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ABSTRACT

Nonlinearity is a characteristic of complex biological regulatory networks that has implications
ranging from therapy to control. To better understand its nature, we analyzed a suite of published
Boolean network models, containing a variety of complex nonlinear interactions, using a probabilistic
generalization of Boolean logic that George Boole himself had proposed. The continuous-nature
of this formulation made the models amenable to Taylor decomposition that revealed their distinct
layers of nonlinearity. A comparison of the resulting series of approximations of the models with
the corresponding sets of randomized ensembles showed that the biological networks are on average
relatively less nonlinear, suggesting that they may have been optimized for linearity by natural
selection for the purpose of controllability. A further categorical analysis of the biological models
revealed that the nonlinearity of cancer and disease networks could not only be sometimes higher
than expected but are also relatively more variable, suggesting that the agents of disease may leverage
the heterogeneity of regulatory nonlinearity to their advantage.

Keywords Nonlinearity · Biological networks · Boolean decomposition

1 Introduction

How nonlinear are biological regulatory networks? That is, to what extent do the biochemical components of these
networks non-independently interact in influencing downstream processes (Fig 1). Research on this front has hitherto
focused on the various manifestations of nonlinearity in the dynamics of biological systems, such as chaos, bifurcation,
multistability, synchronization, patterning, dissipation, etc.[1], but a characterization of nonlinearity in the underlying
systems that give rise to those phenomena is lacking. A more complete understanding of biological nonlinearity would
have theoretical implications ranging from canalization to control [2, 3] and practical implications for biomedical
therapy, synthetic biology, etc. [1, 4]. A good example of this concerns the mapping between molecular or genetic
information and the resulting system-level anatomical structure and function of an organism. Advances in regenerative
medicine and synthetic morphology require rational control of physiological and anatomical outcomes [5], but progress
in genetics and molecular biology produce methods and knowledge targeting the lowest-level cellular hardware. There
is no one-to-one mapping from genetic information to tissue- and organ-level structure; similarly, ion channels open and
close post-translationally, driving physiological dynamics that are not readily inferred from proteomic or transcriptomic
data. System-level properties in biology are often highly emergent, with gene-regulatory or bioelectric circuit dynamics
connecting initial state information and transition rules to large-scale structure and function. Thus, the difficult
inverse problem [6] of inferring outcomes and desirable interventions across scales of biology illustrates some of the
fundamental questions about the directness or nonlinearity of encodings of information, as well as the importance of
this question for practical advances in biomedicine and bioengineering that exploit the plasticity and robustness of
cellular collectives. Many deep questions remain about the potential limitations and best strategies to bridge scales
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Figure 1: An illustration of the concept of regulatory nonlinearity. Each black circle represents a generic biochemical
component such as a gene, transcription factor, enzyme, etc., regulated by a set of inputs (also biochemical components)
and generates a generic output such as concentration level, strength, etc. Non-zero interactions among the inputs are
represented by red circles connected by red lines, with the total number of possible interactions for a node with k

inputs equal to
∑k

l=1

(

k
l

)

. The size of the red circles and the width of the connecting lines represents the weight of the
interactions. Independent inputs are represented by unconnected red circles. The degree of nonlinearity thus increases
from left to right, as the numbers and the strengths of the regulatory interactions increase. One could also visualize
these local interactions in a broader network-context as "hypergraphs" [15].

for prediction and control in developmental, evolutionary, and cell biology. To that end, we introduce here a formal
characterization of the nonlinearity of models of biological regulatory networks, such as those often used to describe
relationships between regulatory genes. Specifically, we consider a class of discrete models of biological regulatory
systems called "Boolean models" that are known for their relative simplicity and tractability compared to continuous
ordinary differential equation-based (ODE) models [7].

A Boolean network is a discrete network model characterized by the following features. Each node in a Boolean network
can only be in one of two states, ON or OFF, which represents the expression or activity of that node. The state of a
node depends on the states of other input nodes which are represented as a Boolean rule of these input nodes. Many of
the available Boolean network models were created via literature search of the regulatory mechanisms and subsequently
validated via experiments [8]. Some of the publicly available models were generated via network inference methods
from time course data [2].

Previous studies have found that certain characteristic features of the biological Boolean models, such as the mean
in-degree, output bias, sensitivity and canalization, tend to assume an optimal range of values that support optimal
function [9, 10]. Here we study a new but generic feature of complex systems, namely, nonlinearity. To characterize the
nonlinearity of Boolean networks we formalize an approach to generalizing Boolean logic by casting it as a form of
probability, which was originally proposed by George Boole himself [11]. We leverage the continuous nature of these
polynomials to decompose a Boolean function using Taylor-series and reveal its distinct layers of nonlinearity (Fig 2).
Various other methods, both discrete and continuous, of decomposing Boolean functions exist, such as Reed-Muller,
Walsh spectrum, Fourier and discrete Taylor [12, 13, 14]. Our continuous Taylor decomposition method is distinct in
that it offers a clear and systematic way to characterize nonlinearity.

By characterizing the nonlinearity of networks in this way, we answer the following questions: 1) how well could
biological Boolean models be approximated, that is, faithfully represented with only partial information containing
lower levels of nonlinearity relative to that of the original?; 2) is there an optimal level of nonlinearity, characterized by
maximum approximability, that these models may have been selected for by evolution?; and 3) do different classes of
biological networks show characteristically different optimal levels of nonlinearity? To answer these questions, we first
approximate the biological models by systematically composing the various nonlinear layers resulting in a sequence of
model-approximations with increasing levels of nonlinearity. We then estimate the accuracy of these approximations
by comparing the outputs of their simulations with that of the original unapproximated model. We then construct
an appropriate random ensemble for each biological model and compare their mean accuracies for fixed levels of
approximation. The main idea is that a biological model that is more approximable than expected for a particular level
of nonlinearity would mean that the network may have been optimized for that level nonlinearity. Finally, we classify
the biological networks into various categories and compare their approximabilities to identify any category-dependent
effects.
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Biological nonlinearity

Methods

Probabilistic generalization of Boolean logic

Here we provide a continuous-variable formulation of a Boolean function by casting Boolean values as probabilities,
thus transforming it into a pseudo-Boolean function [16]. Consider random variables Xi : {0, 1} → [0, 1], i = 1, . . . , n,
with Bernoulli distributions. That is, pi = Pr(Xi = 1) = 1 − Pr(Xi = 0) = 1 − qi, for i = 1, . . . , n. Let
X = X1 × · · · × Xn be the product of random variables and f : X → {0, 1} a Boolean function. Let Rf

0
=

{x ∈ X : f(x) = 0} and Rf
1
= {x ∈ X : f(x) = 1}. Note that X is a disjoint union of Rf

0
and Rf

1
. Then,

Pr(f = 1) = Pr(Rf
1
) =

∑

x∈R
f
1

Pr(x) =
∑

x∈R
f
1

∏n
i=1

p̂i where p̂i = pi if xi = 1 and p̂i = 1 − pi if xi = 0.

Let f̂(p1, . . . , pn) =
∑

x∈R
f
1

∏n
i=1

p̂i. Thus, f̂ : [0, 1]n → [0, 1] is a continuous-variable function. The following

theorem shows that f̂ is a generalization of f in the sense that f̂(x) = f(x) for all x ∈ {0, 1}n; proof is provided in SI
Appendix.

Theorem 1.1. For discrete values of xi ∈ {0, 1}, i = 1, . . . , n, we have f̂(x1, . . . , xn) = f(x1, . . . , xn).

Corollary 1.2. If pi = 1/2 for all i = 1, . . . , n, then f̂(p1, . . . , pn) is the output bias of f .

Example 1.3. Consider the AND, OR, XOR, and NOT Boolean functions given in Table 1. The continuous-variable

generalization of f1, f2, f3, and f4 are: f̂1 = x1x2, f̂2 = (1 − x1)x2 + x1(1 − x2) + x1x2 = x1 + x2 − x1x2,

f̂3 = (1− x1)x2 + x1(1− x2) = x1 + x2 − 2x1x2, and f̂4 = 1− x.

Note that the above expressions have previously been derived via other (not probability-based) means [14].

x1 x2 f1 f2 f3
0 0 0 0 0
0 1 0 1 1
1 0 0 1 1
1 1 1 1 0

x f4
0 1
1 0

Table 1: Truth tables of basic Boolean functions.

Taylor Decomposition of Boolean functions

Since f̂ is a continuous-variable function, we can calculate its Taylor expansion. And since f̂ is a square-free polynomial,
its Taylor expansion is finite and simplified (any term containing multiple derivatives of the same variable is zeroed
out), as described in Proposition 1.4 using the standard multi-index notation. Let α = (α1, . . . , αn) where αi ∈ {0, 1}.

We define | α |= α1 + · · ·+ αn, xα = xα1

1
xα2

2
· · ·xαn

n , and ∂αf = ∂α1

1
∂α2

2
· · · ∂αn

n f = ∂|α|f

∂
α1

1
∂
α2

2
···∂αn

n
.

Proposition 1.4. For p ∈ [0, 1]n, we have

f̂(x) = f̂(p) +
∑

1<|α|≤n ∂
αf̂(p)(x− p)α. (1)

Note that f̂(p) in Equation 1 is the output bias of f as was seen in Corollary 1.2. A natural choice for p is p =
(1/2, . . . , 1/2) as it represents an unbiased selection for each variable and it also gives the output bias of the function.
Such unbiased choices are not available for the discrete case. Our continuous formulation thus offers such unique
advantages over the discrete Taylor decomposition, as it’s a natural generalization of the latter. The Taylor decomposition
can be used to approximate a Boolean function by considering a subset of the terms. For example, a linear approximation
consists of terms only up to |α| ≤ 1, a bilinear approximation up to |α| ≤ 2, etc., up until |α| ≤ n where it ceases
to be an approximation and provides an exact decomposition of f̂ . A visual illustration is provided in Figure 2. The
approximation order of a Boolean network could therefore vary between its minimum and maximum in-degrees (number
of inputs per node).

Derivative f1 f2 f3
∂1 0.5 0.5 0
∂2 0.5 0.5 0
∂1∂2 1 -1 -2

Derivative f4
∂1 -1

Table 2: Values of partial the derivatives in the Taylor decompositions of the generalizations of basic Boolean functions.
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Figure 2: The various approximations of a Boolean function according to the amount of nonlinearity retained. The logical
OR function is represented as a 2D hypercube (top left) with the coordinate values representing input combinations and
the color of the circles representing the corresponding outputs (white=0, black=1) and is approximated using Taylor
decomposition as the 0th order approximation (top right) showing only the first term, the mean output bias; the 1st order
approximation (bottom left) including the linear terms; and finally the 2nd order exact form (bottom right) including all
the terms.

Example 1.5. Consider the continuous generalizations of the AND, OR, XOR and NOT functions given in Example 1.3
The corresponding Taylor expansions using Equation 1 and using the derivatives shown in Table 2 with p = (1/2, 1/2)

are: f̂1 = 0.25+0.5(x1− 0.5)+0.5(x2− 0.5)+ (x1− 0.5)(x2− 0.5), f̂2 = 0.75+0.5(x1− 0.5)+0.5(x2− 0.5)−

(x1 − 0.5)(x2 − 0.5), f̂3 = 0.5− 2(x1 − 0.5)(x2 − 0.5), and f̂4 = 0.5− (x− 0.5) = 1− x.

Note that f̂1(1/2, 1/2) = 0.25, f̂2(1/2, 1/2) = 0.75, f̂3(1/2, 1/2) = 0.5, and f̂4(1/2) = 0.5 in the above equations
are the output biases of the AND, OR, XOR, and NOT functions respectively. Also note that both the AND and OR
functions contain the linear and the second order terms in their Taylor decomposition while the XOR function only
contains the second order term. This difference is because both the AND and OR functions are monotone while XOR is
not since it requires both inputs to be known.

Approximability of a model

We considered a suite of Boolean network models of biochemical regulation from two sources, namely the cell collective
[8] and reference [2]. This suite consists of 137 networks with the number of nodes ranging from 5 to 321. The mean
in-degree of these models ranges from 1.1818 to 4.9375 with the variances ranging between 0.1636 and 9.2941, while
the mean output bias is limited to the range [0.1625,0.65625] with the variances between 0.0070 and 0.0933. For each
biological model we generated an associated ensemble of 100 randomized models, where the connectivity and the
output bias of the nodes of the original model were preserved and the logic rules were randomly chosen under the
above constraints. This approach helps avoid confounding the causes of any observed effects with network structure
or output bias, thereby narrowing the focus on the role of nonlinearity. We applied the Taylor decomposition to both
the biological models and the associated ensembles and computed all possible nonlinear approximations. Both the
biological models and the associated random ensembles were then simulated using a set of 1000 randomly chosen
initial states iterated through 500 update steps for all orders of approximation; the same initial conditions were used for
a given biological model and the associated random ensemble. The states of the variables were restricted to the interval
[0,1] at every step in the simulations. We then computed the mean approximation error (MAE) of each model as the
percentage mean squared error (MSE) between the exact Boolean states and the approximated probabilistic states at
the end of the simulations; for the random ensembles we computed a single average MAE. Finally, we computed the
"approximability" of each biological model as the difference between the MAE of the associated random ensemble
and its MAE. Per these definitions, the MAE can range between 0.0 and 100.0, while the approximability can range
between -100.0 and 100.0.
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(a) (b)

Figure 3: Biological models are more approximable for various degrees of nonlinearity compared to a reference random
ensemble. (a) Comparison with respect to the absolute approximation order; MAE values for orders above 6 are
negligible and thus not shown. (b) Comparison with respect to the normalized approximation order (ratio of the actual
approximation order to the maximum), where the maximum order of approximation for a model is equal to its max
in-degree. The inset shows the spread of the absolute approximation orders for every proportion bucket. Every point in
the light blue plots represents the average MAE of an ensemble of 100 random networks associated with each biological
model. The p-values indicate the statistical significance of the difference in means between the set of random ensembles
and the biological models for a given order of nonlinearity. Statistical analysis by Welch’s unequal variances t-test.

Classification of biological models

To identify any differences among the approximabilities of different types of biological networks we sought to classify
them. Since there are multiple ways to classify biological networks, we chose two classifications so that: 1) they are as
orthogonal as possible to each other; and 2) each classification has an appropriate number of (neither too few nor too
many) categories. Classification 1 (C1) follows the "pathway ontology" (PW) [17] where the networks are grouped
into five categories (Figure 4(a)), namely biochemical (n = 13), signaling (n = 22), disease (n = 55), metabolic
(n = 14) and regulatory (n = 33). According the definitions used in the PW ontology, a "signaling" network comprises
mainly of extracellular signal transduction components such as growth factors, kinases, etc. A "regulatory" network,
on the other hand, comprises intracellular transcriptional components such as genes, transcription factors, etc. The
term "biochemical" here refers to networks that comprises a mix of signaling and regulatory components. "Metabolic"
networks consist of components involved in the synthesis and conversion of biomolecules such as enzymes and lipids.
Finally, "disease" networks consist of components involved in diseases such as cancer, anemia, pathogenic ailments and
disorders such as cell cycle malfunction. Classification 2 was suggested by in-house expertise, where the networks are
grouped into four categories (Figure 4(b)), namely metazoan (n = 85), cancer (n = 24), primitive (n = 19) and plants
(n = 9). The "metazonan" category refers to multicellular organisms and "primitive" refers to unicellular organisms. A
given model could naturally belong in multiple categories within a classification but is assigned a unique category for
the purpose of simplicity; we chose the categories according to the emphasis laid in the abstracts of the corresponding
publications. More details are provided in the SI Appendix (Table S1).

Results and Discussion

Biological networks are less nonlinear than expected by chance

We found that the biological models are relatively more approximable for various degrees of nonlinearity when compared
to a reference ensemble (Figure 3). The contrast is most prominent in the linear regime where the biological models are
about 2% more approximable (p < 10−5) compared to their random counterparts. This suggests that the biological
regulatory networks may have been optimized (presumably by evolution) for linearity in the nonlinearity of the Boolean
rules, given that the reference ensemble preserves the network structure and the output biases of the corresponding
biological models. This has implications not only for the feasibility of biomedical approaches to control emergent
somatic complexity or guided self-assembly of novel forms [18], but also for models of anatomical homeostasis and
evolvability: linearity implies easier control of its own complex processes by any biological system, and more efficient
credit assignment during evolution.
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(a) (b)

Figure 4: The linear approximabilities of various categories of biological models. (a) Classification 1 (C1); (b)
Classification 2 (C2). The categories in either classification are displayed in increasing order of variance. Each box
represents the distribution of the linear approximabilities of the corresponding category. The p-values indicate the
statistical significance of the difference in the variance between pairs of categories; only the p-values of significantly
different pairs are shown. Statistical analysis by F-test of equality of variances.

The approximability of a biological network depends on its class, with the cancer family displaying the most
variability

Even though the nonlinearity of biological networks is less than expected on average, individual and category-dependent
variations were observed. In the following, we focus on the approximability corresponding to the linear order ("linear
approximability") of biological networks since it’s maximized at the linear regime (Figure 3). First, there are a few
networks that are more nonlinear than expected as evidenced by the negative linear approximability (Fig 4). Second,
the disease networks in C1 and the cancer networks in C2 are the ones with the most linear approximability (high
positive values). In other words, the cancer or disease pathways tend to be more optimized for linearity compared to
the other categories. This makes sense since a more linear pathway is more amenable to control, which presumably
works in favour of the agents of disease. Moreover, the disease and cancer networks also display the highest variability
in their linear approximability compared to other categories (p < 0.05 in all comparisons), with the corresponding
values extending into the negative regime as well, that is they are sometimes more nonlinear than expected. Note
that about 56% of the disease category comprises of non-cancer networks (31/55), which suggests that the effect is
not significantly biased by cancer networks. Taken together, these observations suggest that regulatory nonlinearity
may offer an effective "entry point" to the agents of disease by virtue of its natural heterogeneity that they could
leverage to their advantage perhaps as a means to evade treatment since there’s no single level of nonlinearity to target.
This heterogeneity may also have a connection to one of the hallmarks of cancer, namely genetic heterogeneity [19]
where the cancerous cells within an individual display heterogeneous gene expression compared to the homogeneous
expression in the healthy cells. In the case of nonlinearity, the heterogeneity manifests at the population level, raising
the question of whether it may also be observed at the level of single cells within an individual. In other words, could
the heterogeneity of nonlinearity be yet another hallmark of cancer?

The shape of the Taylor spectrum explains the extreme opposite characters of linear approximability of a pair of
cancer models

Why are some models more linearly approximable and others less? The answer lies in the organization of the
corresponding Taylor decompositions, as described above. To illustrate this in detail, we compared the Taylor
decompositions of the least and the most linearly approximable models in our dataset (the two most extreme outliers
in Fig 4). Those models respectively are the following: a model describing the role of mutations in the regulation
of metastasis in lung cancer [20] and henceforth referred to as the ’Metastasis’ model ; and a model describing
the role of the protein p53 in the regulation of cell-cycle arrest in breast cancer [21] and henceforth referred to as
the ’P53’ model. Both P53 and Metastasis are models of cancer, as may be expected from Fig 4. P53 has a linear
approximability of about 8.02 and it consists of 16 nodes with a mean in-degree of 3.8±2.4 and a mean output bias
of 0.38±0.14, while Metastasis has a linear approximability of about -7.28 and it consists of 32 nodes with a mean
in-degree of 4.9±2.5 and a mean output bias of 0.27±0.26. Thus, while P53 is smaller and sparser than Metastasis,
its nodes exhibit more output-uncertainty compared to Metastasis. According to the mean field theory of random
Boolean networks [22], the opposite characters of the mean in-degree and the output bias of these models means that
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Figure 5: A comparison of the spectrums of the magnitudes of nonlinearity of the models corresponding to the two
extreme cases of approximability. The bars represent the mean absolute value of all the Taylor derivatives of the
corresponding order, averaged over all the nodes of the corresponding model containing those terms. The maximum
orders (in-degrees) of P53 and Metastasis are respectively 10 and 8. and To compare the derivatives from different
models they were normalized with respect to the maximum possible absolute value of a Taylor derivative of order |α|
(Equation 1) of a Boolean function with output bias p, given by (min(p, 0.5)−max(p− 0.5, 0))2|α| (proof provided
in the SI Appendix). The error bars represent the standard deviation and not the confidence intervals of the means since
they are not estimates. The errors appear large whenever the corresponding distribution of the magnitudes are bimodal
with many values clustered close to 0.

their dynamical behaviors could be expected to be similar (although with the caution that the theory was originally
developed for infinite-sized and homogeneously connected networks, which is not the case here). However, we know
that their linear approximabilities, which is another expression of dynamical behavior, are opposites. One explanation
for this discrepancy lies in the distinct apportioning of nonlinearity in their respective Taylor decompositions (Fig 5).
Specifically, while the magnitude of nonlinearity, defined as the mean absolute value of the Taylor derivatives for a given
order and normalized appropriately (see text of Fig 5), tends to be clustered around the linear order for P53, they are
relatively more spread out for Metastasis. Moreover, while the magnitude of the linear order for P53 is more than twice
as large the next largest magnitude at lower orders the corresponding ratios for Metastasis are relatively smaller, thus
explaining why P53 is more linearly approximable than Metastasis. This result is consistent with predictions based on a
model of scaling of cellular control policies [23]. A more controllable (linear) network (P53) is optimal for cooperation
with other cells towards collective (normal morphogenetic) goals. In contrast, a cell defecting from the collective
and reverting to a more unicellular lifestyle (Metastasis) should exhibit a less predictable, controllable network due
to pressures from parasites and competitors that independent unicellular organisms face. Methods for calculating
controllability (e.g., linearity) are an important addition to recent efforts to solve the conundrum of interpretability of
information structures in contexts ranging from machine learning to evolutionary developmental biology [24, 25, 26].

Broader implications

This paper introduces the concept of regulatory nonlinearity as a new measure of characterization for Boolean networks.
There are several other related characterizations of Boolean networks such as canalization [27], effective connectivity
[10], symmetry [28] and controllability [29]. It has been previously reported that the levels of canalization (a measure
of the extent to which fewer inputs influence the outputs of a Boolean function) and the mean effective connectivity
(a measure of collective canalization) are high in biological networks [2, 10]. It has also been found that biological
networks need few inputs to reprogram [30] and are relatively easier to control [3]. Our formulation of regulatory
nonlinearity is related to these other measures in that more linearity implies more apportioning of influence to individual
inputs rather than collective sets of inputs (Figure 5). Hence, we hypothesize that regulatory nonlinearity may serve
the purpose of controllability and epigenetic stability [31]. Our results further moot the possibility that regulatory
nonlinearity may be a factor underlying more powerful dynamical phenomena such as memory [32] and computation,
defined as the capacity for adaptive information-processing [33]. Even though there’s increasing consensus that
biological systems contain memory and perform computation, clarity is lacking as to what features of those systems
enable it and what general principles underlie it [33, 34]. Our framework of regulatory nonlinearity offers an approach
to answering these questions. For example, one could consider a known dynamical model with a capacity for memory
[32] or universal computation such as the elementary cellular automaton (ECA) driven by rule 110 [35] and ask if
there are unique properties of its Taylor spectrum that confer their respective capabilities. Present approaches to
answering this question typically consists of characterization of the dynamical behavior and not the rules [36, 37, 32].
A characterization of the rules especially makes sense for ECA [38] since the structure is always the same (lattice) and
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the only feature that distinguishes one ECA from the other is the rule. Looking at such questions from an even broader
perspective it becomes evident that they are only instances of the ultimate puzzle of complex systems, namely what
connects the structure and the function of a system. Even though recent work has attempted to answer this question
from the perspective of the rules or dynamical laws that govern the system [39, 10, 38], more tools are needed [40]. In
that regard, our framework of regulatory nonlinearity could be a novel addition to this burgeoning toolkit in that it could
also be applied to continuous models of biological networks such as those based on differential equations.

Limitations

The main limitation of our formulation of approximability is that the approximation accuracy will necessarily increase
with higher orders of approximation for arbitrary Boolean networks (the highest order of approximation is exact).
However, this does not affect the falsifiability of our framework since it’s possible to construct networks, say with
XOR-like functions, that are less linearly approximable than the associated ensembles. The Metastasis model is another
example in that regard (Figure 5). Furthermore, the notion of nonlinearity is limited to the local level of the Boolean
rules in our framework, whereas its possible to conceive network-level measures of nonlinearity where the role of the
network structure is included. Lastly, our conclusions about the linearity of biological regulatory networks may be a
reflection of a hidden bias built in the inference methods that produced the models in the first place. We leave it to
future work to explore these realms.
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Supplementary Information
The nonlinearity of regulation in biological networks

Santosh Manicka, Kathleen Johnson, Michael Levin and David Murrugarra

1. Probabilistic generalization of Boolean logic

Here we show that f̂ is a generalization of f in the sense that f̂(x) = f(x) for all x ∈ {0, 1}n.

Theorem 0.1. For discrete values of xi ∈ {0, 1}, i = 1, . . . , n, we have

f̂(x1, . . . , xn) = f(x1, . . . , xn).

Proof. Let z = (z1, . . . , zn) ∈ {0, 1}n. Since each zi is either 0 or 1, we have that pi = 1 if zi = 1 or pi = 0 if

zi = 0 for i = 1, . . . , n. We want to show that f̂(p1, . . . , pn) = f(z1, . . . , zn). Since X = R
f
0 ∪ R

f
1 , we have

that either z ∈ R
f
0 or z ∈ R

f
1 . If z ∈ R

f
1 , then f(z) = 1 and Pr(z) =

∏n

i=1
p̂i = 1. Moreover, for any other

x ∈ R
f
1 with x ≠ z we have that Pr(x) = 0. Thus, f̂(z) =

∑

x∈R
f
1

Pr(x) = Pr(z) = 1. Now if z ∈ R
f
0 , then

f̂(z) = 0 because
∑

∅ = 0. Thus, f̂(x) = f(x) for all x ∈ {0, 1}n.

2. Maximum absolute value of a Taylor derivative

Here we show that max(|∂αf̂ |) = (min(p, 0.5)−max(p− 0.5, 0))2|α|.
We begin with the definition of the derivative given by

∂f̂(x1, . . . , xi, . . . , xk)

∂xi

= lim
h→0

f̂(0.5, . . . , h, . . . , 0.5)− f̂(0.5, . . . , 0, . . . , 0.5)

h

Since f̂ is a pseudo-Boolean function and hence a multilinear polynomial [1], we can rewrite it by setting h to
1, as a finite difference; the idea being that the derivative taken over any point on a line is the line itself:

∂f̂(x1, . . . , xi, . . . , xk)

∂xi

= f̂(0.5, . . . , 1, . . . , 0.5)− f̂(0.5, . . . , 0, . . . , 0.5)

Since multilinear interpolation can be formulated as weighted averaging [2], we can further rewrite it as
follows (the weights are equal here since the non-binary values are all set to 0.5):

∂f̂(x1, . . . , xi, . . . , xk)

∂xi

=
∑

x1,...,xi−1,xi+1,...,xk∈{0,1}

f̂(x1, . . . , xi−1, 1, xi+1, . . . , xk)− f̂(x1, . . . , xi−1, 0, xi+1, . . . , xk)

2k−1

As can be seen, there are a total of 2k terms, with half of them positively signed and half negative. This form
of expression generalizes to derivatives taken over two or more variables. For example, the derivative taken
over two variables, xi and xj , looks as follows:

∂2f̂(. . . , xi, . . . , xj , . . . )

∂xi∂xj

=
∑

x1,...,xi−1,xi+1,...,xk∈{0,1}

∑

x1,...,xj−1,xj+1,...,xk∈{0,1}
[

f̂(. . . , xi−1, 1, xi+1, . . . , xj−1, 1, xj+1, . . . )− f̂(. . . , xi−1, 1, xi+1, . . . , xj−1, 0, xj+1, . . . )

2k−2

]

−

[

f̂(. . . , xi−1, 0, xi+1, . . . , xj−1, 1, xj+1, . . . )− f̂(. . . , xi−1, 0, xi+1, . . . , xj−1, 0, xj+1, . . . )

2k−2

]

1



Following rearrangement of terms it becomes evident that this expression also contains 2k−1 positive terms
and 2k−1 negative terms, with the only difference in the power of the denominator term. It can thus be
concluded that any derivative ∂αf̂ (in multi-index notation) has 2k−1 positive terms and 2k−1 negative terms.

A straightforward way to maximize the value of a derivative expressed in this form is by assigning as many
instances of 1 as possible to the positive terms and as few instances of 1 as possible to the negative terms. For
a Boolean function with k inputs and output bias p, this can be accomplished by assigning min(2k−1, p2k)
ones and max(p2k − 2k−1, 0) ones respectively. Therefore,

max(|∂αf̂ |) =
min(2k−1, p2k)−max(p2k − 2k−1, 0)

2k−|α|

= (min(p, 0.5)−max(p− 0.5, 0))2|α|; 1 ≤ |α| ≤ k.

Note that this formula only applies to a specific order of nonlinearity |α| independent of the other orders
within the same Boolean function. In actuality, there are dependencies between the various orders within
a Boolean function. That is, if a Boolean function were to be constructed such that the derivative of a
particular order |α1| is maximized then there’s no guarantee that the derivative of another order |α2| ≠ |α1|
could be simultaneously maximized. This is one of the limitations of the normalization for which the above
formula is used.

Table 1: Dataset Description

Pubmed ID Description Category 1 Category 2

1753781 A model of tumor immunity Disease Cancer
11082279 A model of the growth-quiescence switch signaling path-

way
Biochemical Metazoan

16464248 A model of a typical signaling pathway where mass
and signal flow occur simultaneously

Signaling Metazoan

16464248 A model of the Tcell receptor signaling Signaling Metazoan
16542429 A model of the regulatory network governing the dif-

ferentiation of CD4+ Tcells
Biochemical Metazoan

16873462 A model of the mammalian cell-cycle Regulatory Metazoan
16968132 A model of water conservation via stomatal opening in

plants
Signaling Plants

17010384 A model used to simulate a molecular pathway be-
tween two neurotransmitter receptors: dopamine and
glutamate receptors

Signaling Metazoan

17722974 A model of Tcell activation via the Tcell receptor, the
CD4/CD8 co-receptors, and the accessory signaling
receptor CD28

Signaling Metazoan

18194572 A logical model of HGF and H. pylori induced c-Met
signal transduction

Disease Metazoan

18433497 A model of cellular immune response integrating toll-
like receptor, interferon, NF-kappaB and apoptotic
pathways

Signaling Metazoan

18463633 A model of cyclic gene expression during cell division
in budding yeast

Regulatory Primitive

18852469 A model describing the survival of cytotoxic T lym-
phocytes in Tcell large granular lymphocyte (T-LGL)
leukemia

Disease Metazoan

19025648 A model of physiological regulation in cholesterol
biosynthesis

Metabolic Metazoan

19118495 A regulatory model of the cell-cycle involving the trans-
membrane tyrosine kinase ERBB2

Disease Metazoan
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19144179 A model of glucose regulation in yeast Metabolic Primitive
19185585 A model of budding yeast cell-cycle Regulatory Primitive
19422837 A model of apoptosis involving external growth factors Signaling Metazoan
19524598 The simplified model of regulation of apoptosis via the

NFkB pathway
Biochemical Metazoan

19622164 A model of the external signaling molecule TNFα Disease Metazoan
19622164 A model of the external signaling molecule TNFβ1 Disease Metazoan
20169167 A model of the Pseudomonas syringae Disease Primitive
20221256 A model of the interplay between the NFkB pro-

survival pathway, RIP1-dependent necrosis, and the
apoptosis pathway in response to death receptor-
mediated signals

Biochemical Metazoan

20221256 A model of apoptosis involving death-receptor mediated
signals

Regulatory Metazoan

20659480 ABA-induced closure model (ABA signal transduction
network)

Signaling Plants

20862356 A gene regulatory model of spatial expression patterns
in the cerebral cortex

Regulatory Metazoan

21563979 A model of glucose regulation via the Lac operon Metabolic Primitive
21639591 A model for phospholipase C-coupled calcium signaling

pathways
Signaling Metazoan

21853041 A model of myeloid differentiation Regulatory Metazoan
21968890 A model of signaling pathway involving the pro-

inflammatory cytokines interleukin 1 (IL-1)
Signaling Metazoan

21968890 A model of signaling pathway involving the pro-
inflammatory cytokines interleukin 6 (IL-6)

Signaling Metazoan

22102804 A model of Tcell large granular lymphocyte (T-LGL)
leukemia

Disease Cancer

22102804 A reduced model of Tcell large granular lymphocyte
(T-LGL) leukemia

Disease Metazoan

22192526 A model of the Arabidopsis thaliana root stem cell
niche

Signaling Plants

22253585 A model of host immune response to single and coin-
fection

Disease Primitive

22253585 A model of within-host immuno-dynamics Disease Primitive
22253585 A model of host immune response to single and coin-

fection
Disease Primitive

22267503 A model of Fanconi Anemia/Breast Cancer pathway
elucidating the repair of DNA strands

Disease Metazoan

22448278 A model of Mycobacterium tuberculosis Disease Primitive
22962472 A model of keratinocyte cell migration mediated by

hepatocyte growth factors
Signaling Metazoan

23049686 A model of cell-cycle in budding yeast Regulatory Primitive
23056457 A model of gene regulation underlying early cardiac

development in mammals
Regulatory Metazoan

23081726 A model of the Influenza A virus replication cycle Disease Primitive
23134720 A model linking the oxidative stress pathway to apop-

tosis
Biochemical Metazoan

23169817 A model of the simplified p53 network with high DNA
damage

Disease Cancer

23169817 A model of the simplified p53 network with low DNA
damage

Disease Cancer
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23171249 A regulatory model of the TOL multi-protein complex
system found on the cell membrane of gram-negative
bacteria

Metabolic Metazoan

23233838 A signaling pathway model of apoptosis in yeast Regulatory Primitive
23469179 A model of cancer network regulated by miR-17-92

cluster
Disease Cancer

23520449 A model of body segmentation in drosophila
melanogaster

Biochemical Metazoan

23743337 A gene regulatory network model of T lymphocyte
differentiation

Regulatory Metazoan

23764028 A model of the effect of TGF-β1 on mosquitos with
the parasite Plasmodium falciparum

Disease Metazoan

23868318 A model of FGF signaling pathway in drosophila Regulatory Metazoan
23868318 A model of interaction between nine key signaling path-

ways in drosophila
Regulatory Metazoan

23868318 A model of interaction between nine key signaling path-
ways in drosophila

Regulatory Metazoan

23868318 A model of receptor signaling pathways, including
EGFR, G-protein-coupled receptor, integrin, and stress
pathways

Regulatory Metazoan

23868318 A model of receptor signaling pathways, including
EGFR, G-protein-coupled receptor, integrin, and stress
pathways

Regulatory Metazoan

23868318 A model of receptor signaling pathways, including
EGFR, G-protein-coupled receptor, integrin, and stress
pathways

Regulatory Metazoan

24069138 A threshold model of the cell-cycle control network of
yeast S. pombe

Regulatory Primitive

24079299 A regulatory model of Salmonella typhimurium Disease Primitive
24250280 A comprehensive and generic reaction map for the

MAPK signaling network
Disease Metazoan

24376455 A model of a metastatic melanoma network Disease Cancer
24564942 A threshold model of the C. elegans early embryonic

cell-cycle
Regulatory Metazoan

24970389 A protein interaction model to elucidate drug resistance
in breast cancer

Disease Cancer

24970389 A cell signaling network model to elucidate drug resis-
tance in breast cancer

Disease Cancer

24970389 A protein interaction model to elucidate drug resistance
in breast cancer

Disease Cancer

24970389 A protein interaction model to elucidate drug resistance
in breast cancer

Disease Cancer

24970389 A protein interaction model to elucidate drug resistance
in breast cancer

Disease Cancer

24970389 A protein interaction model to elucidate drug resistance
in breast cancer

Disease Cancer

25063553 A model of the hormonal control of hepatic metabolism
using insulin and glucagon signaling

Metabolic Metazoan

25063553 A model of the hormonal control of hepatic metabolism
using insulin and glucagon signaling

Metabolic Metazoan

25063553 A model of the hormonal control of hepatic metabolism
using insulin and glucagon signaling

Metabolic Metazoan
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25063553 A model of the hormonal control of hepatic metabolism
using insulin and glucagon signaling

Metabolic Metazoan

25163068 A model of the complete quorum sensing system of
Pseudomonas aeruginosa

Signaling Primitive

25189528 A model of epithelial-to-mesenchymal transition (EMT)
integrating the signaling pathways involved in devel-
opmental EMT and known dysregulations in invasive
hepatocellular carcinoma (HCC)

Disease Metazoan

25538703 A model elucidating the role of the CAV1 scaffold
protein in Tcell leukemia

Disease Metazoan

25780058 A model of a Rho-family GTPases signaling network Disease Metazoan
25908096 A model of iron acquisition and oxidative stress re-

sponse in the fungal pathogen aspergillus fumigatus
Metabolic Primitive

25980672 A model of the melanogenesis signaling network Signaling Metazoan
26090929 An integrated regulatory and signaling pathway model

of the fate of the CD4+ T immune cells
Biochemical Metazoan

26102287 A model describing the infection response of Clostrid-
ium difficile to antibiotic treatment

Disease Primitive

26163548 A signaling pathway model describing the interaction
between a drug and cellular outcomes in multiple
myeloma cells

Signaling Metazoan

26207376 A model of gene regulation in the cardiac progenitor
cells involved in early vertebrate development

Regulatory Metazoan

26244885 A model of the Septation Initiation Network Regulatory Metazoan
26244885 A model of the Septation Initiation Network that con-

trols cytokinesis in fission yeast
Regulatory Metazoan

26340681 A model of cell-cycle regulation in plants Regulatory Plants
26346668 A model is used to map environmental and flow induced

signals to endothelial cell phenotype (proliferation, mi-
gration, apoptosis, and lumen formation)

Disease Cancer

26385365 A model of how mutations in the FA/BRCA pathway
cause Fanconi anemia

Disease Metazoan

26408858 A model of the regulatory network of lymphopoiesis Regulatory Metazoan
26446703 A model of colitis-associated colon cancer involving

P53, MDM2, and AKT
Disease Metazoan

26528548 A regulatory network model of early metasis develop-
ment

Disease Cancer

26573569 A regulatory network model of the differentiation of
the human gonadal cells into testes or ovaries

Regulatory Metazoan

26616283 A model of oncogenic pathways in NB Disease Cancer
26751566 A dynamic model for the regulatory network that con-

trols terminal B cell differentiation
Biochemical Metazoan

27138333 A model of the signaling network associated with RCP-
driven invasive migration

Disease Cancer

27148350 A model linking the nerve growth factor NGF to the
proliferation or differentiation outcomes of the cell

Biochemical Metazoan

27464342 A model of the M1 (LPS-activated) and M2 (IL-4/13-
activated) macrophage polarization types

Signaling Metazoan

27542373 A model of the allowed long-term behaviors of the
stomatal opening process in plants

Signaling Plants

27594840 A model linking the hematopoietic stem progenitor cells
and mesenchymal stromal cells in the bone marrow

Disease Metazoan
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27613445 A model of the signaling pathways that control S-phase
entry and a specific type of senescence called gerocon-
version

Regulatory Metazoan

28187161 A Boolean network CARENET (CAmbium REgulation
gene NETwork) for modeling cambium activity

Regulatory Plants

28209158 A model of tumorigenic transformation of human ep-
ithelial cells

Disease Cancer

28361666 A model of castration-resistant prostate cancer Disease Cancer
28381275 A model of colorectal tumorigenesis Disease Cancer
28426669 A model of the gene regulatory network Arabidopsis

thaliana
Regulatory Plants

28426669 A model of the gene regulatory network Arabidopsis
thaliana

Regulatory Plants

28455685 A model of the epidermal growth factor receptor sig-
naling of a breast epithelial cell line, MFC10A.

Disease Cancer

28584084 A model encompassing the main transcription factors
and signaling components involved in myeloid and lym-
phoid development.

Biochemical Metazoan

28639170 A model of the well-known arabinose operon in E. coli Metabolic Primitive
29186334 A model to describe temporal expression patterns ob-

served in GMP-derived cells
Regulatory Metazoan

29206223 A model to predict different in-silico knockouts that
prevent key SASP-mediators, IL-6 and IL-8, from get-
ting activated upon DNA damage

Biochemical Metazoan

29230182 A model of the molecular regulatory network involved
in the control of angiogenesis

Biochemical Metazoan

29237040 A logical model of initiation of the metastatic process
in cancer

Disease Cancer

29378814 a model to predict stabilized Pluripotent stem cells
(PSC) gene regulatory network (GRN) states in re-
sponse to input signals

Regulatory Metazoan

29596489 A mathematical in silico model that robustly recapitu-
lates the crosstalk between IGF and Wnt signaling.

Signaling Metazoan

29622038 A phenotype control kernel (PCK) model of the
mitogen-activated protein kinase (MAPK) model

Disease Metazoan

29632237 A model used to identify key proteins regulating borte-
zomib

Disease Cancer

30024932 A model of the G2/M checkpoint arrest regulation
contemplating the influence of miR-449a

Disease Metazoan

30038409 A model of genes/proteins responsible for loss/gain of
function in human pluripotent stem cells

Regulatory Metazoan

30104572 A model of cell state transition of epithelial-to-
mesenchymal transition (EMT)

Disease Cancer

30116195 A model of the regulation in the differentiation process
of major Tcell subtypes, i.e., Th1, Th2, Th17 and iTreg
cells.

Biochemical Metazoan

30281473 A model of the aberrant signaling in pancreatic cancer Disease Cancer
30323768 A model gene regulatory network (GRN) of latent

proviruses in resting CD4+ Tcell to visualize the com-
plexity of the HIV-1 gene expression

Disease Metazoan

30518777 A model of the ABA signaling pathway Signaling Plants
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30530226 A model of the crosstalk between the TGFβ, p38
MAPK and cell-cycle checkpoint pathways which qual-
itatively describes this dual behavior of TGF-β

Signaling Metazoan

30546316 A model for the gene regulation driving macrophage
polarization to the M1, M2a, M2b, and M2c phenotypes

Signaling Metazoan

30953496 A model integrating the insulin resistance pathway
with pancreatic β-cell apoptosis pathway which are
responsible for Type 2 diabetes mellitus (T2DM)

Disease Metazoan

30953496 A model integrating the insulin resistance pathway
with pancreatic β-cell apoptosis pathway which are
responsible for Type 2 diabetes mellitus (T2DM)

Disease Metazoan

31048917 A model of Drosophila melanogaster Regulatory Metazoan
31130988 FA-CHKREC (G2 checkpoint and the checkpoint re-

covery) model, which explores how FA cells might use
DDA (DNA damage adaptation)

Disease Metazoan

31516637 A model of cellular metabolic flexibility where the
inhibitor, Pyruvate, always blocks PDK activity when
it is present in the system.

Metabolic Metazoan

31516637 A model of cellular metabolic flexibility where the
inhibitor, Pyruvate, only blocks PDK activity when at
least one of its activators is absent from the system.

Metabolic Metazoan

31516637 A model of cellular metabolic flexibility where Acetyl-
CoA mediated activation of PDK bypasses Pyruvate
mediated inhibition.

Metabolic Metazoan

31516637 A model of cellular metabolic flexibility where Fatty
Acid mediated activation of PDK bypasses Pyruvate
mediated inhibition.

Metabolic Metazoan

31949240 A model of renovascular disease (RVD) Disease Metazoan
32054948 A model of the G1/S checkpoint regulation contem-

plating the regulatory influences of both miR-34a and
miR-16

Disease Metazoan

32870080 A model of the lac operon with feedback Regulatory Primitive
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