrong TD, Chen YC, Huang LQ, Laheru
35		DA, Goggins M, Hruban RH, Jaffee EM: Mesothelin-specific CD8(+) T cell responses
36		provide evidence of in vivo cross-priming by antigen-presenting cells in vaccinated

1	pancreatic cancer patients. J Exp Med 2004, 200(3):297-306

2

3 Acknowledgements

4 We acknowledge proofreading and editing by Benjamin Phillis at the Clinical Study

5 Support Center at Wakayama Medical University.

6

7	Author	Contri	butions
---	--------	--------	---------

- 8 Study concept and design: Tominaga, Miyazawa and Ojima.
- 9 Acquisition of data: Tominaga, Miyazawa, Maruoka, and Kitadani.
- 10 Drafting of the manuscript: Tominaga and Ojima.
- 11 Critical revision of the manuscript for important intellectual content: Yamaue.
- 12 Administrative, technical and material support: Maruoka, Kitadani, and Iwamoto.
- 13 Study supervision: Yamaue.
- 14

15 Funding

- 16 Ministry of Education, Culture, Sports, Science and Technology, Japan; Grant number:
- 17 20K09063
- 18
- 19 **Ethics approval**

1	This study has been approved by the Safety Committee for Genetic Recombination
2	Experiments of this university (approval number: 2020-5). Only healthy volunteer
3	specimens were used in this study.
4	
5	Competing Interests
6	The authors declare no competing interests.
7	
8	Figure Legends
9	Figure 1
10	Construction of recombinant adenovirus transduced ubiquitin and MSLN fusion gene.
11	
12	Figure 2
13	a) Expression of MSLN in genetically modified MoDCs and iPSDCs by intracellular
14	FACS.
15	b) Cytotoxic activity of CTLs generated from MoDCs-MSLN (donor 1-3) and
16	iPSDCs-MSLN (donor A-C) against autologous LCLs-MSLN and LCLs-LacZ as a
17	control.
18	c) Cytotoxic activity of CTLs generated from iPSDCs-MSLN against LCLs pulsed


1	MSLN specific epitope peptides and WT1 specific peptide as a contr	01.
1	instri specific cprope peptides and wir i specific peptide as a contri-	01.

2

3	Figure 3	
4	a) Expression of MSLN in genetically modified MoDCs by immunohistochemistry and	
5	intracellular FACS. MG132 is a proteasome inhibitor.	
6	b) Expression of MSLN in genetically modified iPSDCs by immunohistochemistry and	
7	intracellular FACS. MG132 is a proteasome inhibitor.	
8	c) Pentamer assay of MSLN specific CTLs generated from genetically modified	
9	iPSDCs.	
10		
11	Figure 4	
12	Cytotoxic activity of CTLs generated from MoDCs-MSLN and MoDCs-UbMSLN	
13	against autologous LCLs-MSLN (Donor 1). Cytotoxic activity of CTLs generated from	
14	iPSDCs-MSLN and iPSDCs-UbMSLN against autologous LCLs-MSLN (Donor A).	

15

Figures

Figure 1

Construction of recombinant adenovirus transduced ubiquitin and MSLN fusion gene.

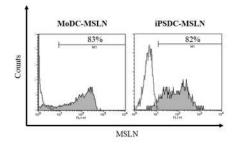


Figure 2a

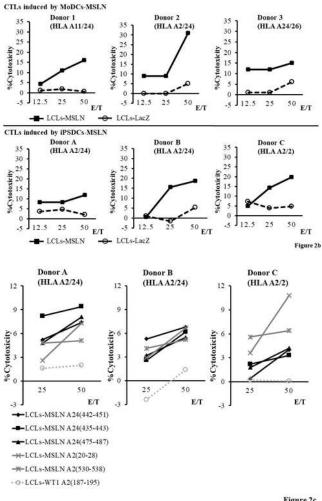


Figure 2c

Figure 2

a) Expression of MSLN in genetically modified MoDCs and iPSDCs by intracellular

FACS.

b) Cytotoxic activity of CTLs generated from MoDCs-MSLN (donor 1-3) and

iPSDCs-MSLN (donor A-C) against autologous LCLs-MSLN and LCLs-LacZ as a

control.

c) Cytotoxic activity of CTLs generated from iPSDCs-MSLN against LCLs pulsed MSLN specific epitope peptides and WT1 specific peptide as a control.

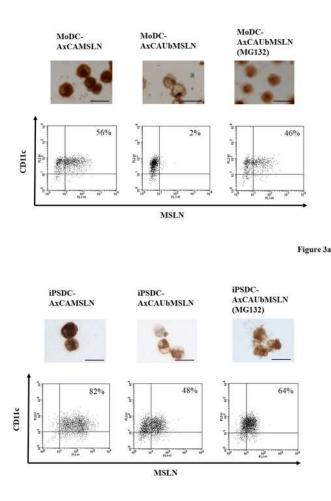
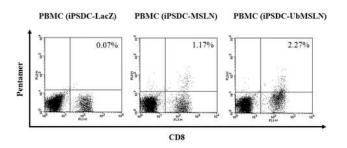



Figure 3b

Figure 3

a) Expression of MSLN in genetically modified MoDCs by immunohistochemistry and intracellular FACS. MG132 is a proteasome inhibitor.

b) Expression of MSLN in genetically modified iPSDCs by immunohistochemistry and intracellular FACS. MG132 is a proteasome inhibitor.

c) Pentamer assay of MSLN specific CTLs generated from genetically modified iPSDCs.

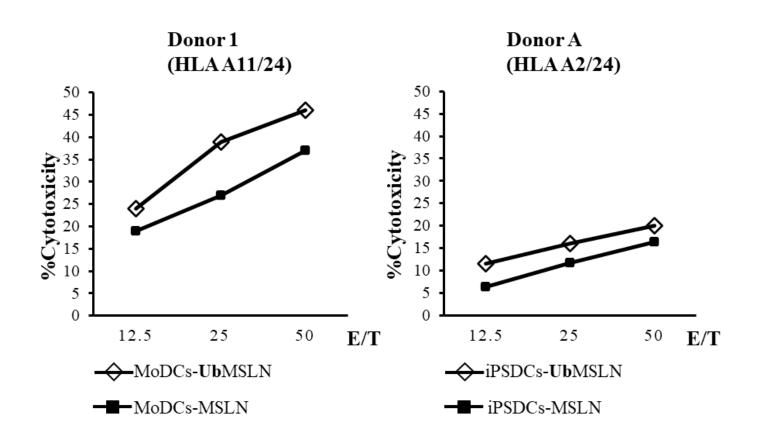


Figure 4

Cytotoxic activity of CTLs generated from MoDCs-MSLN and MoDCs-UbMSLN against autologous LCLs-MSLN (Donor 1). Cytotoxic activity of CTLs generated from iPSDCs-MSLN and iPSDCs-UbMSLN against autologous LCLs-MSLN (Donor A).