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Abstract
Third party cloud service providers are becoming common for offering BlockChain-as-a-Service (BaaS). In
this framework, incoming requests are processed by a number of stages sequentially with each service
stage having different processing times. Each stage will manifest a particular component of BlockChain
primitives such as digital transactions undertaken by businesses within permissioned users. This will
require sophisticated steps of digital �ngerprint/certi�cate generation, secure transaction management
based on permission levels, federated consensus and transaction validation among others using
distributed cryptographic techniques. Such architectures are becoming common as third-party Cloud
Services will begin to offer BlockChain-as-a-Service (BaaS) for improved security for clients. BaaS will
typically incorporate the M/Hypo/1/L queueing model in which incoming requests are Poisson
distributed, processing times are hypo-exponential and having �nite buffers. Our main contributions in
this paper are: (i) To develop a realistic Queueing based performance model of BaaS over third party
cloud service provider; (ii) to develop rigorous mathematical analysis to estimate the model parameters
such as calculating system idleness, system utilization, queue waiting times, and the number of
occupants in the system and queue; (iii) Furthermore, our model helps to estimate real-time Service Level
Agreement (SLA) criteria such as through-put, response time, and request drop as a function of system
security implemented through mining stage.

I. Introduction
Cloud based service provision is a ubiquitous paradigm now offering a range of services, like Software as
a Service (SaaS), Infrastructure as a Service (IaaS) and Platform as a service (PaaS). These typically
mean that the cloud will take responsibility of hardware solutions in the form of availability of high-end
servers and high-end software computing services to bring secure, reliable and cost-effective solutions for
enterprise needs.

With the advent of distributed computing applications such as BlockChain based applications, it is not
possible to execute the client service in a single go, on a single server. This is because such applications
require federated computing resources in a distributed manner to achieve the goals of reliability, security,
trustworthiness to implement Distributed Ledger Technology (DLT) based secure application. Typical use
cases include execution of �nancial transactions like digital asset trading, supply chain provenance
tracking, secure management of health records, claims settlement and identity veri�cation by large
businesses within permissioned users. The use of word ‘transaction’ thereafter in this paper could include
any of the above use-cases as mentioned. These distributed processing stages would typically include
several of fundamental BlockChain primitives such as digital �ngerprint/certi�cate generation,
transaction management based on permission levels, development of federated consensus and
transaction validation among others through complex cryptographic algorithms and puzzle solving
techniques. Hence, such BlockChain based services would typically require distributed processing in
intermediate stages before the �nal output can be generated. On a physical level, such BlockChain based
service requests will require asynchronous service-to-service communication over federated machines
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over cloud architectures such as OpenStack based RabbitMQ, Qpid, and ZeroMQ. Intermediate
BlockChain messages are stored on the queue until they are processed in serial manner based on
availability of federated Cloud Nodes.

As described above cloud networks providing BaaS will process the arriving requests in more than one
service stage with different processing rate for each stage depending on the exact primitive of
BlockChain application being actioned. The incoming requests are �rst placed in a global queue. In this
type of system, a request is processed sequentially by single stage at a time so that only one stage is
active and all the other stages are inactive. This is typical of Block Chain based application relying on
distributed digital veri�cation of the transactions using cryptographic procedures over a federated
architecture that develop the trustworthiness to move to the next stage.

To study the intrinsic performance of Cloud based systems offering BaaS, they can be emulated as a
multi- stage queuing system in which the processing time (or service time) possesses a hypo-exponential
distribution of type M where M is number of stages in the block chain process (typically 7) as shown in
Figure 1. These types of systems are denoted as M/Hypo/1/L in Kendall’s notation, having Poisson
arrival of requests, Figure 1. Blockchain as a service shown as a sequence of 7 steps

�nite queue length L; L representing number of block requests that can be queued at a time with one
block being processed after the other. Note that each block contains multiple transactions considered for
one block generation as a system parameter and service time for each stage that is hypo-exponentially
distributed (Figure 2). There is not much work done in performance modelling of cloud-based queuing
systems with hypo-exponential service times with �nite buffer for BaaS. The purpose of this research is
to demonstrate an analytical queuing model for studying and estimating the performance metrics of
networked servers deployed on cloud with hypo-exponential service time distribution. Our model makes
use of Markov Chain method to derive mathematical equations for some key performance measures
which include average through-put, system inactivity, total utilization, probability of request drop and
average queuing delay. Engineers can optimize the system parameters like the number of stages,
processing time, request arrival time and queue length to achieve the required SLA.

New emerging areas of research are now focusing on parallel blockchain processing techniques such as
the work by Fitzi et al. [1]. Similarly, Lee et al. [2] have investigated a hierarchical MultiBlock Chain
architecture for parallel execution of blocks to increase block chain throughput for cryptocurrency based
transactions. Hazari and Mahmoud have also investigated a parallel blockchain processing system
based on parallel mining strategy [3]. However, such systems are still in infancy, and it will be still some
time before their widespread adoption. In this paper we don’t focus on emerging architectures rather on
the performance modelling of conventional blockchain based systems that are already in use.

Our main contributions in this paper are: (i) To develop a realistic Queueing based performance model of
BaaS over 3rd party cloud service provider; (ii) to develop rigorous mathematical analysis to estimate the
model parameters such as calculating system idleness, system utilization, queue waiting times, and the
number of occupants in the system and queue; (iii) Furthermore, our model helps to estimate real-time
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Service Level Agreement (SLA) criteria such as through-put, response time, and request drop, our model
can estimate the required values for mean request arrival rate, buffer size (queue length), and average
service rate of each stage.

Ii. Related Work
Mathematical analytical models have been developed since a long time to understand network
availability, achievable QoS and other parameters over various network tra�c models and limited shared
network resources [4],[5]. Xiong and Perros [6] developed mathematical analytical models to investigate
the performance of cloud based networking services. Similarly, Vaquero et al. [7] are one of the early
contributors to study cloud networks operation and its performance.

Queueing systems have been used for a long time to model the performance of systems where several
requestors come to avail shared services. Faris et al implemented the queueing system abstraction of a
physical hospital scenario to monitor the outpatient waiting times at various stages in the hospital
processes using an open Jackson Network implementation [8]. Goto et al. [9] analyzed the queueing
system performance of a software de�ned network using popular OpenFlow based switching model.

As cloud networks became popular, researchers’ interest has been greatly increased for its capabilities
through its performance modelling [10]. Maiyama et al. [11] have studied the queueing network modelling
(QNM) for OpenStack Infrastructure as a Service (IaaS) for cloud computing platforms. Vilpana et al. [12]
presented a queueing model based abstraction of cloud network services comprising of an open Jackson
network with several single server or parallel server stages to simulate the various facets of the cloud
computing network, such as single and parallel operating Processing Servers, Database servers etc. The
model is used for services departing after limited lifetimes in the system, as some user requests would
require recurrent services from the cloud network. Interestingly, network signal propagation over the
telecommunication network links joining the different components of the cloud network together and with
the user as another single server form a queueing network. This is already well known by telecom
researchers as network request arrivals and departures follow Poisson distribution and exponential
processing times respectively over telecommunication links. Thus, the performance of an entire cloud
computing network processing user requests can be easily modelled using well developed concepts of
the queueing theory. Vilpana et al. [13] in another contribution, study the performance of a cloud based e-
health monitoring system using queueing theory perspective.

Li et al. [14] studied Markov modelling of cloud systems where jobs were parallelizable so that they could
be broken down and served in parallel over multiple parallel server banks.

Khazei et al. [15],[16] investigated more tunable queueing theory model to approximate the performance
of the cloud data center in terms of task blocking probability and number of server requirements to meet
the performance benchmarks.
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Khomonenko et al. [17] studied a non-Markov system to study cloud system performance using
multichannel queues which are decomposed into micro states.

Mas et al. [18] have investigated a queueing theory based performance monitoring of a fog computing
network similar to a cloud computing network using open Jackson network. The studied architecture is
hybrid which involves both partial processing in the fog as well as cloud network.

Newer cloud based applications such as BaaS are rapidly becoming popular on cloud network. Such
services digress from the traditional computing services (IaaS, SaaS, PaaS etc) as they require complex
cryptography based federated responses from multiple machines before the next step in the sequence
can be executed instead of centralized server resources in direct control of the cloud network. Kim and
Park [19] investigated a Hybrid decentralized Byzantine Fault tolerant BlockChain framework for cloud
based application over OpenStack message queue. Another related work by Zhang et al. [20] investigated
the BlockChain consensus algorithm performance for message queue with Byzantine fault tolerance.
Similarly, Salah and Shiltami [21] have investigated Message-Queueing-as-a-Service (MaaS) cloud
application which goes through several processing stages in the cloud network before an output can be
generated. This has been modelled as a hypoexponential processing times queue network investigated in
more detail by Salah and El Kafhali [22].

More recently, Memon et al. [23] have simulated two popular blockchain systems, BitCoin and Ethereum
using queueing theory modelling however, they use simple M/M/1 system for simulation of memory pool
management and a M/M/c system for simulation of mining. This model lacks few of the intricacies of
the queuing system model when generalized over a P2P based cloud network; these are explained later in
next section. A better queue based modelling of block chain is presented by Li et al. [24] which models the
block chain as a combination of Markovian batch service, queueing process and game model, an
abstraction of two sequential queueing stages one that of block generation and the second one of block
mining (veri�cation). The model developed in this paper is more inspired with this second model.

Message Queueing services such as that for BlockChain based services will typically incorporate the
M/Hypo/1/K queueing model in which incoming requests are Poisson distributed, processing times are
hypo-exponential and having �nite buffers [21]. Hypoexponential and Hyperexponential random variables
are studied in detail by Yanev recently [25]. Marin and Bulo [26],[27] developed a queueing model using
hypo-exponential distribution of service times but considering queues with in�nite buffer. Practical cloud
systems have �nite buffer spaces in their systems.

Iii. Analytical Model
As shown in Fig. 1, the lifecycle of blocks on a block chain system to be modelled typically consists of
the following 7 steps:

(i) Unicast: Nodes initiating transactions and forwarding to cloud entity
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(ii) Broadcast: A 3rd party Cloud entity broadcasting transactions to peers; Peers accept selected
transactions to form their own ‘blocks;

(iii) Mining: Peers set about to solve the cryptographic puzzle through ‘nonce’ generation satisfying hash
requirements

(iv) Unicast: Winner reports back calculated ‘nonce’ value to cloud entity

(v) Broadcast: Cloud entity further broadcasts ’nonce’ to other peers for validation.

(vi) Unicast: Other peers validate the transaction and report back to cloud entity.

(vii) Broadcast: Block Published and added to block chain network through majority vote algorithms.

Queueing Theory forms the basis of services encountered over shared, networked devices over computer
networks in general [28]. The same model is extended for cloud services which dominate the computing
requirements of enterprises today. Popularly known Kendell’s notation A/B/C/D is often used to describe
the type of queueing system. The �rst alphabet denotes request arrival distribution which could be one of
‘M’ for memory less used to denote Poisson distribution, ‘D’ for Deterministic or ‘G’ for General
distribution. The second alphabet denotes distribution of the processing times; this could be ‘M’ to denote
memoryless or exponentially distribute processing time, ‘D’ for Deterministic or ‘G’ for General. The third
alphabet denotes the number of processing servers which could take any �nite numerical value where
any value greater than one denotes parallel service possible through multiple servers. Finally, the last
alphabet denotes the size of the �nite queue, some theoretical calculations could involve assuming
queue size of in�nity.

More recently, Memon et al. [23] have simulated two popular blockchain systems, BitCoin and Ethereum
using queueing theory modelling. However, they use simple M/M/1 system for simulation of memory
pool management, accepting transactions in real time and a M/M/c system for simulation of mining
process. This model lacks few of the intricacies of the queuing system model. For example, in M/M/c
systems it is assumed that identical servers process heterogenous jobs (which have exponentially
distributed processing times) in a FCFS (First Come First Served) manner from a queue as a server
becomes idle. In real block chain scenario (i) similar mining jobs go to non-identical servers during a
mining process for the discovery of nonce. (ii) once nonce calculation is completed by the ‘winner’,
processing by others becomes irrelevant even if the process was assumed to be conducted in parallel
before, thus M/M/c model does not �t this scenario. (iii) miners are assigned jobs but may choose to
accept or decline a job for both permissioned or non-permissioned block chain networks; (iv) There are
practical limitations on number of blocks being mined in a particular interval of time which violates the
work conservation principle in typical queueing system analysis. Hence due to these weaknesses, we
digress from this model and formulate another model which we believe gives a better model for queueing
system-based blockchain.
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In our model we assume that: (i) we only have trusted peers as in a permissioned block chain network, i.e.
none of the peers would decline a job based on �nancial incentives to keep the model only dependent on
technical aspects. (ii) cloud entity monitors network conditions of the peer to peer overlay network
through established network probing techniques [29] or statistical techniques [30] so that network
outages or inactive peers are catered for beforehand.

Similar to model developed by Li et al. [24], we design blockchain queue, in which the block-generation
and blockchain building processes are expressed as a several stages of batch services. Block generation
and Block chain building are modelled as several M/M/1 stages with different process times (as
independently and identically distributed (I.I.D) random variables). Block generation is modelled as one
M/M/1 system while the other stages of the block chain generation such as federated consensus
generation through several P2P network broadcast requests are also modelled as separate M/M/1
queueing stages (Fig. 2). Li models all network information broadcast stages as one M/M/1 system
(termed as the block generation stage) cascaded after the M/M/1 block mining stage; we argue that this
is not an accurate model as several information propagation stages also precede the mining stage such
as broadcasting of new transactions over the network as well as follow it such as handshaking protocols
for federated consensus and �nally broadcasting the approved block over the network. In all we use 7
stages in our queueing model of the block chain network as outlined in Fig. 1.

Figure 2

Queuing system with a �nite buffer and hypo-exponential service stages

This section explains our queuing system's analytical model with hypo-exponential service distribution
and a �nite buffer length(L) i.e. M/Hypo/1/L is presented. As shown in Fig. 2, �rst of all incoming
requests are stored in a centralized queue with storage of L-1 requests and then processed in M stages
having different mean service rate i.e., μ1, μ2, . . . , μM. Note that each request here is at the abstraction
level of one block. And each block request can have multiple transactions (with a limit on maximum
number of transactions) summed up through superposition principle to determine new block request
arrival rate. Ties between simultaneously occurring transactions are broken through assignment of higher
priority to higher transaction fee or any other appropriate criteria. Thus, transactions can be logically
separated to be part of one block or another. The processing of each individual block (comprising
multiple transactions) requests is done in a mutually exclusive and sequential manner that is: a new
block request will pass into �rst stage only when the previous block request leaves the �nal stage M
becoming part of the block chain. Mutually exclusive means that at any instant of time only one of the M
stages is active. This is typically the case in permissioned block chain networks like BaaS where one
block of transactions is completed before executing a second one as each block involves broadcasting
transactions (belonging to that block) to all Blockchain peers who must aggregate the information and
signature verify each block through cryptographic algorithms.

Figure 4: State
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Figure 3

Transition diagram of -the Markov Process

For this analysis, incoming block requests follow a Poisson distribution having arrival rate ‘λ’. Also, the
service time of each stage is independent and follows an exponential distribution. Another important
assumption is that the requests in queue are serviced in FCFS basis.

For our analytical model, we assume that the arrival of requests follows a Poisson distribution, and
service times of network steps (unicast and broadcast) and mining step are exponentially distributed. It
has been seen in different literature that the arrival of request may not always follow a Poisson process
[31] in which case an accurate analytical solution is very hard to model. Secondly, in our model an
assumption is made that all the requests pass through multiple stages sequentially as shown in Fig. 1;
one might argue that this may not be true for all systems for example at a stage, processing may be done
in parallel by using multiple peers such as mining. But as explained earlier, mining process is dictated by
the ‘winner’ node. So, parallel processing in such cases become meaningless as far as queueing system
analysis is considered. Although newer systems are investigating parallel processing but it is beyond the
scope of this work. For federated block chain systems, this assumption is valid as next sequential steps
can only be executed based on results of previous steps from distributed peers such as majority vote to
determine execution of next steps. An approximate solution for this case can be computed using out
model by taking sequential servers with average service rate.

Our model utilizes the Markov Chain with �nite buffer capacity. The model describes the operation of a
multi-stage queuing service. The state space can be generically de�ned using a 2-tuple value as:

S = {(l, m), 0 ≤ l ≤ L, 0 ≤ m ≤ M}

1

Where m represents the active service processing node at the moment and l represents the number of
current block requests in the system, with each block request having multiple transactions considered for
block formation. The system has a queue length of L-1 for pending block requests as one block request is
currently in service at all times through work conservation principle. State (0,0) is a special state
representing no block formation requests in the system i.e., the system is in idle state.

Probabilities of state (l, m) can be represented as pl ,m. A system of difference equations to compute the
state probabilities can be written as below, with one of the universal Global Balance Equation relating all
state probabilities through the universal law of probability.

The Global Balance Equation

p0,0 +
L

∑
l=1

M

∑
m=1

pl ,m = 1
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2

Few other state probabilities can be calculated through the difference equations which can be veri�ed
from the Markov Diagram in Fig. 3.

State(0,0)

−λp0,0 + μM. p1,M = 0

3

State(1,M)

− λ + μM p1,M + μM−1. p1,M−1 = 0

4

State(1,m)

− λ + μM p1,m + μm−1. pm−1 = 0

5

(2 ≤ m ≤ M − 1)

State(1,1)

− λ + μ1 p1,1 + λp0,0 + μM. p2,M = 0

6

State(l, M)

− λ + μM pl ,M + λpl−1 ,M + μM−1. pl ,M−1 = 0

(7)

(2 ≤ l ≤ L − 1)

State(l, m)

− λ + μm pl ,m + λpl−1 ,m + μm−1pl ,m−1 = 0

8

( )

( )

( )

( )

( )
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(2 ≤ l ≤ L − 1; 2 ≤ m ≤ M − 1)

State(l, 1)

− λ + μ1 pl , 1 + λpl−1,1 + μMpl+1 ,M = 0

9

(2 ≤ l ≤ L − 1)

State(L, M)

−μMpL,M + λpL−1,M + μM−1pL,M−1 = 0

10

State(L, m)

−μmpL,m + λpL−1,m + μm−1pL,m−1 = 0

11

(2 ≤ m ≤ M − 1)

State(L, 1)

−μ1pL,1 + λpL−1,1 = 0

12

From the above equations we can calculate the state probabilities pl ,m where 
(1 ≤ l ≤ L, 1 ≤ m ≤ M).  Furthermore, other important performance metrics like throughput, utilization
factor, waiting time etc. can be computed.

The departure rate of the system is basically the average throughput, the rate of departure of requests
from stage M.

γ = λ
L

∑
l=1

pl ,M

13

Throughput can also be written as

( )
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γ =
(1 − p0)

−
X

14

Where 
−
X  is mean service time of the multi-stage system.

−
X =

M

∑
m=1

1
μm

15

Throughput (departure rate) γ can also be represented as

γ = λ(1 − Ploss)

16

Where Ploss is the blocking probability when incoming request sees that the queue is completely
occupied.

Ploss =
p0 + ρ − 1

ρ

17

Where ρis expressed as ρ = λ
−
X  often referred as offered load

Ploss can also be expressed in terms of state probabilities as

Ploss =
M

∑
m=1

pL,m

18

The mean number of requests in the system at a time can be termed as System occupancy and
expressed as

E[L] =
L

∑
l=1

M

∑
m=1

lpl ,m

19
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The mean number of requests in the queue are de�ned as Queue Occupancy and expressed as

E Lq =
L

∑
l=1

M

∑
m=1

(l − 1)pl ,m

20

E Lq = E[L] − (1 − p0)

21

The average amount of time spent by a request in the system after entering the queue can be computed
by using Little’s law

W =
E[L]

γ

22

The time spent by a request waiting to be served in the queue is termed as Queuing delay and it can be
computed as

Wq =
E Lq

γ = W −
−
X

23

Total system utilization can be expressed as

U = γ
−
X

24

For various values of L and M, the stage transition matrices can be written as a system of linear
equations. For example, we present the example for L = M = 2 and L = M = 3 Eq. 25 and Eq. 26 respectively.

[ ]

[ ]

[ ]
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1 1 1 1 1
λ 0 −μ2 0 0
0 μ1 −(μ2 + λ) 0 0
0 λ 0 −μ1 0
0 0 λ μ1 −μ2

p00

p11

p12

p21

p22

=

1
0
0
0
0

25

Iv. Numerical Results
In this section, we list down the results acquired from analytical model after its implementation in
MATLAB. We also report key performance metrics of our queuing system.

For our analysis, the number of processing stages are set to 7, buffer length is 10 block requests. The
block arrival requests, and service rates are shown in Table 1. The effect of time complexity of mining
stage is considered through variation of service rate of stage 3 while keeping the service rate of other
stages as �xed.

[ ] [ ] [ ]
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Table 1
Values of Parameters used in Simulation

Parameters used in simulation Value

Block Arrival Request Rate (λ) Varied from 0 to 2 req/sec

Service Rate stage 1 (µ1) 100 req/ sec

Service Rate stage 2 (µ2) 20 req/ sec

Service Rate stage 3 (µ3) Varied from 0.001 to 10 req/ sec

Service Rate stage 4 (µ4) 6.67 req/ sec

Service Rate stage 5 (µ5) 5 req/ sec

Service Rate stage 6 (µ6) 4 req/ sec

Service Rate stage 7 (µ7) 3.33 req/ sec

Buffer Size (L) 10 block requests

These values are based on practical blockchain system stages where the initial stages which are involved
with initiation of blockchain based transactions involve simple (signed) transaction documents of single
peers with latter stages involving cryptographic based veri�cation from multiple peers for authentication
(after the mining step) and veri�cation of the blockchain based transactions. Thus, the processing speed
of latter stages become slower as compared to the initial stages. The most expensive stage is the mining
stage which is depicted as the 3rd stage as shown in Fig. 1. We study the overall effect on the blockchain
processing by variation of the time duration (complexity) of the mining step.

Figure 4 shows the performance results for Utilization factor U in relation to blockchain request rate λ. We
see that the system utilization factor approaches 0.65 as λ = 0.6 req/sec when the mining step
complexity is comparable to other stages (10 req/sec) but when the mining step complexity is increased
by factor of 10; (i.e., service rate reduced 1 req/sec), the system utilization approaches 0.98. System
utilization increases rapidly as the time complexity of mining step increases.

Figure 5 shows the performance results for throughput γ in relation to offered blockchain request rate λ.
Throughput is roughly halved as the mining step complexity increases by a factor of 10; throughput
reduced from a value of 0.95 to just 0.5 as mining service rate is reduced from 10 req/sec to 1 req/sec on
further increasing the time complexity of mining stage the throughput reduces drastically.

Figures 6 and 7 shows the performance results for system occupancy E[L] and queue occupancy E[Lq] in
relation to offered block chain requests λ. When offered load value λ = 1, the queue occupancy increases
drastically by about 2-fold, from 6 to 9 (5 to 8 respectively) if only the mining stage complexity of the 7
stages increases by tenfold (mining stage service rate decreasing from 10 to 1).
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Figure 8 shows the performance results for System idle probability po in relation to offered tra�c λ. At λ 
= 0.5, Probability that system is idle is also about 0.5 when the mining stage service rate is 10. When the
mining stage complexity is increased by factor of ten, thereby reducing its service rate from 10 to one, the
corresponding �gure for idle probability reduces to just 0.08.

Figure 9 shows the performance results system blocking probability (or probability of loss) PL in relation
to offered arriving blockchain requests λ. As mining stage complexity increases (service rate reduces
from 10 to 0.1), system blocking probability increases from 0.5 to about 0.94 when λ = 2.

Figures 10 and 11 show the performance results for System waiting time W and Queuing delay Wq in
relation to offered incoming requests λ. Both the system waiting time and queueing delay value increases
very gradually as mining stage service rate is decreased from 10 to 0.1, but then increases sharply
jumping by a factor as mining stage service rate is reduced from 1e-3 to 1e-4 even when λ = 0.1.

Overall, as summary, we note that the mining stage complexity serves both in ensuring system security
and system integrity but has a deep impact on system performance parameters.

By examining these performance curves engineers can optimize the systems as per the required SLAs.
Mining stages could perhaps be well optimized through parallel processing stages in order to optimize
overall system performance without any caveat in the form of reduced system security.

Figure 4

System Utilization Vs Arrival Requests as Mining Stage Complexity is varied

Figure 5

System Throughput Vs Arrival Requests as Mining Stage Complexity is varied

Figure 6

Expected Requests in System Vs Arrival Requests as Mining Stage Complexity is varied

Figure 7

Expected Queue Occupancy Vs Arrival Requests as Mining Stage Complexity is varied

Figure 8

System “Idle” Probability Vs Arrival Requests as Mining Stage Complexity is varied

Figure 9

Blocking Probability Vs Arrival Requests as Mining Stage Complexity is varied
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Figure 10

System Waiting Time Vs Arrival Requests as Mining Stage Complexity is varied

Figure 11

Queue Waiting Time Vs Arrival Requests as Mining Stage Complexity is varied

V. Conclusion
The purpose of this paper is to present an analytical model for analyzing and estimating the working of
3rd party based BlockChain as a Service (BaaS). We model the system M/Hypo/1/L queuing system and
develop its Markov model for analyzing it. Mining stage places a crucial role in maintaining system
integrity and system security. However, this comes at the cost of performance. From our analytical model
we derived mathematical equations for essential performance metrics which include total system
utilization and system idleness, request loss, through-put, queuing delay and queue and system
occupancies and see the impact on their performance as a function of mining complexity in the system.
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Figures

Figure 1

Blockchain as a service shown as a sequence of 7 steps
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Figure 2

Queuing system with a �nite buffer and hypo-exponential service stages

Figure 3

Transition diagram of -the Markov Process
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Figure 4

System Utilization Vs Arrival Requests as Mining Stage Complexity is varied
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Figure 5

System Throughput Vs Arrival Requests as Mining Stage Complexity is varied
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Figure 6

Expected Requests in System Vs Arrival Requests as Mining Stage Complexity is varied
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Figure 7

Expected Queue Occupancy Vs Arrival Requests as Mining Stage Complexity is varied
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Figure 8

System “Idle” Probability Vs Arrival Requests as Mining Stage Complexity is varied
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Figure 9

Blocking Probability Vs Arrival Requests as Mining Stage Complexity is varied
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Figure 10

System Waiting Time Vs Arrival Requests as Mining Stage Complexity is varied
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Figure 11

Queue Waiting Time Vs Arrival Requests as Mining Stage Complexity is varied


