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Abstract
Background: Reducing enteric methane emissions from farmed ruminants can be achieved by various
nutritional strategies. However, it remains unclear to what extent the effects of diet on rumen microbiome
are comparable between different ruminant species. In this work, we compared the effects of starch-
and/or lipids-rich diets on the rumen microbiome of cows and goats to enhance our understanding of
microbial mechanisms of methanogenesis. The study enrolled four Holstein cows and four Alpine goats,
conducted simultaneously in a replicate 4×4 Latin square design, receiving the same ration based on
grassland hay and concentrate (CTL) or supplemented with corn oil and wheat starch (COS), marine
algae powder (MAP) or hydrogenated palm oil (HPO). The microbiome was studied using non-targeted
total RNA sequencing.

Results: To identify biologically relevant features, we developed a �ve-step biostatistical pipeline,
combining a network-based approach with clustering and supervised model �tting to associate
differentially expressed genes (deKEGGs) and Operational Taxonomic Units (deOTUs) with methane
emissions. The COS diet induced the highest methane emissions reduction for cows and goats and most
profoundly affected the microbiome. With a focus on the COS vs. CTL comparison, the number of
deOTUs and deKEGGs in cows (16 and 381) was higher than in goats (10 and 133). Moreover, clustering
analysis revealed network topology and functionality differences between ruminant species. In goats, the
reduction in methane emissions was strongly associated with genes involved in Carbohydrate
metabolism, and genes coding for methylotrophic and hydrogenotrophic pathways of methanogenesis
were overrepresented; in cows, only the hydrogenotrophic pathway was prevalent. Further, sPLS analysis
identi�ed potential biomarkers characteristic of each ruminant species, such as tetrahydromethanopterin
S-methyltransferase and fructose bisphosphate aldolase for cows, and Methanol: coenzyme M
methyltransferase, F420-non-reducing hydrogenase for goats.

Conclusions:

Overall, these results demonstrated a strong in�uence of the ruminant species on the responses of the
rumen microbial community to dietary changes. We observed that the COS diet reduced similarly enteric
methane emissions in cows and goats, but the induced shifts in the rumen microbiome were not the
same. These results suggest that the host-animal species conditions microbial interactions within the
rumen ecosystem.

Background
Thanks to a complex microbiota residing in the ruminal compartment, ruminants have the remarkable
ability to convert plant biomass that is indigestible for humans into nutrient-dense foods. However,
ruminant production is under strong societal pressure due to its high carbon footprint associated with the
emission of methane, a potent greenhouse gas (GHG) [1].  For milk production, cows are the most
important source of enteric methane, but dairy goats, sheep, and buffalo also contribute [2]. For the last
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twenty years, milk production from goats has increased by 2.7% per year, a higher rate than cow's milk [3,
4]. In addition, goats are particularly suited to harsh climatic conditions [4] and linked to climate changes,
their numbers and production areas are likely to expand, replacing other livestock species. 

Methane production in ruminants results from the activity of methanogenic archaea [5].  It is a natural
process linked to the anaerobic hydrolysis and fermentation of feeds, which provides the archaea with
the end products of fermentation used for methanogenesis. Rumen methanogens are essentially
hydrogenotrophs, utilizing H2 to convert CO2 to methane, but other pathways such as methylotrophy are
also important [6]. Nutritional strategies appear to be an effective way to mitigate methane emissions
from ruminants [7] that farmers could easily adopt without altering the e�ciency of animals and other
GHG emissions. Several studies comparing diets inducing high and low enteric methane emissions
reported changes in ruminal microbial communities, taxa or genes [8-11]. However, no common
biomarkers were highlighted, and, in some cases, the results were contradictory.

Notwithstanding, all these studies concur that changes in methane emissions are better re�ected by
changes in functional gene expression than by changes in microbial populations. Hence, microbial genes
may be a more robust benchmark for predicting enteric CH4 emissions. It is noted that most studies were
done on cattle, and there is scarce information on goats. There are some differences in the rumen
microbiota of cattle and goats, particularly for bacterial communities [12]. However, it is unknown
whether these differences could in�uence methane production as there are no studies in which these two
ruminant species were compared under the same conditions.   

A recent study explored the in�uence of lipid-supplemented diets on methane emissions, feeding behavior
and milk fat content in cows and goats [13]. The setup of these simultaneous studies, where diet and
management conditions were the same for both ruminant species, provides the opportunity to assess
microbial changes associated with methane-reducing diets. We hypothesized that due to anatomical and
physiological characteristics and feeding behavior, the rumen microbiome of cows and goats have
noticeable differences and that these differences could affect methanogenesis mechanisms. We used
metatranscriptomic data and adopted a network-based approach combined with clustering and
supervised model �tting to investigate the effects of high starch and lipid supplemented diets on rumen
microbial community structure and activity. Both in cows and goats, we searched for diet-speci�c
changes in microbial taxonomical composition and functions related to fermentation patterns and
methane-emission phenotypes. 

Results
Trials with cows and goats were conducted simultaneously in a 4 x 4 Latin square design (Fig. 1a).
Methane emissions were measured in respiratory chambers and rumen contents were sampled before the
morning feeding. To study the rumen microbiome, total RNA was extracted from rumen contents and
submitted to the RNASeq sequencing approach and further analyzed using a �ve-step statistical pipeline
(Fig. 1b).
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Changes in the rumen microbiome match the methane-emitting phenotype.

There were 5,235 KEGGs, and 369 OTUs initially detected after functional and taxonomic mapping in
cows and goats. Most of the identi�ed KEGGs were related to Carbohydrate metabolism (11% and 13% in
cows and goats, respectively), Genetic information processing protein families (5% and 6.5%),
unclassi�ed metabolism functions (4% and 5%), Signaling and cellular processes protein families (4.3%
and 4.4%) and Translation (4% and 5%) (Supplementary Fig. 1a). Major microbial phyla were presented
by Firmicutes (45% in cows and 54% in goats) and Bacteroidetes (24% in cows and 22% in goats),
followed by Proteobacteria (8% in cows and 5% in goats) (Supplementary Fig. 1b).

In our previous study, only the COS diet decreased CH4 yield by an average of 28% in both species [13].
The statistical pipeline was run for all dietary comparisons, i.e. COS vs CTL, HPO vs CTL, MAP vs CTL,
COS vs HPO, COS vs MAP and HPO vs MAP. Signi�cant changes in the rumen microbiome were found
only for COS vs other diet comparisons. Consequently, we present below the comparison of COS with
other diets, particularly CTL.

Cows' and goats' microbiomes are similar but respond
differently to the diet
In order to make a meaningful comparison, we �rst examined the microbial structure (in terms of detected
16S rRNA copies) and activity (in terms of detected KEGGs) in cows and goats from the control groups
only. The OTUs PCA analysis (Supplementary Fig. 2a) showed samples grouping in clusters as a function
of the animal species; however, at the phylum level, there was no signi�cant difference in relative
abundances, except for Fibrobacteres, Euryarchaeota and some low abundant phyla like WPS.2, SR1,
Synergistetes and Tenericutes. In a differential expression analysis, we identi�ed only 16 OTUs with
signi�cantly different abundance between CTL cows and goats. Two of these OTUs were classi�ed as
methanogens, Methanobrevibacter and VadinCA11 (a genus from the Methanomassiliicoccales order)
and were more abundant in goats. Inversely, an OTU a�liated to Fibrobacter succinogenes represented
0.3% of total 16S rRNA counts in CTL cows and less than 0.1% in goats. Similarly, two Sharpea-related
OTUs were more abundant in cows, while two Oscillospiraceae and one Veillonellaceae presented higher
abundance in goats. The other signi�cantly abundant OTUs represented less than 0.001% of the total
counts.

Principal component analysis with the KEGG orthologs showed no clear separation between cows and
goats receiving CTL diet (Supplementary Fig. 2b). However, out of the 5,235 identi�ed KEGGs, we
enumerated 400 that were differentially expressed between CTL animals. Most of them (14%) were
related to Carbohydrate metabolism, 9.7% to Signaling and cellular processes protein families, 7% to
unclassi�ed: metabolism, 6% to genetic information processing protein families and 6% to Amino acid
metabolism. Among these 400 deKEGGs, only a handful had relative abundances higher than 0.01% (7 in
cows and 6 in goats). This analysis suggests that despite some differences in rumen microbial



Page 5/22

community structure, the microbial activity was similar between goats and cows fed the same CTL diet
and under the same simultaneous experimental conditions.

In cows, individual pair-wise comparisons between COS and other diets resulted in 16 to 28 deOTUs, with
10 of them shared in all comparisons (Fig. 2a and Supplementary Table 1a). These 10 deOTUs represent 
~ 3% of all OTUs identi�ed. It is worth mentioning that Succinivibrionaceae, Roseburia, unclassi�ed RF32,
Prevotella ruminicola related OTUs were higher for COS compared to the rest of the diets while the
abundance of VadinCA11, Spirochaetaceae, unclassi�ed RFP12, unclassi�ed Rickettsiales and
Endomicrobia OTU was reduced. The pair-wise comparisons between COS and the other experimental
diets identi�ed 380 to 791 deKEGGs (Fig. 2b). For each of these deKEGGs and every dietary comparison,
the fold change variations in gene expression were always in the same up or down direction. There were
255 shared deKEGGs between dietary comparisons, and they were related to Energy Metabolism (12.5%),
Carbohydrate metabolism (12.5%), Genetic information processing protein families (9.8%) and
Translation (9%) (Supplementary Table 1b). Twenty-�ve of the 255 COS-speci�c deKEGGs were
discovered to be differently regulated in the CTL diets between species, however, most of these were low
abundant (< 0.01%) (Fig. 2e).

In goats, the number of deOTUs and deKEGGs shared across the three pair-wise diet comparisons was
lower than for cows. There were four deOTUs (R4.45B, uncl_Rickettsiales, SHD.231, and Paludibacter
representing 0.61% of all OTUs identi�ed) (Fig. 2c) and 22 deKEGGs (Fig. 2d) (Supplementary Table 1c
and 1d). Changes in the expression of these 22 deKEGGs in the different diet comparisons were always in
the same direction as observed for cows. These 22 shared deKEGGs were related to Unclassi�ed
Metabolism (27%), Carbohydrate metabolism (22%), Metabolism protein families (13%), Amino acid
metabolism (9%) and Energy metabolism (9%) functions. Twelve of the 22 COS-speci�c deKEGGs
discovered in goats were also found in cows, with just two of them being differently expressed and low
abundant (< 0.01%) in CTL diet between species (Fig. 2e).

For each ruminant species, co-occurrence networks were created to analyze the linkages between
deKEGGs, deOTUs and other parameters, including VFA, methane, rumen protozoa counts and intake.
After clustering using the K-means function, clusters grouping methane metabolism-related variables
were used in a pathway enrichment analysis.

For all dietary comparisons in cows, the networks formed 11 clusters (Fig. 3a and Supplementary Figs. 3a
and 3b). Speci�cally, the COS vs CTL network had 10,902 edges, 4 upregulated deOTUs (including
Succinivibrionaceae, unclassi�ed RF32 and Prevotella_ruminicola), 2 downregulated deOTUs (including
Spirochaetaceae and unclassi�ed RFP12), 159 downregulated deKEGGs, 125 upregulated deKEGGs (206
of the network deKEGGs were COS-speci�c) and 28 parameters associated to VFA composition and
protozoa counts among others (Supplementary Table 2a for COS vs CTL and 2b for COS vs MAP and 2c
for COS vs HPO). For each dietary comparison, the two largest clusters of the network contained
methane-related variables, some fermentation parameters and deKEGGs related to carbohydrate and
energy metabolism. It is noted that daily methane production (CH4 g/d) is always segregated separately
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from CH4 yield and fermentation parameters. More than one-third of the deKEGGs clustering with
methane variables were common between dietary comparisons (75% in COS vs CTL, 36% in COS vs MAP,
and 37% in COS vs HPO).

In COS vs CTL we identi�ed clusters 1 and 5 as closely related to methane pathway (Fig. 3a). Cluster 5
included CH4 yield, the majority of fermentation variables, protozoa counts, an OTU a�liated as
unclassi�ed Spirochaetaceae, and 95 deKEGGs, most of which related to Metabolic pathways and
Microbial metabolism in diverse environments. However, only 3% of the deKEGGs in this cluster were
directly connected to the methane metabolism pathway (Supplementary Fig. 4a). In contrast, deKEGGs
related to the methane metabolism pathway accounted for 16% of all deKEGGs in cluster 1, just after
metabolic pathways (26%) and microbial metabolism (20%) (Supplementary Fig. 4b). These deKEGGs
were identi�ed as subunits of methyl-coenzyme M reductase, tetrahydromethanopterin S-
methyltransferase or formylmethanofuran dehydrogenase.

The deKEGGs of clusters 1, 5, and 7 (that contain methane variables) and their linkages with pathways
and metabolic reactions were used to create a network of metabolic pathways in cows (Supplementary
Fig. 5a). Some pathways had numerous interactions with the deKEGGs networks, and these
corresponded to methane metabolism, secondary metabolite biosynthesis, carbon metabolism, microbial
metabolism, metabolic pathways; deKEGGs from cluster 1 interacted primarily with the pathways with a
high degree of interactions, such as the methane metabolism.

COS vs HPO and COS vs MAP network cluster distributions were comparable to COS vs CTL, although
Methanosphaera was in one of the biggest clusters with CH4 yield and Methanobrevibacter clustered with
CH4 g/d in COS vs HPO (Supplementary Fig. 3a for COS vs MAP and 3b for COS vs HPO).

The same analytical approach in goats allowed the construction of a co-occurrence network in COS vs
CTL of 518 edges containing 22 fermentation parameters, 2 downregulated deOTUs (uncl_BS11 and
Pirellulaceae), 26 downregulated deKEGGs, and 37 upregulated deKEGGs (Fig. 3b). The co-occurrence
networks for COS vs MAP and COS vs HPO included only a few microbial variables and were not
subjected to further analysis (Supplementary Fig. 3c and Supplementary Table 3a for COS vs CTL and 3b
for COS vs MAP).

Clustering of the COS vs CTL network in goats resulted in 5 clusters, two of them (cluster 1 and cluster 5)
related to methane metabolism. It is noted that daily methane production is segregated in the same
cluster with CH4 yield and fermentation parameters (cluster 5). Supplementary Fig. 4c shows the pathway
analysis of cluster 5, which revealed that Metabolic pathways, Microbial metabolism in diverse
environments, Methane metabolism (8 deKEGGs), and Carbon metabolism accounted for 85% of
deKEGGs and in less proportion with Signal transduction and Translation. The pathway analysis of
cluster 1 from goats revealed similar pathways to those found in cluster 5, as well as
glycolysis/gluconeogenesis, ABC transporter, Fructose and mannose metabolism, and Glutathione
metabolism (Supplementary Fig. 4d).
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Pathways with a high degree (more interactions) were also found in the goat integration network
(Supplementary Fig. 5b), such as metabolic pathways, microbial metabolism, carbon metabolism, and
methane metabolism, which were mostly associated with a group of deKEGGs belonging to cluster 1 and
5 of the co-occurrence network. Sulfur metabolism, purine metabolism, galactose metabolism, porphyrin
metabolism, and pentose phosphate patwhays were linked with glycolysis/gluconeogenesis and
connected with deKEGGs from cluster 1.

Potential biomarker genes were identi�ed in cows and goats.

In a way to identify a set of variables that maximize the co-variation between the host-methane
emissions and the microbial-derived traits (deOTUs, deKEGGs), the �nal stage in the pipeline
implemented an sPLS regression analysis on the data from the previous clustering selection.
Supplementary Tables 4 and 5 for cows and goats, respectively, include the �nal results of the pipeline. In
cows, our analysis highlighted 25 discriminant variables (Fig. 4a) from cluster 1; eight were genes
involved in the methanogenesis pathway. In goats, 30 of the variables in cluster 5 were shown to be
discriminant (Fig. 4b); and eight were methanogenesis-related genes. Only three discriminant deKEGGs
were shared between the two animal species (Table 1). Moreover, all discriminant deKEGGs in cows and
most of them in goats were downregulated in differential expression analysis and with positive loadings
in the PLS analysis with the COS diet, indicating a negative relationship with methane emission (which
decreased when COS was fed to animals).

In cows, the sPLS analysis to forecast CH4 (g/d) variation in each cluster showed that cluster 1 had the
greatest prediction ability (58.7%), and clusters 5, 7 and 9 explained 45% of the variability. In goats,
cluster 1 explained the variability of CH4 (g/d) by 84%, while cluster 5 by 40%.

Discussion
Diet and feed additives are the most effective strategies to reduce enteric methane ruminant emissions
which could be easily, and rapidly applied in ruminant husbandry. Feeding lipids in combination with
starch successfully decreases methane emissions in cows [14–16], whereas data on goats are scarce
and inconsistent [17, 18].

In a previous work [13], we reported that the COS diet, supplemented with corn oil and wheat starch,
decreased CH4 yield in the same proportion in cows and goats compared to CTL, whereas HPO and MAP
diets supplemented respectively with hydrogenated palm oil or marine algae powder had no effect on
methane emissions.

These comparable results in both species offered an excellent opportunity to investigate microbial
mechanisms of methane mitigation strategies in cows and goats. We hypothesized that the COS diet
similarly affected microbial structure and functions in both species, as the methane production was
uniformly reduced. Therefore, we built a �ve-step statistical pipeline to analyze the metatranscriptomic
data from rumen samples of cows and goats by integrating analogies and discrepancies of microbial
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responses to a diet aimed at uncovering �nely-tuned mechanisms of methanogenesis in cows and goats.
With this objective, we focused on a detailed examination of the outputs of each pipeline step before
comparing the �nal step outputs in COS vs CTL, COS vs HPO and COS vs MAP comparisons. The �nal
goal was to identify biomarkers that describe major methanogenic pathways in the rumen of these
ruminant species.

Diet is considered as the main factor affecting rumen microbiota, though the abundance of microbial
groups varies between ruminant species [12]. In their extensive-scale survey, Henderson et al. [12]
highlighted that Veillonellaceae and Fibrobacter guided the clustering of bovines and caprids. In
accordance with this work, we also observed a higher abundance of Fibrobacter and a lower abundance
of Veillonellaceae in cows compared to goats when receiving the control diet. Though there were some
differences in microbial community structure, the feed degradation and fermentation pathways seem
complementary, as we did not �nd any major KEGGs differentially expressed between cows and goats.
This complies with CH4 yield results, which were highly similar between cows and goats receiving a
control diet.

In contrast, changes in methane emissions due to diet were better correlated with gene expression than
with microbial taxonomy, as the number of differentially deKEGGs was higher than that of deOTUs
across diets in both species. A change in the rumen microbiota composition could have been expected as
a consequence of the lipids supplemented in the diet; toxic effects were previously reported in pure
cultures [19] and in vitro [20] and to some extent in vivo [21]. There was no change in microbial gene
expression when cows and goats were receiving the HPO and MAP diets, compared to the control. As
discussed in our companion paper [13], the lipids supplementation level applied with these diets was low
(up to 3% of DMI), and supplementing fats up to 6% had shown no adverse effects on total nutrient
digestibility and total VFAs [22] with probably limited detrimental effects on rumen microbes. The COS
diet was the only that affcted microbial gene expression, demonstrating a shift in microbial metabolism.
This diet's effect can be attributed to higher starch and lipid supply.

The COS diet considerably modi�ed microbial gene expression in cows and to a much lower extent in
goats, as attested by the number of deKEGGs shared between all dietary comparisons and identi�ed for
each species, i.e. 255 for cows and 22 for goats. Nevertheless, in both species, carbohydrate metabolism
was one of the primary categories affected by the diet indicating a switch in fermentation pathways.

Correlations between deKEGGs, deOTUs, and fermentation parameters, including individual methane
measures and protozoa counts, were used to construct a compositionally-corrected network; this step,
combined with the k-means clustering, assured the selection of biologically relevant microbial correlation
data. A network was depicted for each dietary comparison in cows, while for goats, we used only the COS
vs CTL network (although smaller than those in cows) as COS vs MAP and COS vs HPO comparisons
resulted in insigni�cant correlations between variables. The disparity between cows and goats here could
be explained by the time of sampling and behavioural patterns. Rumen content samples were taken
before the morning feeding when rapidly fermentescible organic matter is absent; in this context,
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identi�ed deKEGGS indicate sustained and long-lasting changes in microbial gene expression. On the
other hand, we observed that goats ate faster and more frequently and had a higher ruminal turnover rate
than cows [13]. Therefore, we could hypothesize that this shorter rumen retention time prevented the
lipids from persistently modifying microbial activity.

A common characteristic between cows and goats is the clustering of CH4 yield predominantly with
genes involved in various metabolic pathways and excluding most of the methane pathway genes, which
formed another cluster in the networks. Taking the analysis a step further, we identi�ed the processes
involved in the methane variability for each identi�ed cluster. In goats, the variability of methane
emissions was explained primarily by carbohydrate metabolism processes. In contrast, in cows, this
variability was explained by carbohydrate and methane metabolism clusters. These results suggest that
the amount of produced methane is closely related to the activity of bacteria providing substrates for
methanogenic archaea. This is congruent with research that showed that variances in methane in cattle
are primarily explained by other microbial communities and their activities rather than being driven only
by methanogens [9, 23].

Our analysis revealed that the enzymes tetrahydromethanopterin S-methyltransferase (Mtr) and fructose
bisphosphate aldolase (Fba) characterized the relationship between cows microbiome and methane
emission, whereas Methanol:coenzyme M methyltransferase (Mta), F420-non-reducing hydrogenase
(Mvh) were highlighted in goats. The 5,10-methylenetetrahydromethanopterin reductase (Mer), methyl-
coenzyme M reductase (Mcr), and formylmethanofuran dehydrogenases (Fwd) enzymes were found in
both species; all of these were downregulated by COS supplementation.

Likewise, another point of difference was the enzyme Mta involved in the methylotrophic pathway was
speci�c to goats receiving the COS diet. Methylotrophs have a lower H2 threshold and a thermodynamic
advantage in that they are driven by the availability of methyl compounds rather than the concentration
of dissolved H2 [24]. It was also found that corn oil and �sh oil supplementation lowered methyl-
compounds plasma availability [25]. These �ndings indicated that goats were more responsive to
alterations in methylotrophic pathway supplies, and this inhibition is critical for lowering CH4 expression
since MAP modulated some genes on methanogenesis but not this pathway.

This exploratory study provides useful data explaining the differences in microbial mechanisms involved
in methane production between cows and goats.

Conclusions
To our knowledge, this is the �rst direct comparison of cows' and goats' microbiomes integrating
methane emissions. Moreover, the rumen microbial ecosystem was only poorly characterized in goats
before. Our results showed that in both ruminant species, CH4 yield clustered closely with genes involved
in carbohydrate metabolism, which highlights the importance of diet and the production of substrates
available for methanogenesis rather than the structure and activity of the methanogens population.
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Besides, genes from the methanogenesis pathway identi�ed as biomarkers were different in cows and
goats, though changes in methane emissions were similar. These �ndings suggest that the establishment
of microbial interactions in the rumen depends on the host-animal physiology and, in particular, the
feeding behaviour.

Methods

1. Experimental methods
The Auvergne Rhône-Alpes Ethics Committee approved the experimental protocol for Animal Experiments
(France; DGRI agreement APAFIS#3277–2015121411432527 v5), which conformed with European Union
Directive 2010/63/EU norms. Experiments were carried out at the U.E. HerbiPole LowMountain Ruminant
Farming Systems Facility, https://doi.org/10.15454/1.5572318050509348E12 at Theix, 63122 Saint
Genès Champanelle from February to July 2016. The experimental protocols are depicted in Fig. 1a.

1.1. Diets, animals, and experimental design.

Lactating and multiparous Holstein cows (n = 4) and Alpine goats (n = 4) were enrolled in a 4 x 4 Latin
square design as previously described (Fougère et al., 2018). Brie�y, animals were randomly assigned to
one of four experimental diets: i) CTL grassland hay and concentrate in a 45:55 ratio on a dry matter
(DM) basis containing no additional lipid, ii) COS, which was a CTL diet supplemented with corn oil (5.0%
of total dry matter intake (DMI)) (Olvea, Saint Léonard, France) and wheat starch, iii) MAP, CTL + 1.5%
DMI of Schizochytrium sp. marine algae powder (DSM, Basel, Switzerland), or iv) HPO, CTL + 3% DMI of
hydrogenated palm oil (Provimi, Cargill, Saint-Germain-en-Laye, France). Dietary formulations are
described in Fougère et al., 2018 and [13] and summarized in Supplementary Table 6. Each experimental
period lasted 28 days, and at the beginning of each period, animals were adapted to the diet for 6 days.
Experimental diets were fed ad libitum twice daily (08h30 and 16h00) except from day 21 to 27, when
animals were moved to open-circuit respiration chambers and received 95% of individual voluntary feed
intake to ensure complete feed consumption. The animals had access to a constant supply of fresh
water ad libitum.

1.2. Measurements, sampling, and chemical analysis.
1.2.1. Enteric methane emissions.
Enteric methane emissions measures were described in [13]. Methane emissions (g/day) expressed per
unit of intake corresponded to CH4 yield (g/kg dry matter intake (DMI)) and per unit of milk to CH4

intensity (g/kg milk).

1.2.2. Ruminal fermentation parameters.

Ruminal �uid samples (500 mL) were collected by stomach tubing [13] before the morning feeding on
day 27 of each experimental period when animals quitted the respiration chambers. Samples were
subsampled for volatile fatty acid (VFA), ammonia (NH3) [26] and protozoa analyses [27]. Protozoa were
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counted by microscopy, log-transformed, and classi�ed as small Entodiniomorphs (< 100 µm)
(small_Ento) or large Entodiniomorphs (> 100 µm) (large_Ento), or as Holotrichs (Dasytricha (Dasy) or
Isotricha (Iso)) [28].

1.2.3. Rumen microbial RNA extraction and sequencing.

RNA from rumen liquid fraction was extracted using RNeasy Plus Mini Kit, as previously described [29].
Total extracted RNA was sent to Centre d’expertise et de services Génome Québec for Illumina NovaSeq
6000 for paired-end sequencing. Raw data are available in the link at the data and material section
availability.

2. Bioinformatic analysis.
Shotgun metatranscriptomics of 32 rumen content samples obtained from Holstein cows and Alpine
goats were analyzed using the MetaTrans open-source pipeline [30]. Using the FastQC tool [31] and the
Kraken pipeline [32], the raw paired-end readings were subjected to quality control, such as the per base N
content (< 5%), the read length (minimum 150 bp) and the per sequence quality score (mean quality > 27).
The SortMeRNA tool [33] was used to separate rRNA/tRNA data from non-rRNA/tRNA reads, the latter
being potential mRNAs. The reads classi�ed as rRNA/tRNA were taxonomically annotated against the
16S rRNA gene Silva v138.1 database using SOAP2 [34]. Prior to that, the two single reads from the DNA
fragment were overlapped using Fastq-Join [35], and these sequences were clustered using the UCLUST
method [36]. As a result, ribosomal RNA reads were grouped in Operational Taxonomic Units (OTUs) at
99% sequence similarity. For functional annotations, the non-rRNA/tRNA reads were mapped to a
catalogue of microbial genes from the bovine rumen [37] using the SOAP2 tool after being subjected to
the FragGeneScan tool [38] to predict potential genes for the functional analysis and predicted genes
being subjected to clustering using CD-HIT v4.6 [39] an identity threshold of > = 95% and gene overlap of
> = 90%. The Kyoto Encyclopedia of Genes and Genomes (KEGG) and the evolutionary genealogy of
genes of non-supervised orthologous groups (eggNOG) databases were used to annotate the database.
The bioinformatic analysis metrics are shown in Supplementary Table 7.

3. Biostatistical analysis.
The pipeline was built using the R programming language. The R script and RData �le are available at
Code availability. The statistical work�ow is depicted in Fig. 1b, which includes the sequential steps of
differential expression, co-occurrence, clustering, pathway enrichment analysis, and supervised statistical
approaches (sPLS). Pair-wise comparisons of all diets (COS vs CTL, COS vs MAP, COS vs HPO and CTL
cows vs CTL goats) were performed to investigate diet-dependent changes in the abundance of KEGGs
and OTUs within each species.
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In the vegan R library [40], anosim function was used to determine whether the median of two or more
groups of samples were statistically different, and betadisper function was used to check OTUs and
KEGGs dispersion between experimental groups and construct the Principal Component Analysis (PCA)
�gure.

3.1. Differential expression analysis.

DESeq2 R package [41] with the Wald test were used to make differential expression pair-wise
comparisons among diets. To control the false discovery rate (FDR), the Benjamini–Hochberg approach
[42] was used to compensate for multiple testing. KEGGs and OTUs with an FDR-adjusted P < 0.05 were
considered differentially expressed and referred to hereafter as deKEGGs and deOTUs (Fig. 1b, step 1).

3.2. Co-occurrence networks analysis.

In order to examine bivariate unconditional associations between variables, matrices with deKEGGs and
deOTUs from pair-wise comparisons were used to compute co-occurrence networks using the ccrepe
package in R [43] (Fig. 1b, step 2). The fermentation parameters (total volatile fatty acids (VFAs, mmol),
acetate (C2), propionate (C3), butyrate (C4), isobutyrate (isoC4), valerate (C5), isovalerate (isoC5),
caproate (C6) represented as mmol/mmol of total VFAs, ratios C2/C3, C2 + C4/C3, NH3 (mMol), DMI
(kg/d), organic matter intake (OMI ((kg/d)), CH4 (g/d), CH4 yield, CH4/CO2) but also individual protozoa
counts (log-transformed) (total protozoa, small_Ento, large_Ento, Iso, Dasy) were integrated in the
deKEGGs and deOTUs input matrices.

The co-occurrence inference graph was created using Pearson correlation [44]. Each input matrix was
divided by the sum of its corresponding column for data transformation. The Reboot approach was used
to resample the edge scores. Edge scores were �rst randomized using 1000 permutations of row shu�ing
(for null distributions), followed by 1000 permutations of bootstrapping (for s randomization). In brief, the
correlation of measure scores is used to calculate a correction factor and show the associations'
strength. A threshold of the p-values of the edges assigned to node pairs and the corrected signi�cance
(q-value) was set at P < 0.05 and q-value < 0.001. Cytoscape software (cytoscape.org) was employed to
visualize the inferred network and cluster (Fig. 1b).

3.3. Clustering analysis.

A clustering algorithm was applied to categorize the co-occurrence networks into functionality (KEGGs)
and/or taxonomically (OTUs) enriched units. We applied a K-means clustering approach using the
Hartigan and Wong algorithm, implemented in the stats package in R (R Core Team, 2019) (Fig. 1b, step
3). The matrices of signi�cantly correlating deKEGGs, deOTUs and fermentation parameters were used as
inputs in this analysis.

3.4. Pathway analysis.
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The KEGGREST package [45] was used to explore the biological relevance of network clusters. The list of
deKEGGs of each cluster was used to �nd enrichment in diverse biological categories; KEGG pathway
mapping was used to link the KO annotation (K number assignment) to the KEGG pathway maps
(https://www.genome.jp/kegg/mapper/reconstruct.html). The deKEGGs of co-occurrence network
clusters and their linkages with pathways and metabolic reactions were used to create a network of
metabolic pathways; the pathways were then categorized by degree of interactions, and the deKEGGs by
associated pathway (Fig. 1b, step 4).

The KEGGREST package was also used to investigate reactions and metabolites related to deKEGGs of
each cluster. Cytoscape was used to visualization of results.

3.5. Multivariate analysis.

The clusters most closely related to the methane metabolism pathway (map00680) were subjected to
multiple linear regression analysis to examine the joint associations of the selected cluster variables
(matrix X) with different Y matrices: i) CH4 (g/d), ii) CH4 yield, in order to look at conditional associations.
Sparse Partial least Square (sPLS), as implemented in the mixomics r package [46], was used to perform
the multivariate analysis (Fig. 1b, step 5). The perf and tune functions were used to select the model's
number of components and variables. Mfold validation, Mean Absolute Value (MAE) as a measure, folds 
= 5 and the number of repetitions = 10 were used in the validation process. Subsequently, we extracted the
25 variables that most affected each Y variable, with the highest absolute loading value.
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Table
Table 1 is available in the Supplementary Files section

Figures

Figure 1

Methodological frameworks. a) The experimental strategy implemented. Cows were fed a control (CTL)
and three experimental diets COS (CTL + corn oil and wheat starch), MAP ( CTL + marine algae powder
and HPO (CTL+ hydrogenated palm oil) over 28 days period. Methane emissions were measured in
respiratory chambers from day 21 to 27, and rumen �uid for microbial and fermentation patterns analysis
were sampled on day 28. b) Statistical work�ow for RNA-seq data analysis. Tables of abundance for
gene transcripts and OTUs underwent a differential expression analysis using the DeSeq2 package; the
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Ccrepe package was further used to establish co-occurrence networks visualized in Cytoscape. After the
clustering step, biologically relevant clusters were subjected to pathway enrichment. Potential microbial
markers were identi�ed after an sPLS analysis using the mixOmics package. 

Figure 2

Venn diagrams of a) deOTUs and b) deKEGGS in cows and c) deOTUSs and d) deKEGGs in goats,
identi�ed in the three diet comparisons: COS vs CTL, COS vs MAP and COS vs HPO, e) Integration of COS-
speci�c deKEGGs in cows and goats. 
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Figure 3

Construction of co-occurrence networks. a) Cow network in COS vs CTL comparison and b) goat network
in COS vs CTL comparison.  Red nodes represent downregulated deKEGGs, green nodes are upregulated
deKEGGs, blue nodes are upregulated deOTUs, pink nodes represent downregulated deOTUs and yellow
nodes are fermentation parameters.

Figure 4

Loading plots of PLS regression analysis in COS vs CTL comparison. a) 25 variables of PLS cluster 1 in
cow analysis. b) 30 variables of PLS cluster 5 in goat analysis.  Red lines represent genes related to
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methanogenesis.
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