1. Pearson A, Naguib HE (2017) Novel polyurethane elastomeric composites reinforced with alumina, aramid, and poly(p-phenylene-2,6-benzobisoxazole) short fibers, development and characterization of the thermal and dynamic mechanical properties. Compos Part B Eng 122:192–201. https://doi.org/10.1016/j.compositesb.2017.04.017
2. Mihail L (2005) Chemistry and Technology of Polyols for Polyurethanes, 1st ed. Rapra Technology, Shropshire.
3. Zhang Y, Seveyrat L, Lebrun L (2021) Correlation between dielectric, mechanical properties and electromechanical performance of functionalized graphene / polyurethane nanocomposites. Compos Sci Technol 211.: https://doi.org/https://doi.org/10.1016/j.compscitech.2021.108843
4. Kerche EF, da Silva VD, da Silveira Jankee G, et al (2021) Aramid pulp treated with imidazolium ionic liquids as a filler in rigid polyurethane bio-foams. J Appl Polym Sci 138.: https://doi.org/10.1002/app.50492
5. Ertekin M (2017) Aramid fibers. Elsevier, Amsterdam.
6. Lipatov YS, Kosyanchuk L V., Nesterov AE, Antonenko OI (2003) Filler effect on polymerization kinetics and phase separation in polymer blends formed in situ. Polym Int 52:664–669. https://doi.org/10.1002/pi.937
7. Macosko CW (1985) Rheological Changes During Crosslinking. Br Polym J 17:239–245. https://doi.org/10.1002/pi.4980170228
8. Lipshitz SD, Macosko CW (1976) Rheological Changes During a Urethane Network Polymerization. Polym Eng Sci 16.: https://doi.org/https://doi.org/10.1002/pen.760161205
9. Juan Li, Shengling Jiang, Liang Ding, Lingfang Wang (2021) Reaction kinetics and properties of MDI base poly (urethane-isocyanurate) network polymers. Designed Monomers and Polymers 24:265–273 https://doi.org/DOI:10.180/15685551.2021.1971858.
10. Lucio B, de la Fuente JL (2021) Chemorheology and Kinetics of High-Performance Polyurethane Binders Based on HMDI. Macromol Mater Eng 306.: https://doi.org/10.1002/mame.202000617
11. Agnol LD, Dias FTG, Nicoletti NF, et al (2019) Polyurethane tissue adhesives for annulus fibrosus repair: Mechanical restoration and cytotoxicity. J Biomater Appl 34:673–686. https://doi.org/10.1177/0885328219864901
12. Santhosh G, Reshmi S, Reghunadhan Nair CP (2020) Rheokinetic characterization of polyurethane formation in a highly filled composite solid propellant. J Therm Anal Calorim 140:213–223. https://doi.org/10.1007/s10973-019-08793-6
13. Lucio B, De La Fuente JL (2016) Kinetic and thermodynamic analysis of the polymerization of polyurethanes by a rheological method. Thermochim Acta 625:28–35. https://doi.org/10.1016/j.tca.2015.12.012
14. Dall Agnol L, Ornaghi HL, Monticeli F, et al (2021) Polyurethanes synthetized with polyols of distinct molar masses: Use of the artificial neural network for prediction of degree of polymerization. Polym Eng Sci 61:1810–1818. https://doi.org/10.1002/pen.25702
15. Lucio B, de la Fuente JL (2018) Kinetic and chemorheological modelling of the polymerization of 2,4- Toluenediisocyanate and ferrocene-functionalized hydroxyl-terminated polybutadiene. Polymer (Guildf) 140:290–303. https://doi.org/10.1016/j.polymer.2018.02.058
16. Lucio B, De La Fuente JL (2014) Rheological cure characterization of an advanced functional polyurethane. Thermochim Acta 596:6–13. https://doi.org/10.1016/j.tca.2014.09.012
17. Pacheco MFM, Bianchi O, Fiorio R, et al (2009) Thermal, chemical, and morphological characterization of microcellular polyurethane elastomers. J Elastomers Plast 41:323–338. https://doi.org/10.1177/0095244309095016
18. Kraus G (1963) Swelling of Filler-Reinforced. J Appl Polym Sci 7:861–871. https://doi.org/doi.org/10.1002/app.1963.070070306
19. Valentini L, Bittolo Bon S, Hernández M, et al (2018) Nitrile butadiene rubber composites reinforced with reduced graphene oxide and carbon nanotubes show superior mechanical, electrical and icephobic properties. Compos Sci Technol 166:109–114. https://doi.org/10.1016/j.compscitech.2018.01.050
20. Echeverria-Altuna O, Ollo O, Calvo-Correas T, et al (2022) Effect of the catalyst system on the reactivity of a polyurethane resin system for RTM manufacturing of structural composites. Express Polym Lett 16:234–247. https://doi.org/10.3144/expresspolymlett.2022.19
21. Younes, Usama E (2018) Polyurethane Composites Produced by a Vacuum Infusion process U.S. Patent No. 9,580,598. 28 Feb. 2017.
22. Hansen CM (2007) Hansen solubility parameters: A user’s handbook: Second edition. London.
23. Meaurio E, Sanchez-Rexach E, Zuza E, et al (2017) Predicting miscibility in polymer blends using the Bagley plot: Blends with poly(ethylene oxide). Polymer (Guildf) 113:295–309. https://doi.org/10.1016/j.polymer.2017.01.041
24. Hesekamp D, Pahl MH (1996) Curing effects on viscosity of reactive epoxy resin adhesives. Rheol Acta 35:321–328. https://doi.org/10.1007/BF00403532
25. Opfermann J (2000) Kinetic analysis using multivariate non-linear regression. I. Basic concepts. J Therm Anal Calorim 60:641–658. https://doi.org/10.1023/A:1010167626551
26. Flammersheim HJ, Opfermann J (2001) Investigation of Epoxide Curing Reactions by Differential Scanning Calorimetry – Formal Kinetic Evaluation Macromolecular materials and engineering 286: 143-150. https://doi.org/10.1002/1439-2054(20010301)286:3<143::AID-MAME143>3.0.CO;2-Z
27. Hesekamp D, Broecker HC, Pahl MH (1998) Chemo-Rheology of Cross-Linking Polymers. Chem Eng Technol 21:149–153. https://doi.org/10.1002/(SICI)1521-4125(199802)21:2<149::AID-CEAT149>3.0.CO;2-P
28. Flammersheim HJ, Opfermann J (1999) Formal kinetic evaluation of reactions with partial diffusion control. Thermochim Acta 337:141–148. https://doi.org/10.1016/S0040-6031(99)00162-8
29. Ourique PA, Ornaghi FG, Ornaghi HL, et al (2019) Thermo-oxidative degradation kinetics of renewable hybrid polyurethane–urea obtained from air-oxidized soybean oil. J Therm Anal Calorim 137:1969–1979. https://doi.org/10.1007/s10973-019-08089-9
30. Eyring H (1935) The activated complex in chemical reactions. J Chem Phys 3:63–71. https://doi.org/10.1063/1.1749604
31. Avery HE (1974) Basic reaction kinetics and mechanism. Macmillan Education, London.
32. Boudouris D, Constantinou L, Panayiotou C (1997) A Group Contribution Estimation of the Thermodynamic Properties of Polymers† Ind. Eng. Chem. Res. 1997, 36, 9, 3968–3973 https://doi.org/10.1021/ie970242g
33. Ruzette A-VG, Mayes AM (2001) A Simple Free Energy Model for Weakly Interacting Polymer Blends. Macromolecules, 34, 6, 1894–1907 https://doi.org/10.1021/ma000712
34. Van Krevelen DW, Te Nijenhuis K (2009) Properties of Polymers - Their correlation with chemical structure; their numerical estimation and prediction from additive group contributions. 4th Edition, Elsevier, Amsterdam.
35. Miyajima T, Nishiyama K, Satake M, Tsuji T (2015) Synthesis and process development of polyether polyol with high primary hydroxyl content using a new propoxylation catalyst. Polym. J. 47:771–778. https://doi.org/10.1038/pj.2015.64
36. Denchev Z, Dencheva N (2012) Manufacturing and Properties of Aramid Reinforced Composites, First Edit. Carl Hanser Verlag GmbH & Co. KG, München.
37. Chattopadhyay DK, Raju KVSN (2007) Structural engineering of polyurethane coatings for high performance applications. Prog Polym Sci 32:352–418. https://doi.org/10.1016/j.progpolymsci.2006.05.003
38. Ismail TNMT, Palam KDP, Bakar ZBA, et al (2016) Urethane-forming reaction kinetics and catalysis of model palm olein polyols: Quantified impact of primary and secondary hydroxyls. J Appl Polym Sci 133.: https://doi.org/10.1002/app.42955
39. Caraculacu AA, Coseri S (2001) Isocyanates in polyaddition processes. Structure and reaction mechanisms. Prog Polym Sci 26:799–851. https://doi.org/10.1016/S0079-6700(00)00033-2
40. Formela K, Hejna A, Piszczyk Ł, et al (2016) Processing and structure–property relationships of natural rubber/wheat bran biocomposites. Cellulose 23:3157–3175. https://doi.org/10.1007/s10570-016-1020-0
41. Olejnik A, Gosz K, Piszczyk Ł (2020) Kinetics of cross-linking processes of fast-curing polyurethane system. Thermochim Acta 683:178435. https://doi.org/10.1016/j.tca.2019.178435
42. Wang C, Dai L, Yang Z, et al (2018) Reinforcement of castor oil-based polyurethane with surface modification of attapulgite. Polymers (Basel) 10:1–11. https://doi.org/10.3390/polym10111236
43. Ionescu M, Radojčić D, Wan X, et al (2016) Highly functional polyols from castor oil for rigid polyurethanes. Eur Polym J 84:736–749. https://doi.org/10.1016/j.eurpolymj.2016.06.006
44. Flory PJ (1953) Principles of Polymer Chemistry, 1o ed. Cornell University press, New York
45. Flory PJ, Rehner J (2004) Statistical Mechanics of Cross-Linked Polymer Networks I . Rubberlike Elasticity. J Chem Phys 11:512–520
46. Šesták J (2017) Šesták–Berggren equation: now questioned but formerly celebrated—what is right: Commentary on the Burnham paper on logistic equations in kinetics. J Therm Anal Calorim 127:1117–1123. https://doi.org/10.1007/s10973-015-4998-x
47. Okhawilai M, Parnklang T, Mora P, et al (2019) The energy absorption enhancement in aramid fiber-reinforced poly(benzoxazine-co-urethane) composite armors under ballistic impacts. J Reinf Plast Compos 38:133–146. https://doi.org/10.1177/0731684418808894
48. Elaheh K, Vahid H-A, Farshad BA, Jafar H (2019) Aramid fibers composites to innovative sustainable materials for biomedical applications. In: Materials for Biomedical Engineering. Tehran - Iran, pp 173–204
49. Szycher M (1999) Handbook of Polyurethane. CRC press, New York
50. Shen CH, Springer GS (1976) Moisture Absorption and Desorption of Composite Materials. J Compos Mater 10:2–20. https://doi.org/10.1177/002199837601000101
51. Quintanilha RC, Orth ES, Grein-Iankovski A, et al (2014) The use of gum Arabic as “Green” stabilizer of poly(aniline) nanocomposites: A comprehensive study of spectroscopic, morphological and electrochemical properties. J Colloid Interface Sci 434:18–27. https://doi.org/10.1016/j.jcis.2014.08.006
52. Fernandez d’Arlas B, Rueda L, Stefani PM, et al (2007) Kinetic and thermodynamic studies of the formation of a polyurethane based on 1,6-hexamethylene diisocyanate and poly(carbonate-co-ester)diol. Thermochim Acta 459:94–103. https://doi.org/10.1016/j.tca.2007.03.021
53. Bazzo A, Dias SLP, Vaghetti JCP, et al (2021) Caesalpinia ferrea: a potential feedstock for biochar production. Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-021-02068-7