[1] Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2018.
[2] Cobb S, Starr S. Breast cancer, breast surgery, and the makeover metaphor. Social Semiotics, 22(1):83-101, 2012.
[3] Dragun AE, Huang B, Tucker TC, Spanos, WJ. Disparities in the application of adjuvant radiotherapy after breast-conserving surgery for early stage breast cancer: Impact on overall survival. Cancer, 117(12):2590-2598, 2011.
[4] Kantor O, Pesce C, Liederbach E, Wang CH, Winchester DJ, Yao K. Surgery and hormone therapy trends in octogenarians with invasive breast cancer. Am J Surg, 211(3):541-545, 2016.
[5] Peart O. Breast intervention and breast cancer treatment options. Radiol Technol, 86(5), 535-558. 2015.
[6] Koturbash I, Tolleson WH, Guo L, Yu D, Chen S, Hong H, Mattes W, Ning B. microRNAs as pharmacogenomic biomarkers for drug efficacy and drug safety assessment. Biomarkers in Medicine, 2015, 9(11), 1153-1176.
[7] Gloria B , Claudia C , Isabella C . MicroRNAs: New Biomarkers for Diagnosis, Prognosis, Therapy Prediction and Therapeutic Tools for Breast Cancer. Theranostics, 2015, 5(10):1122-1143.
[8] Feng ZM , Qiu J , Chen X W , Liao R X, Liao X Y, Zhang L P, Chen X, Li Y, Chen Z T, Sun J G. Essential role of miR-200c in regulating self-renewal of breast cancer stem cells and their counterparts of mammary epithelium. BMC Cancer, 2015, 15(1):645.
[9] Shenoy A, Blelloch RH. Regulation of microRNA function in somatic stem cell proliferation and differentiation. Nat Rev Mol Cell Biol, 15(9):565-76, 2014.
[10] Iorio M V, Ferracin M, Liu C G, Veronese, A, Spizzo, R, Sabbioni, S, Magri, E, Pedriali, M, Fabbri, M, Campiglio M, Ménard S, Palazzo JP, Rosenberg A, Musiani P, Volinia S, Nenci I, Calin GA, Querzoli P, Negrini M, Croce CM. MicroRNA Gene Expression Deregulation in Human Breast Cancer. Cancer Res, 65(16):7065-7070, 2005.
[11] Shimono Y , Zabala M , Cho RW , Lobo N, Dalerba P, Qian D, Diehn M, Liu H, Panula SP, Chiao E, Dirbas F M, Somlo G, Reijo Pera R A, Lao Kaiqin, Clarke M F. Downregulation of miRNA-200c Links Breast Cancer Stem Cells with Normal Stem Cells. Cell, 138(3):592-603, 2009.
[12] Yu F, Yao H, Zhu P, Zhang, X, Pan, Q, Gong, C, Huang, Y, Hu, X, Su, F , Lieberman J, Song E. let-7 Regulates Self Renewal and Tumorigenicity of Breast Cancer Cells. Cell, 131(6):1109-1123, 2007.
[13] Tanzer A, Stadler PF. Molecular Evolution of a MicroRNA Cluster. J Mol Biol, 339(2):327-335, 2004.
[14] Hayashita, Y. A Polycistronic MicroRNA Cluster, miR-17-92, Is Overexpressed in Human Lung Cancers and Enhances Cell Proliferation. Cancer Res, 65(21):9628-9632, 2005.
[15] Landais S, Landry S, Legault P, Rassart E. Oncogenic Potential of the miR-106-363 Cluster and Its Implication in Human T-Cell Leukemia. Cancer Res, 67(12):5699-5707, 2007.
[16] Xue TM, Tao LD, Zhang M, Xu GC, Zhang J, Zhang PJ. miR-20b overexpression is predictive of poor prognosis in gastric cancer. OncoTargets and Therapy, 2015:1871-1876.
[17] Cascio S, D'Andrea A, Ferla R, Surmacz, E, Gulotta, E, Amodeo, V, Bazan, V, Gebbia, N, Russo, A. miR‐20b modulates VEGF expression by targeting HIF‐1α and STAT3 in MCF‐7 breast cancer cells. J Cell Physiol, 224(1):242-249, 2010.
[18] Ahmad A, Ginnebaugh KR, Sethi S, Chen W, Ali, R, Mittal, S, Sarkar, F H. miR-20b is up-regulated in brain metastases from primary breast cancers. Oncotarget, 6(14):12188-12195. 2015.
[19] Xue TM, Tao LD, Zhang M, Zhang J, Liu X, Chen GF, Zhu YJ, Zhang PJ. Clinic opathological Significance of MicroRNA-20b Expression in Hepatocellular Carcinoma and Regulation of HIF-1 alpha and VEGF Effect on Cell Biological Behaviour. Disease Markers, 2015:1-10, 2015.
[20] Sun JG, Liao RX, Qiu J, Jin JY, Wang XX, Duan YZ, Chen FL, Hao P, Xie QC, Wang ZX, Li DZ, Chen ZT, Zhang SX. Microarray-based analysis of MicroRNA expression in breast cancer stem cells. J Exp Clin Cancer Res, 2010, 29:174.
[21] Zucker M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acid Res, 2003, 31:3406–3415.
[22] Chen X., Wu L, Li DZ, Xu YM, Zhang LP, Niu K, Kong R, Gu JY, Xu ZH, Chen ZT And Sun JG. Radiosensitizing effects of miR-18a-5p on lung cancer stem-like cells via downregulating both ATM and HIF-1α. Cancer Medicine, 2018, 7(Suppl 4): 3834-3847.
[23] Xia LQ, Feng ZM, Chen X, Li Y, Wang YM, Lu DX, Gu JY, Sun JG. Screening of key miRNAs related with breast cancer by bioinformatics network and effect of miR-106a-5p on invasion and migration in breast cancer cells. Journal of Third Military Medical University, 2017, 39(2), 130-136.
[24] Zhou W, Shi G, Zhang Q, Wu, Q, Li, B, Zhang, Z. MicroRNA-20b promotes cell growth of breast cancer cells partly via targeting phosphatase and tensin homologue (PTEN). Cell Biosci, 4(1):62, 2014.
[25] Wang B , Yang J , Xiao B . MicroRNA-20b (miR-20b) Promotes the Proliferation, Migration, Invasion, and Tumorigenicity in Esophageal Cancer Cells via the Regulation of Phosphatase and Tensin Homologue Expression. PLoS ONE, 2016, 11(10):e0164105.
[26] Cascio S, D’Andrea A, Ferla R, Surmacz E, Gulotta E, Amodeo V, Bazan V, Gebbia N, Russo A. miR-20b modulates VEGF expression by targeting HIF-1 alpha and STAT3 in MCF-7 breast cancer cells. J Cell Physiol 2010, 224:242–249.
[27] Li D , Ilnytskyy Y , Kovalchuk A , khachigian LM, Bronson RT, Wang B, Kovalchuk O. Crucial Role for Early Growth Response-1 in the Transcriptional Regulation of miR-20b in Breast Cancer. Oncotarget, 2013, 4(9):1373-1387.
[28] Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature, 2011,414(6859):105-111.
[29] Visvader JE, Stingl J. Mammary stem cells and the differentiation hierarchy: current status and perspectives. Genes Dev. 2014, 28(11), 1143-1158.
[30] Polyak k. Breast cancer: origins and evolution. J Clin Invest, 2007,117(11), 3156-3163.
[31] Yuanwen Chen, Nian Wu, Lei Liu, Huaying Dong, Xinao Liu3. microRNA-128-3p overexpression inhibits breast cancer stem cell characteristics through suppression of Wnt signaling pathway by down-regulating NEK2. J Cell Mol Med. 2020; 24:7353-7369.
[32] Sulaiman A, McGarry S, Lam KM, Sahli Se, Chambers J, Kaczmarek S, Li L, Addison C, Dimitroulakos J, Arnaout A, Nessim C, Yao Zemin, Ji Guang, Song Haiyan, Liu Sheng, Xie Ying, Gadde S, Li Xuguang And Wang Lisheng. Co-inhibition of mTORC1, HDAC and ESR1alpha retards the growth of triple-negative breast cancer and suppresses cancer stem cells. Cell Death Dis. 2018;9: 815.
[33] Chhabra R, Saini N. MicroRNAs in cancer stem cells: current status and future directions. Tumour Biol. 2014; 35(9):8395-8405.
[34] Cai WY, Wei TZ, Luo QC, Wu QW, Liu QF, Yang M, Ye GD, Wu JF, Chen YY, Sun GB, Liu YJ, Zhao WX, Zhang ZM, Li BA. The Wnt-β-catenin pathway represses let-7 microRNA expression through transactivation of Lin28 to augment breast cancer stem cell expansion. J Cell Sci. 2013; 126: 2877-2889.
[35] Jeselsohn R, Brown NE, Arendt L, Klebba I, Hu MG, Kuperwasser C, Hinds PW. Cyclin D1 kinase activity is required for the self-renewal of mammary stem and progenitor cells that are targets of MMTV-ErbB2 tumorigenesis. Cancer Cell, 17(1):65-76, 2010.
[36] Long J, Ou C, Xia H, Zhu Y, Liu D. MiR-503 inhibited cell proliferation of human breast cancer cells by suppressing CCND1 expression. Tumour Biol. 2015, 36(11), 8697-8702.
[37] Ullah Shah A, Mahjabeen I, Kayani MA. Genetic polymorphisms in cell cycle regulatory genes CCND1 and CDK4 are associated with susceptibility to breast cancer. J BUON. 2015, 20(4),985-993.
[38] Suzuki DE, Ariza CB, Porcionatto MA, Okamoto OK. Upregulation of E2F1in cerebellar neuroprogenitor cells and cell cycle arrest during postnatal brain development. In Vitro Cell Dev Biol Anim, 47(7):492-499, 2011.
[39] Chong JL, Wenzel PL, SáenzRobles MT, Nair V, Ferrey A, Hagan JP, Gomez YM, Sharma N, Chen HZ, Ouseph M, Wang SH, Trikha P, Culp B, Mezache L, Winton DJ, Sansom OJ, Chen D, Bremner R, Cantalupo PG, Robinson ML, Lenone G. E2f1–3 switch from activators in progenitor cells to repressors in differentiating cells. Nature, 462(7275):930-4, 2009.
[40] Kim SY, Rane SG. The Cdk4-E2f1 pathway regulates early pancreas development by targeting Pdx1+ progenitors and Ngn3+ endocrine precursors. Development, 138(10):1903-1912, 2011.
[41] Battistella M, Romero M, Castrovega LJ, Gapihan G, Bouhidel F, Bagot M, Feugeas J P, Janin A. The High Expression of the microRNA 17-92 Cluster and its Paralogs, and the Downregulation of the Target Gene PTEN, Is Associated with Primary Cutaneous B-Cell Lymphoma Progression. J Invest Dermatol, 135(6):1659-1667, 2015.
[42] Biswas AK, Johnson D G. Transcriptional and Nontranscriptional Functions of E2F1 in Response to DNA Damage. Cancer Res, 72(1):13-7, 2012.
[43]Ghildiyal M, Xu J, Seite H, Weng ZP and Zamore PD. Sorting of Drosophila small silencing RNAs partitions microRNA* strands into the RNA interference pathway. RNA. 2010, 16(1): 43-56.
[44] Czech B, Hannon GJ. Small RNA sorting: matchmaking for Argonautes. Nat Rev Genet 2011; 12: 19-31.
[45] Okamura K, Liu N, Lai EC. Distinct mechanisms for microRNA strand selection by Drosophila Argonautes. Mol Cell 2009; 36: 431-444.
[46] Weiss CN, Ito K. A Macro View of MicroRNAs: The Discovery of MicroRNAs and Their Role in Hematopoiesis and Hematologic Disease. Int Rev Cell Mol Biol. 2017; 334: 99–175.