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Abstract
In this paper we demonstrate a generalized and simpli�ed pipeline called axonal spectrum imaging (AxSI) for in-vivo estimation
of axonal characteristics in the human brain. Whole-brain estimation of the axon diameter, in-vivo and non-invasively, across all
�ber systems will allow exploring uncharted aspect of brain structure and function relations. While axon diameter mapping is
important in and of itself, its correlation with conduction velocity will allow, for the �rst time, the explorations of information
transfer mechanisms within the brain. We demonstrate various well-known aspects of axonal morphometry (e.g., the corpus
callosum axon diameter variation) as well as other aspects that are less explored (e.g., axon diameter-based separation of the
superior longitudinal fascicules into segments). Moreover, we have created an MNI based mean axon diameter maps over the
entire brain for a large cohort of subjects providing the reference basis for future studies exploring relation between axon
properties, brain function, physiology and behavior.

Introduction
The ability to measure physiological features of the nervous system in humans is limited. Classical approaches such as single
unit recording, electrocorticographics (eCog) or local �eld potentials can be measured in humans invasively when aligned with
other clinical needs [1, 2]. The investigation of healthy brain neurophysiology is therefore confounded to non-invasive
techniques such as evoked potentials (via EEG) and functional imaging (via BOLD fMRI or fNIRS) [3]. While these methods
affected tremendously our knowledge on the functioning human brain, each one lacks important features such as temporal or
spatial resolution, as well as speci�city. Consequently, when diffusion MRI was shown to be sensitive to axonal morphology, it
potentially provided an opportunity to explore, for the �rst time, in-vivo and non-invasively, one of the most basic physiological
features of the brain - the conduction velocity (as conduction velocity was shown to be correlated with axon diameter in [4–7]).

The Diffusion MRI signal has been shown to be sensitive to axon diameter under unique experimental conditions [8–11].
Several biophysical models were developed to estimate the axonal diameter distribution from the diffusion MRI signal: the �rst
was AxCaliber, followed by ActiveAx, AxCaliber3D, ActiveAxADD, Commit, Amico, and other, unnamed, methods [12–20]. These
models demonstrated their usefulness for several distinct tracts/bundles mainly focusing on the corpus callosum. This
sensitivity towards axon diameter was validated versus the state-of-the-art histology (electron microscopy) [8, 18, 21, 22]. While
�rst indications of diffusion MRI sensitivity towards axon diameter appeared to be very promising, following works raised
concerns regarding the sensitivity, speci�city, and suitability of this approach for exploring axon diameters in a clinical setup.

The ability to infer information of axon diameter is embedded in the assumption that diffusion within axons is restricted while
elsewhere it is free or hindered. In an axon diameter sensitive diffusion MRI experiment, we need to favor the contribution of
restricted diffusion over other modes diffusion [9, 23, 24]. This might be achieved by tuning of the experimental parameters
(i.e., the diffusion times (Δ) and diffusion weighting (b-value)) [25–28].

Several studies challenged the assumed sensitivity, speci�city and selectivity of restricted diffusion towards intra-axonal water
[29, 30]. While they may point to valid concerns, experimental evidences suggest that the contribution of intra-axonal water to
restricted diffusion signal dominates other factors (see supplementary material, section A) [25–28, 31–34] leading to the
following conclusions:

1. Myelin causes signi�cant restricted diffusion in neuronal tissue.
2. Diffusion experiments at high b-values are selective and speci�c to restricted diffusion water pools.
3. Intra-axonal water is the main source of restricted diffusion water population in neuronal tissue.

These evidences were the basis for axon diameter estimation frameworks (as listed above). In all these frameworks, the tissue
is modeled as a combination of hindered and free diffusion in the extra-axonal space and diffusion within impermeable
cylinders to represent the intra-axonal space. The models differ in their estimation of �ber orientation dispersion, exchange
rates between the modeled compartments, as well as in the analytical description of diffusion within cylinders.
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Assuming that certain experimental conditions indeed favor intra-axonal water signal, other critiques were raised whether these
experimental conditions can be met in a clinical MRI setup [19, 29, 35] or even infeasible at all [36]. However, experiments
designed to tackle these concerns suggested that they are not as severe as suspected (see Supplementary material, section B).
Noteworthy and most important is the invariance of the signal decay to the gradient duration when measured in-vivo. This
invariance paves the path to a potential suitability of clinical scanners to axon diameter estimation through diffusion imaging.
Moreover, it also greatly simpli�es the modelling approach leading to an easy to implement and robust modeling framework
termed AxSI.

The AxSI (Axonal Spectrum Imaging) framework, introduced in this paper, suggests a simpli�ed approach to estimate axon
diameter distribution per reconstructed axonal �ber or fascicle streamline (see Methods) dealing with all of the
abovementioned concerns. Validation of this method on rodent data (see Supplementary material, section C) indicates the high
applicability and suitability of this method to a clinical MRI setup. It must be noted that the accurate, exact, and absolute
calculation of the axon diameter is most likely unachievable, yet we claim that AxSI provides the best proxy of axon diameter
information for the reasons listed above. We demonstrate the outcome of this generalized framework for the estimation of
axon diameter properties of several �ber systems in the human brain, including but not restricted to the corpus callosum. We
further show the utility of using AxSI for estimating ADD over a large database of diffusion MRI measurements serving as a
reference base for future studies on conduction velocity and brain function and behavior.

AxSI Modeling Framework:
In this paper we suggest a framework for estimating axonal diameter distributions, per extracted �ber streamline, called axonal
spectrum imaging (AxSI). AxSI uses several experimental considerations that simplify both acquisition and modeling
algorithms on one hand and over�tting by many free parameters on the other hand.

AxSI follows the same general description of AxCaliber (and other frameworks) that suggest that the measured signal is a
linear combination of three water pools [37, 38]: CSF water, hindered diffusion (cellular and extracellular) and restricted
diffusion (axonal). To simplify the modeling approach, �rst assumption of the model is that there is no exchange between
axonal and extra-axonal diffusion (despite experimental evidence that suggests exchange is apparent to some extent, see
supplementary material, section B). In addition, we assume that; free diffusion occurs within the CSF compartment (described
as Gaussian diffusion), hindered diffusion (described as diffusion tensor) occurs within the extra-axonal compartment, and
restricted diffusion occurs within the intra-axonal compartment (further described by motion within impermeable cylinders,
[38]) (Eq. 1). This is the second assumption of the model, although it is plausible that restricted diffusion also occurs to some
extent in the extra-axonal space.

 [1]

Where:

 is the observed signal decay (Δ is the diffusion time, and  is the diffusion weighting)

 and  represent the volume factions and signal decays of the three compartments (respectively): free diffusion (f),
hindered diffusion (h), and restricted diffusion (noted by r).

In AxSI, common diffusion indices (e.g. mean diffusivity in the hindered space) as well as �ber orientations are estimated
separately by conventional procedures [39]. As such, the modeling of  and  is done separately and taken as priors
(predictors) for compartment population estimations (see library-based analysis below). Yet, the most complicated and
controversial modeling of any axon diameter estimation framework is the restricted diffusion component, which is presumed to
represent intra-axonal water. AxSI takes advantage of the in-vivo insensitivity of the measured signal to the gradient pulse
duration ( ), which is a key factor in modeling strategy decisions (see supplementary material, sections B and C). This
insensitivity allows to use a simple relation between the measured signal and the axon diameter developed previously for
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certain experimental conditions [40]. As the in-vivo measured signal is insensitive to the experimental conditions (  ; vide
infra), the use of Eq. 2 to describe diffusion within impermeable cylinders as a proxy to axons appears adequate and feasible:

 [2]

Where:

 is the diffusion weighting factor that incorporates the gradient strength and gradient duration ( )

 is the axon diameter

The simpli�cation of the relation between the measured signal and the axon diameter (Eq. 2) dramatically eases the
implementation of the framework for axon diameter estimation. Yet, the novelty of AxSI is the estimation of the axonal
diameter distribution (ADD) using a linear �t of the measured signal to a set of predictors (library) that simulate, per pixel, the
diffusion MRI signal for a series of predetermined axon diameters that cover the range of possible CNS axon diameter values.
This axonal spectrum diffusion MRI signal library, which also includes the  and  estimation, is �tted to the measured
signal to estimate the relative weight or contribution of each axonal predictor to the measured signal as well as the population
fractions of the hindered and CSF components.

Critical to the suggested �tting routine is a regularization term (in our case Tikhonov approach) that ensures �tting
optimization to a smooth axon distribution function, overcoming the possible over�tting to the noisy and limited number of
measured signals as given in Eq. 3:

 [3]

Where  are the weights for each predictor.

In this case, we can estimate directly  using constrained Tikhonov regularization. Once the weights of different diffusion
components are computed (in our implementation there are 160 axon diameters), we can compute several maps including
axonal volume fraction, mean axon diameter as well as extra-axonal diffusivity. Using conventional �ber tracking, we can
compute, per reconstructed streamline, the averaged axon diameter along a path and demonstrate variations in axonal
populations across different fascicles (see Methods).

AxSI analysis script is available at: https://github.com/HilaGast/AxSI.git

Results

Axon Diameter Weighted Connectome and Fiber Maps
Using the AxSI framework, we were able to generate three-dimensional brain �ber representations (see Methods) that embed
axon diameter information to the extracted �ber tracts.

Figure 1A presents an example of a single subject whole brain representation of streamlines weighted by the average ADD
along each streamline. From this representation, network matrices with edges weighted by the average ADD or the number of
streamlines was calculated (Fig. 1B and 1C, respectively). Notably is the difference between the streamlines and ADD weighted
connectomes (Figs. 1B-C) highlighting different aspects of network properties.

Such maps can visualize and quantify known trends in axon diameter distribution in the brain (e.g., the corpus callosum [41])
and other representations that are less commonly described in the literature. In Fig. 2A a representation of the ADD in the CC of
a single subject is demonstrated. A violin plot shows the known trend of smaller ADD values in the Genu and Splenium and
larger for the Body parts of the CC, using the AxSI framework, for three different diffusion protocols (Fig. 2E, see details in
Methods). Repeated-measures ANOVA resulted in signi�cant differences between different parts of the CC for all three

δ, Δ

Eax(q, R) = E0e−q2R2

q q = γδg

R

Eh Ecsf

Er(b, Δ, R) = Σk
k=1πkE [Er( b, Δ, Rk )]

πk

πk



Page 5/17

protocols: Δ/δ = 43.1/10.6ms; F(4,68) = 19.9, p = 6.7X10− 11, Δ/δ = 60/15.5ms; F(4,64) = 4.02, p = 5.7X10− 3, Δ/δ = 45/15ms;

F(4,128) = 15.43, p = 2.5X10− 10.

Other tracts also demonstrated patterns and variability in ADD. In Fig. 2A-D, different streamlines are colored according to their
estimated mean axon diameter (eMAD), where hot color-scale is used to visualize the different axon diameter (red represents
larger axons). It is possible to observe that CST in the middle of CR is salient by its larger axons compared to its surroundings
(Fig. 2B) (shown previously in [42]). Moreover, both the SLF and IFOF seem to have several sub-bundles, distinguished from
each other by their ADD (Fig. 2C-D).

Axon Diameter Weighted Cortical Surface Representation
A group analysis with AxSI framework on HCP subjects (see Methods), was done to create an axon diameter weighted surface
representation. In Fig. 3, each cortical area from the Brainnetome Atlas is weighted by the average value of eMAD of all
streamlines entering/exiting it and averaged again for the entire group. It is easy to notice that each brain region is
characterized by different axon sizes that connect it to other parts of the brain. Darker colors (darker red) in the �gure, represent
larger axons.

Averaged Axon Diameter White Matter Reference Map
Finally, we created an average axon diameter WM map, using the group of HCP subjects (see Methods). The maps, created
using the AxSI framework, were then registered to MNI space to enable averaging across subjects. The resulting map
represents the distribution of estimated axon diameter in the white matter of the healthy human brain young adult. Figure 4
shows highlight slices from this WM atlas (entire dataset is given in Supplementary Fig. S4). For example, in the mid sagittal
slice (upper left), the known pattern of ADD in the CC is demonstrated. In a sagittal slice of the left hemisphere (lower left), the
CST is salient in red, for having larger axons, as expected. Interesting to note in the axial slice (upper right) the difference in
estimated MAD between the anterior and superior limb of the thalamic radiation. Another pattern worth mentioning appears in
the WM of the temporal lobe in the coronal slice (lower right). It demonstrates several different bundles, that differ in their
eMAD, with blue-purple that represent lower values, for the Fornix (Fimbria)/Stria terminalis, green-yellow represent larger
values in the ILF (Inferior Longitudinal Fasciculus) and yellow-orange spot for the IFOF with the largest estimated MAD in this
section.

Discussion
The axon diameter is one of several important measures of the nervous system that provide unique insight into the physiology
of information transfer in the brain. While traditionally axonal morphometry could have been measured only by invasive
histological procedures, the suggested framework in this paper, AxSI, offers a platform for estimating axonal properties in-vivo
and non-invasively. Over the last decade it has been repeatedly shown that diffusion imaging is sensitive to axonal size. While
the magnitude of this sensitivity is still under debate, it is agreed that certain experimental conditions may favor this unique
axonal characterization. Despite the discussion on how to increase the sensitivity of diffusion imaging to axonal properties, the
information embedded in axon diameter estimation using MRI is unequivocal.

However, the ability of AxSI to infer axonal properties relies on several assumptions and modeling approaches that must be
well understood before using this method routinely. First, as in any model, the obtained parameters are only estimated and not
directly measured. The word ‘estimated’ should be further emphasized, as MRI cannot reach the resolution level that allows
visualization of axons, but it infers their existence and size based on the characteristics of water diffusion. As described above,
water diffusion in neural matter is a complicated process that occurs in several compartments that may share similar diffusion
characteristics (diffusion coe�cient, hindrance to diffusion, etc.), therefore the biophysical modeling of axon diameter is
challenging and may be considered ill-posed. In addition, while validation of AxCaliber/AxSI against the traditional electron
microscopy direct measure of axon diameter has been performed, true validation of this measure in-vivo is obviously out of
reach. Yet, previous studies have shown that the estimated axon diameters using AxCaliber �t the expected axonal size
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variability along the corpus callosum, indicating the sensitivity of this method to known variability [8, 23, 24, 43, 44]. Moreover,
correlation with physiological measures, such as conduction velocity, also suggest that this measure of axonal diameter is as
physiologically relevant as the traditional electron microscopy measures [7]. Those validations suggest that large population
studies are essential to explore new features of brain structure/function relations with AxSI.

Since the �rst demonstration that diffusion MRI is sensitive to axon diameter over 15 years ago [9], signi�cant limitations and
concerns regarding the method have been raised. Additionally, the complicated and somewhat ill-posed modeling framework
reduced the applicability of the method to the neuroscienti�c community. As there are only a few in-vivo markers of brain
microstructure properties that have direct physiological meaning, the concerns and obstacles of estimating axonal diameter
from MRI should be untangled.

Many papers have dealt with the possible effects of exchange, compartmentalization, and experimental conditions (gradient
strength, duration) on the parameters computed from the various frameworks for axon diameter measurement [19, 29, 30, 35,
36, 45–47]. As shown in the supplementary material (section A, B and C), while these effects are meaningful, they cannot
completely diminish the observed sensitivity to axon diameter (Fig. S1-3). Taking advantage of some experimental conditions
can even favor axon diameter over other factors. As such, the experimental conditions described above provide a diffusion MRI
signal that has good speci�city and sensitivity to axon diameter.

This experimental optimization still requires a robust and simple modeling framework to increase its applicability and impact.
In recent years, the use of machine learning procedures to predict and explain measured signals has become more feasible
providing new approaches to estimate free parameters of a model from noisy, sub-sampled data [48–50]. AxSI follows this
concept and estimates, per pixel, a set of possible signals that represent different axon diameters. Instead of optimizing the
axon diameter directly, AxSI regresses the axon diameter dependent signal library to �nd the best combination of all possible
predictors that explains the measured signal while maintaining smooth weighting distribution function over all possible axon
diameters. This approach dramatically simpli�es the modeling routine and provides a more robust and stable axon diameter
estimation approach.

It should be noted that AxSI, as any other MRI based axon diameter framework, does not directly measure the axon diameter.
Rather, it provides a proxy to the diameter via indirect modeling of the diffusion MRI signal. This should not weaken the impact
or use of the methodology, since most MRI frameworks suffer from the same indirect interpretation problem: functional MRI
does not directly measure brain function but rather susceptibility changes following hemodynamic response to brain activity
[3], myelin mapping [51] doesn’t measure myelin but rather relaxometry manifestations of myelination, diffusion MRI doesn’t
measure diffusion but rather displacement (39). Following this jargon, AxSI provides a proxy of the axon diameter, and its
extracted indices should be indicated as eMAD or estimated axon diameter distribution (eADD).

In this paper we use AxSI to estimate the MAD and combined it with �ber tracking to visualize tract-speci�c axonal properties.
Each tract shown in Fig. 1–2, was colored according to the mean MAD of the pixels that contribute to the tract (see Methods).
Using this visualization procedure, some known neuroanatomical features of axon fascicles become apparent, consequently
increasing the validity and impact of the method. For example, the ability to visualize the pattern of axon diameter changes
along the corpus callosum (Fig. 2A), highlighting the high MAD in the body of the CC while smaller values in the splenium and
genu region, became the hallmark of axon diameter validation [41]. Moreover, the higher MAD values in the cortico-spinal tract
compared to other segments of the corona radiata indicate the fast transmission of signal along the motor pathways
compared to other fascicles. Noteworthy is the small axon diameter measured at the frontal/temporal transition zone, where
the uncinate and inferior fronto-occipital fascicle passes to the frontal lobe, that is in agreement with histological �ndings [52].

Comparison of AxSI results with histology is limited. First, there is a very limited number of studies measuring axon diameter
properties of different fascicles in the human brain [41, 52, 53]. Second, the shrinkage of the tissue in histological preparation
underestimates the real axon diameter and probably reduces the variability across fascicles considerably. This stands in
contrast to AxSI (and previous methods) that overestimates the axon diameter values. Yet, the above-mentioned observations
and comparisons with histology provide su�cient validation to AxSI, thus enabling it to explore other uncharted variations in
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axonal properties of different tracts. For example, the two massive long-range connections in the human brain: the inferior
fronto-occipital fasciculus (IFOF) and superior longitudinal fasciculus (SLF) appear to have sub segments with different axon
diameter properties (see Fig. 2C-D). At least for the SLF, these segments resemble that anatomical separation of the SLF into 3
segments. Still, the relevance of these observations should be tested in future studies that will try to relate reaction time or other
behavioral aspects that should be related to these �ber-systems across a large population cohort.

The surface presentation of AxSI indicates a unique view of the cortex colored by the eMAD of �bers that project to it. It
appears that large �ber fascicles project more frequently to somatosensory and motor areas, as well as to visual and auditory
cortices, while lower axon diameter projects to more frontal and anterior temporal regions, probably indicating slower
transmission of information to these regions. Such presentation could be the base for connectome analysis integrating axon
diameter properties as weights to the edge strength (Fig. 1B). This might provide a more physiological interpretation of the
connectome, rather than more spurious measurements such as number of streamline or mean FA [54, 55].

Lastly, we have computed AxSI on 324 random subjects from the HCP database. From these datasets, we were able to create a
mean eMAD map in MNI space, providing a reference quantitative map for future studies (see supplementary material Fig. S5).
This map allows to explore anatomically the eMAD property of different areas in the WM of the human brain (computed eMAD
map is available at: https://github.com/HilaGast/AxSI.git). Moreover, it might provide the basis of an eMAD-based WM atlas.
Such an atlas would de�ne different WM anatomical areas based on their microstructural physiology.

While AxSI framework coped with most concerns that were raised over the years, it is still not free from limitations. Aside from
conventional MRI limitations that includes signal to noise and resolution issues that need to be su�cient to achieve accurate
eMAD modeling there are additional, more speci�c to the method, limitations. To achieve high sensitivity towards axon
diameter it is required to increase the relative weighting of restricted diffusion water populations [8, 9, 24, 28, 56]. Yet, the ability
of a diffusion MRI experiment to be sensitive and accurate to restricted diffusion that occurs in a 5 micron and 0.5 micron axon
simultaneously depends, in theory, on the experimental conditions [19, 24]. To be sensitive to small-diameter axons there is a
need to apply extremely strong diffusion weighting (high-b values) that is achieved by using the shortest possible period of
diffusion tagging (termed δ in diffusion MRI pulse sequence) and high amplitude of diffusion gradients (g). There is no magic
number for this sensitivity, some simulations suggest that axons with diameter smaller than 5 microns will be
indistinguishable, while others indicate 2 microns as the minimum barrier depending on the experimental conditions [28, 36,
57].

The concerns that have been raised over the years regarding the use of diffusion MRI for measuring or estimating axon
diameter properties are indeed troubling and hold back the potential uses of this method in neuroscience. All the concerns
raised previously (summarized in the introduction and supplementary material) are a result of modeling and simulations and
thus, as long as the mathematical description of the diffusion signal is correct, these concerns are valid [45]. However, diffusion
MRI is a complicated method to be modeled: First, it measures a stochastic phenomenon; the random motion of water
molecules, even for the case of water diffusion within a glass requires several assumptions [58]. Second, the effects of
membranes as restrictive or semi-permeable barriers are unknown and hence can only be speculated [59–61]. Third, the ground
truth for any axon diameter estimation is histology which may considerably differ from in-vivo conditions [62]. This complexity
cannot be resolved by including all possible water pools, biophysical properties (e.g., exchange), and experimental conditions.

Yet, despite the validity and signi�cance of the limitations, none of them, to our understanding, can overrule the sensitivity of
diffusion MRI, at speci�c experimental conditions, to axonal morphometry.

Summary
The rationale for developing the AxSI framework was to provide the neuroscience community with tools to estimate this
property in-vivo. Modeling conduction velocity and information transfer are one of the holy grails of neuroscience and AxSI
provides a robust and simple platform to achieve that. The new opportunity to explore the �ne morphometry of axons and
neural processes provides the ability to investigate brain anatomy in-vivo over large population cohorts which may reveal, for
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the �rst time, the role of axons in various conditions. As a result, the role of axons and axonal size in disease may be
determined and studied in depth. It is reasonably hypothesized that axonal morphometry can serve as a mirror for normal brain
development and may provide the neuroscientist, the neurologist, or neuropsychiatrist with better tools to explore brain
physiology.

Materials And Methods

Data
60 human subjects were healthy adults scanned as part of the Tel Aviv University (TAU) Strauss Neuroplasticity Brain Bank,
and the imaging protocol included additional sequences that were not used in this study. They were scanned using either
diffusion protocol 1 (23 subjects: 12 females, age 19–46 years, mean 26.8) or diffusion protocol 2 (37 subjects: 19 females,
age 20–73 years, mean 29.7), see details below.

This data was used for axon diameter distribution (ADD) demonstration in speci�c tracts as well as for estimating the diffusion
protocol effect on ADD values along the corpus callosum (CC).

Subject were scanned on a 3T Magnetom Siemens Prisma (Siemens, Erlangen, Germany) scanner with a 64-channel RF coil
and a gradient system reaching 80mT/m. The scans include the following sequences:

1. A multi-shell diffusion-weighted imaging (DWI) sequence, with the parameters detailed in Table 1 (two protocol versions).

2. An MPRAGE sequence, with the parameters detailed in Table 2.

Table 1
Experimental parameters for diffusion scans.

Protocol TR/TE
[ms]

Bval [s/mm2] #Dir maxG
[G/cm]

Δ/δ
[ms]

#Voxels Resolution
[mm3]

1 5200/118 0, 250, 1000, 3000 &
5000

88 7.2 60/15.5 120x120x90 1.7x1.7x1.7

2 3500/94 0, 1000, 2000 & 4000 186 7.9 45/15 128x128x88 1.6x1.6x1.6

 
Table 2

Experimental parameters for MPRAGE scans.
TR/TE [ms] TI [ms] #Voxels Resolution [mm3]

2400/2.78 1000 224x224x160 1x1x1

 
For group analysis of ADD, we used scans from the HCP database. We used multi-shell DWI scans and high quality T1w
structural images data for randomly selected healthy adults (324 subjects: 180 females, age 22–37, mean 28.9) from HCP
1200 young adults release [63]. A subset (22 subjects: 13 females, age 22–35 years, mean 28.9) was used for analysis of the
diffusion protocol effect on ADD values along the CC. Full protocol details available in the HCP reference manual
(https://www.humanconnectome.org/storage/app/media/documentation/s1200/HCP_S1200_Release_Reference_Manual.pdf)

All experiments were performed in accordance with the Declaration of Helsinki. The imaging protocol was approved by the
institutional review boards of Sheba Medical Centers and Tel Aviv University, where the MRI investigations were performed. All
subjects provided signed informed consent before enrollment in the study.

Preprocessing
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The TAU Brain Bank scans preprocessing pipeline includes top-up and eddy corrections, as well as registration of MPRAGE to
diffusion image using the Functional MRI of the Brain (FMRIB) linear image registration tool [64, 65]. The HCP provides
minimally preprocessed images [66]. This preprocessing pipeline includes intensity normalization across runs, top-up and eddy
corrections, gradient nonlinear correction, and registration of MPRAGE to diffusion image using the Functional MRI of the Brain
(FMRIB) linear image registration tool boundary-based registration. The full pipeline is available online
(https://github.com/Washington-University/Pipelines). Furthermore, all HCP scans were registered to MNI space for group
analysis of the ADD maps, using the FMRIB non-linear image registration tool [67].

Diffusion-based tractography
The Fiber tracking analysis for TAU Brain Bank scans was conducted using a pipeline of multi-shell multi-tissue CSD
reconstruction with Continuous Map Criterion (CMC) stopping criterion that accounts for partial volumes, based on the DiPy
Library [68]. The Fiber tracking analysis for HCP scans was conducted using the Mrtrix3 software package [69], which uses a
multi-tissue spherical convolution model that accounts for partial volumes [70].

Weighting streamlines
The AxSI framework resulted in a 3D image, while the value in each voxel represents the eMAD resulting from the analysis.
After reconstructing streamlines from the entire brain, each streamline was weighted by the average eMAD value of all the
voxels it passed through.

Network matrices
Based on AxSI analysis results and whole brain tractography, we calculated the weighted network matrices of each subject,
while the nodes were de�ned as the Brainnetome Atlas areas [71], which was built upon a connectivity-based parcellation
framework. The edges were weighted as the average of ADD of all streamlines connected two brain areas, after a non-linear
registration of the atlas to the subject’s diffusion scan space.

Fascicle extraction
CC bundles were extracted using a 2D midsagittal CC mask for each subject. The masks were created using automatic region-
of-interest selection based on FA map intensity and then manually checked and corrected based on the T1 scans where
necessary. We then �ltered the full brain tracts to only include tracts passing through the corpus callosum mask. The extraction
of Corona Radiata (CR), Inferior Fronto-Occipital Fasciculus (IFOF), and Superior Longitudinal Fasciculus (SLF) tracts, has been
conducted manually, using ROI masks, for a single subject from the TAU Brain Bank for demonstration.

Surface representations of average ADD
Network matrices weighted by the average ADD were calculated as described above. We then calculated the mean weight of
each edge over the entire group of HCP subjects (excluding zeros from calculation) to create a weighted network matrix of the
group. We used Median Absolute Deviation (MAD) outlier detection for each edge, in order to exclude extreme values [72].

The group matrix was used to calculate the average ADD arriving at each node in the average weighted network. In the surface
representation of the mean ADD weighted brain areas, each area value is a representation of the mean value of ADD of
streamlines arriving at it in the averaged network.

Average ADD maps
To create the average ADD WM maps, we �rst created an ADD WM map for each subject, by calculating the average of ADD
values of all streamlines that pass through each voxel. We then registered all maps to MNI space, as described in the
preprocessing section. Finally, we calculated the average value for each voxel and masked the resulting map using a WM mask
of the MNI template brain. Values of ADD < 0.3um were excluded from calculation to reduce the noise derived from very small
ADD related signal.

Statistics
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The AxSI analysis values were used to compare between the estimated ADD of each CC section for three different scan
protocols. Repeated-measures ANOVA was used for comparisons between the �ve callosal sections which were segmented
according to Witelson’s parcellation [73].
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Figures

Figure 1

ADD weighted Connectome. (A) Whole brain tractography of a single subject, weighted by the average ADD. (B) Network matrix
representation of the same subject, weighted by the average ADD of streamlines that connect each pair of brain regions. (C)
Network matrix representation of the same subject, weighted by the number of streamlines that connect each pair of brain
regions.
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Figure 2

EMAD values resulting from AxSI analysis. (A-D) Visual representations of the eMAD distribution in the CC (A), CR (B), IFOF (C)
& SLF (D) bundles from AxSI analysis of a single human subject. Different colors represent different estimations of ADD (in
μm, see colorbars). (E) Violin plots for the estimated axon diameter in different parts of the CC, for three different protocols (see
Methods). White point represents the median value, mini-box for quartiles and the violin is a kernel density estimation of the
underlying distribution
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Figure 3

Axon diameter weighted cortical surface representation. The �gure shows the average eMAD value of all streamlines connected
to each brain region from the Brainnetome Atlas, from four different points of view. Darker color (redder) represents higher
values (in μm, see colorbar). 
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Figure 4

Average axon diameter WM reference map. Highlight slices from the resulting map demonstrate interesting characteristics of
axon diameter distribution in the WM as resulted from a group analysis of HCP data. Colors represent voxel-based averaging
eMAD for subjects’ maps after registration to MNI space (in μm, see colorbar).
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