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Abstract 10 

Metal 3D printing has gained a lot of attention among industries since it offers a practical solution to 11 

problems rising during manufacturing of parts and components with complex geometry. This is an additive 12 

technology that eliminated several fabrication steps and at the same time reduces material waste during 13 

manufacturing process. However, in all additive manufacturing technologies, the final properties of the 14 

parts are determined by the operational process parameters. In this study, several machine learning 15 

algorithms were examined to characterize the effects of the printing process parameters on relative density, 16 

hardness, yield strength, and tensile strength in manufactured parts. It was possible by using “Big Data” 17 

collected from a large number of previously published articles on application of Laser Powder Bed Fusion 18 

(LPBF) for 3D printing of 316L stainless steel samples. Among different process parameters, laser power, 19 

laser energy density, and scanning speed were proven to have the largest effects directly on physical and 20 

mechanical properties of LPBF processed parts. Six different classification models and five support vector 21 

machine regression-based models were tested to find the most accurate prediction algorithm. To validate 22 

the obtained results from the applied machine learning models, a set of 316L specimens were produced 23 

using LPBF technology using a random set of process parameters.  The physical and mechanical properties 24 

of 3D printed samples were tested and compared to the ones those predicted from the optimum models from 25 

machine learning analysis. The results were in great agreement, which shows the high accuracy of the 26 

developed machine learning algorithms in this study.  27 
 28 

Keywords: Process parameters optimization; laser powder bed fusion; Machine learning algorithm; 29 

Mechanical properties; Microstructural characterization.  30 

 31 

1. INTRODUCTION  32 

Metal Additive manufacturing (AM) technology has found its place as a reliable production technology in 33 

various industries, such as automotive, aerospace, and biomedical. It significantly reduces required 34 

production steps as needed in conventional technologies for manufacturing metallic parts and components 35 

[1-4]. It is a highly efficient method for fabrication of complex metal parts in a single step that requires less 36 

materials due to the possibility of recycling and reuse of waste metal powders and minimizing of scraps 37 

[5]. Conventional casting and other mechanical processing techniques require to undergo several stages of 38 
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processing and the final products are usually needed to undergo a post processing step to be at desired 39 

geometry and properties [1]. However, AM technology is capable of near – net – shape fabrication of parts 40 

with elimination of extra processing stages. In many cases, there is no need for further post processing to 41 

enhance properties of the final products [2]. The capability of manufacturing components with complex 42 

geometry and rapid prototyping are among other advantages of AM technology. The flexibility of AM 43 

technology enables production of fully dense metallic parts and components with high quality [6-7].  Thus, 44 

AM technology is considered as one of the promising methods for manufacturing of small to medium metal 45 

objects with complex shapes and geometries [1-4].   46 

 47 

Currently, there are two concepts of AM technology mainly used for commercial production of metals or 48 

metal alloys, which are powder bed fusion, and directed energy deposition processes [1]. While both of 49 

these technologies and their subcategories have their own uniqueness and applicability, selective laser 50 

melting (SLM), a Laser Powder Bed fusion (LPBF)-based technology, is among the commonly used 51 

technologies due to its high dimensional tolerance, high accuracy, good surface condition (roughness), and 52 

larger choices for feedstock materials [1, 8, 9]. LPBF uses high power laser beam to make complicated 53 

metal components by selectively fusing and consolidating the few-micron-thick powder layer [1-2]. After 54 

the rapid cooling of the melted layer, another thin layer of powder is spread over it and this process 55 

continues until the part is built [3-4].   56 

 57 

AM technology is widely used to manufacture parts from aluminum, titanium, CoCr alloys, Fe- based 58 

alloys, Ni based alloys, tungsten, gold, and silver [10, 11]. Among these metals, stainless steel 316L is 59 

frequently applied in the biomedical, nuclear, aerospace, aeronautics, automobile, petrochemical, gas, and 60 

marine industries and is versatile due to its high corrosion resistance, oxidation resistance, strength, 61 

toughness, biocompatibility, excellent welding ability, favorable strength ductility synergy, fatigue 62 

resistance, and availability [12-18]. Achieving acceptable density and microstructure by AM for several 63 

alloys are still a challenge. However, LPBF made 316L SS was reported to achieve significant success with 64 

near full density, reasonable tensile properties, and yield strength [13]. The reason for the superior 65 

mechanical properties was attributed to the unique hierarchically heterogeneous microstructure which 66 

comprises refined columnar grains, cellular dislocation tangles, and nano-inclusions [9, 18]. As a result, 67 

extensive amount of studies and experiments are being conducted on the LPBF made 316L SS samples.  68 

 69 

1.1.  Laser Powder Bed Fusion (LPBF) Process Parameters  70 

The final properties, such as mechanical, thermal, and electrical characteristics of the LPBF fabricated parts, 71 

significantly depend on operational processing parameters. There are several important LPBF processing 72 
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parameters such as laser power, scanning speed, hatching distance, powder size, hatching angle, etc. The 73 

poor choice of processing parameter can lead to the residual stresses in this alloy which can end up forming 74 

thermal cracks and thus lead to failure [1, 19, 20]. Besides, processing parameters also affects the 75 

microstructure, which leads to difference in mechanical behavior as well. Hence, optimization of the 76 

processing parameter is an important factor for achieving high mechanical properties for LPBF made 316L 77 

SS. Many studies have been done on the optimization of process parameter for LPBF processed material 78 

including 316L SS [5, 12, 14, 15, 16, 17, 21-34]. Multiple parameters are controlled during the AM process 79 

and some important ones are reviewed here. As we know parts are made layer by layer in AM technology 80 

and therefore, the thickness of each layer plays a key role on the building rate, cooling rate, mass transfer, 81 

and heat transfer properties. While increasing the (powder) layer thickness can decrease the manufacturing 82 

time, smaller layer thickness can produce denser parts with better dimensional accuracy. It is important to 83 

manufacture parts with required thickness to provide desired properties, geometry, and performance [35, 84 

36, 37].  85 

 86 

Laser power is another important processing parameters and has significant impact on the microstructure, 87 

mechanical, and physical properties. The average grain size was found to be increased from 25 to 65 µm 88 

with the increase of laser power from 120 W to 220 W [12]. When the laser power is increased from 129 89 

W to 189 W, yield strength was increased from 265 MPa to 524 MPa and ultimate tensile strength was 90 

reported to be increased from 280 MPa to 647 MPa [38].  The unmelted powder in the voids of the metal 91 

produced at lower laser power is the reason for the inferior mechanical properties [12, 38]. Increasing laser 92 

power leads to a complete melting of powder which leads to denser product at the end. Thus, the mechanical 93 

properties are usually superior at higher laser power [38]. When parts are being manufactured with the 94 

LPBF method, the laser beam is shifted from one scanning strip to the subsequent ones in a two-dimensional 95 

plane for selective melting. The distance between the center of the two subsequent stripes is called hatch 96 

spacing [1]. Hatch distance is also an important processing parameter, as the material property depends on 97 

this parameter. A relative density of 99.9 % and low average surface roughness of 2.68 µm can be achieved 98 

by an optimized hatch spacing of 100 µm [39].  At the maximum hatch distance of 70 µm the density and 99 

tensile property of LPBF made 316L SS was reported to be highest by Liverani et. al [34].   100 

 101 

Scan speed has also been found to have significant impact on the properties of the final product as well and 102 

it is defined as the speed at which the laser scans on the build plate. The tensile properties of Co-Cr-W was 103 

reported to increase until they reach the peak at 700 mm/s, and then start to decrease with the increase of 104 

scan speed [40]. At high and low scanning speed the various kind of defects such as unmelted particles and 105 
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porosity can be induced at each layer due to lack of fusion [1]. Thus, it is important to select the optimized 106 

scanning speed to achieve supreme mechanical property.  107 

 108 

Finally, laser energy density (LED) is the most influential parameter in the LPBF process, which depends 109 

on the laser power, scanning speed, layer thickness, and hatch distance according to equation (1) [25].  110 

 111 

 𝐿𝐸𝐷 = 𝐿𝑃 (𝑣 × 𝑡 × ℎ)⁄  (1) 
 112 

Where LED is laser energy density in J/mm3, LP is the laser power in W, v is the scanning speed in mm/s, 113 

t is layer thickness in mm, and h is the hatching distance in mm. The laser energy density alone plays a 114 

decisive role on the development of desired microstructure and optimum mechanical property during the 115 

LPBF process. Low energy density of 29.2 J/mm3 was reported to show discontinuous laser tracks and large 116 

irregular pores in the microstructure [16]. Similarly, at high laser energy density of 233.8 J/mm3; numerous 117 

pores and cracks were detected in the microstructure [16]. However, at an optimized laser energy density 118 

of 116.9 J/mm3 a smooth surface with relative density of 99% could be achieved [17]. The effect of the 119 

microstructure is reflected on the mechanical properties as reported by Cherry et al [26]. It is found that the 120 

lowest amount of porosity was detected at 104.52 J/mm3 among three laser energy density i.e. 41.81 J/ mm3, 121 

104.52 J/ mm3, and 209.03 J/mm3 [26]. Hence, the maximum hardness was measured for the material made 122 

at 104.52 J/mm3 as well [26].  123 

 124 

The application of a mathematical model using regression or a statistical analysis and mechanistic models 125 

to predict mechanical properties and performances of the AM processed parts is an emerging field of 126 

research in AM community [41]. One example of such application is possible by using Fourier heat 127 

conduction equation known as “Part scale heat conduction model”. It is applied in temperature fields of 128 

melt pool and fusion zone geometry to calculate cooling rates of 3D printed metals [41 --44]. Limitation of 129 

this model is that it does not consider the effect of molten metal flow inside the pool that severely reduces 130 

the accuracy of the calculated results.  Another suggested model known as “Part Scale Heat Transfer and 131 

Fluid Flow” represent more accurate temperature distribution and deposit geometry since it takes to the 132 

account the effects of molten metal flow inside the pool [45, 46]. Part scale volume of fluid is another 133 

known model for the calculation of molten pool geometrical calculation and temperature- velocity field 134 

which tracks the free surface of the molten pool [47, 48]. However, this model was found to have errors 135 

and disagrees with the experimental results in terms of deposit shape and size [47, 48].  136 

 137 
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Several models are established for the prediction of microstructure, nucleation, and grain growth. TTT-138 

based models (TTT diagrams provide the effects of time and temperature on microstructure development 139 

of an alloy at constant temperature), continuous cooling transformation-based models, Johnson- Mehl- 140 

Avrami models, Monte Carlo method, cellular automata, and phase field model are example of such models, 141 

which deal with the prediction of microstructure, nucleation, and grain growth [49-56]. There is finite 142 

element analysis-based model as well for the calculation of residual stresses and distortion [57, 58]. 143 

Although these mechanistic models are effective simulation tools to get insight of the AM processed parts, 144 

they all have some limitations in prediction of properties with high accuracy. The main challenge of these 145 

models is addressing the full extent of the process and parts in a mathematical format. This challenge is 146 

usually undertaken by considering the most important physical process and ignoring the least important 147 

ones. As a result, the models lack accuracy. In addition, these mechanistic models need an extensive amount 148 

of understanding of underlying physical mechanisms, significant computational resources, and they are 149 

complex.  150 

 151 

1.2.  Machine Learning Concept 152 

Machine Learning has recently gained a lot of attention as a modelling tool for clustering, classification, 153 

prediction, and pattern recognition of large data sets in various domains of science and technology [59, 60]. 154 

Machine learning comes into play when a known mathematical derivative or formula, such as fit and 155 

regression models, fail to provide accurate results. In this method, a large data set is used as variables for 156 

several numerical predictors to extract outcomes as categorical and numerical response variables. There are 157 

mainly two dominant methods of machine learning, which are known as supervised and unsupervised 158 

learning approaches. These methods are built based on different algorithms, such as k-means, k-nearest 159 

neighbors, dendrogram, linear discriminants, support vector machines (SVM), classification trees, Naïve 160 

Bayes, AdaBoost (Ensemble Learning and Boosting), etc. [60]. Each of these algorithms work with high 161 

accuracy in specific condition and none of them is considered as a global solution, which can be used in all 162 

cases for application of machine learning [60].  163 

 164 

As opposed to the mechanistic models, machine learning requires less mathematical formulations and 165 

models to build a model that predicts or classifies data. The machine learning can employ results from a 166 

large number of data (Big Data) and combine the effects in a logical manner to establish a relationship 167 

between input data and response (output). It has several advantages over the classical statistics and simple 168 

regression models when the accurate prediction of the responses is the main focus and when dealing with 169 

unwieldy data [61]. Machine learning uses minimal assumption and is fairly effective even when dealing 170 

with data from uncontrolled experimental design and having complicated nonlinear interactions [61]. In 171 
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addition, machine learning is capable of taking up various features as predictor variables and solving several 172 

problems of mechanistic models simultaneously; for instance, to simulate temperature, velocity fields, 173 

cooling rates, and solidification, and it does not require complex mathematical formulations to model and 174 

predict the response variables in AM processed metallic parts [41]. By application of machine learning 175 

algorithm models, it is not only possible to explain the evolution of the microstructure, defects, and 176 

properties of AM parts due to the chosen process parameters and the thermophysical properties of the 177 

feedstock material but also to predict the final properties of the processed AM parts [41].  178 

 179 

Therefore, the applications of machine learning algorithms could be an alternative solution to the problem 180 

of the optimization of the process parameter in AM. In recent years, machine learning tools have been 181 

applied in many engineering optimization and prediction problems. There are many studies where machine 182 

learning algorithms were found to be very efficient and highly accurate in classification, clustering, and 183 

predicting the response variables [41, 59-61]. Several studies have been performed to utilize machine 184 

learning in correlating process parameters of additively manufactured parts with their quality, and 185 

consequently prediction of the performance of 3D printed metallic parts. 186 

 187 

 Machine learning algorithm has been explored to optimize process parameters of AM technology to 188 

improve “on-site” and “layer-wise” control of the AM part. Silbernagel et al. used a machine learning 189 

algorithm to correlate the onsite images of scan tracks and images of copper test specimen made by “laser 190 

powder bed fusion” technology to its process parameters, and based on the correlation between the images 191 

and process parameters, the optimized process parameters were described [62]. Similarly, Caggiano et al. 192 

applied a machine learning model based on a bi-stream deep convolutional neural network (DCNN) to 193 

characterize layer-wise images of SLM processed Inconel 718 powder, and based on the characterization, 194 

defects were predicted by the machine learning algorithm [63]. The developed machine learning model was 195 

able to detect the defects in SLM layers with accuracy as high as 99.4% [63]. In addition, machine learning 196 

based algorithms have been used for the development of process map for AM processes. For example, 197 

Aoyagi et al. used a support vector machine learning approach to develop a process map for predicting the 198 

effective process condition for a CoCr alloy made by an electron beam powder bed fusion process [64]. 199 

They reported that the process map they developed using the SVM was able to reduce the number of 200 

experiments necessary to achieve an optimized process condition [64]. 201 

 202 

Compositional grading has been characterized with respect to process parameters using machine learning 203 

algorithm, as well. Rankouhi et al. applied machine learning to determine the process parameters for 204 

compositional grading of 316L-Cu multi-material, and their model provided insight about the underlying 205 
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mechanism behind the nonlinear behavior between process parameters and material composition [65]. In 206 

addition, they reported that laser power and laser scanning velocity had the most influence on the part 207 

density and surface roughness using multivariate Gaussian process model with an averaged mean absolute 208 

prediction error of 1% for density prediction and 47.6% for surface roughness prediction [65]. Machine 209 

learning algorithms have also shown promise in optimizing surface characteristics and dimensional 210 

accuracy. Cao et al. proposed a data driven Kriging model to build a relationship between key process 211 

parameters and the surface roughness and the dimensional accuracy of the laser powder bed fusion 212 

processed 316L stainless steel [66]. Moreover, they used a whale optimization algorithm to obtain the 213 

optimal surface roughness and dimensional accuracy [66]. Another study on the optimization of surface 214 

texture was performed by Özel et al., using neural network-based machine learning methods for nickel 215 

alloy (625) material processed by LPBF. They tried to develop a predictive model and alsoestablish a 216 

relationship between LPBF process parameters, such as energy density, scan strategy, and the surface 217 

texture [67]. Khanzadeh et al. developed a porosity prediction model using supervised machine learning 218 

for AM parts, where a relationship between melt pool and microstructural characteristics  [68]. Barrionuevo 219 

et al. applied seven supervised machine learning regressors (support vector machine, decision tree, random 220 

forest, gradient boosting, Gaussian process, K-nearest neighbors, multi-layer perceptron) to predict the 221 

relative density of SLM processed 316L SS [69]. The multi-layer perceptron showed the best performance 222 

with 𝑅2 of 0.6050 and K-nearest neighbors exhibited the worst performance with 𝑅2 of 0.4851 [69]. In 223 

addition, Aboutaleb et al. applied multi-objective accelerated process optimization (m-APO) methodology 224 

to obtain maximum relative density and elongation-to-failure of SLM processed Ti-6Al-4V [70]. The 225 

application of proposed optimization process resulted in 51.8% reduction of experimental run times in 226 

contrast to an extended full factorial design of experimental algorithm [70]. 227 

 228 

Tensile properties of AM parts have also been predicted by machine learning algorithms. For example, 229 

Hertlein et al. utilized a Bayesian network to relate the process parameters such as laser power, scan speed, 230 

hatch spacing, and layer thickness with the part quality (density, hardness, top layer surface roughness, and 231 

ultimate tensile strength) of a SLM processed 316L SS [71].  In contrast to the final tensile properties of 232 

AM parts, Muhammad et al. focused on predicting the evolution of plastic deformation during tensile 233 

loading using machine learning [72]. Here, they proposed a machine learning based artificial neural network 234 

for predicting the evolution of local strain distribution, plastic anisotropy, and failure during tensile 235 

deformation of AlSi10Mg alloy processed by selective laser melting [72]. Some researchers have combined 236 

the machine learning algorithm with a conventional mathematical model to develop new optimization 237 

methodology. For example, Zhan et al. developed a new method by combining machine learning and 238 

continuum damage mechanics to predict the fatigue life of additively manufactured aerospace alloys [73]. 239 
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They observed that a random forest model predicted fatigue life for the AM SS316L, TiAl6V4, and 240 

AlSi10Mg samples better than an artificial neural network, and the MAE of random forest and artificial 241 

neural network models were respectively 0.242 and 0.537 [73]. Zhang et al. also predicted fatigue life using 242 

machine learning algorithm, and they applied neuro-fuzzy-based machine learning approach for developing 243 

a predictive model that was able to predict the high cycle fatigue life of laser powder bed fusion processed 244 

316L SS with an overall RMS error range from 11% to 16% across the datasets [74]. 245 

 246 

Although a wide range of studies are observed on the application of machine learning in additively 247 

manufactured metals, it seems that the studies that used process parameters to predict properties and 248 

performance of SLM processed 316L SS were not sufficiently efficient and accurate. In general, the 249 

majority of the researches in this area tried to develop a model to establish a relationship between the part 250 

characteristics, such as density, hardness, surface roughness, and tensile strength, with process parameters, 251 

such as laser power, scan speed, and hatch spacing. While there was significant improvement in establishing 252 

such relationship but the results from the application of the machine learning approach were not highly 253 

successful. One of the reasons behind the model’s low accuracy was attributed to both the possibility of the 254 

non- manufacturability of the data set and the n-dimensional convex hull, which has a low prediction 255 

accuracy for the input variables outside the convex hull. In another optimization study based on machine 256 

learning approach, the algorithm was based on a theoretical foundation that related the microstructural 257 

features to the solidification mechanism and it was obvious that prediction based on this model was only 258 

applied to ideal solidification condition.  The accuracy of some models was also under question due to the 259 

inconsistency in the use of the data for the optimization of the process parameters. Besides, none of the 260 

published literature on the application of machine learning algorithms on SLM processed 316L SS 261 

considered the optimization of yield strength using the process parameters. Moreover, to the best of the 262 

knowledge of the authors, there is no literature that explores extensively the validity of supervised and 263 

unsupervised learning algorithms with classification and regression machine learning routines to locate 264 

optimal values of ultimate tensile strength, yield strength, relative density, and hardness. To this end, this 265 

study is novel due to achievement of high accuracy in optimization of process parameters. The present 266 

study is also unique in terms of predicting the yield strength of SLM processed 316L SS in addition to the 267 

other properties.  268 

 269 

1.3. Aims and Scope  270 

As mentioned before, there is no available literature in machine learning algorithm applications to predict 271 

end mechanical properties of SLM printed 316L SS metal parts with high accuracy by proposing and 272 

comparing performances of supervised and unsupervised learning routines and models. There is no study 273 
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on predicting the yield strength of the SLM processed 316L SS using machine learning approach. This 274 

study used a new method to apply a few machine learning algorithms and models with optimized parameters 275 

using training and testing data to predict the end product properties with very high accuracy. The scope of 276 

this paper is to study applicability of the machine learning’s classification and regression algorithms, such 277 

as dendrogram, kNN, ensemble, and SVM with optimized hyper parameters, kernel functions, and k-fold 278 

validation options. Literature reviews on the effects of the processing parameters on the microstructural 279 

compositions and mechanical properties of LPBF processed metallic parts showed that the choice of 280 

optimum parameters is the most crucial step in any AM process.  Finding necessary process parameters 281 

leading to predefined (optimized) output material properties saves a significant amount of energy, 282 

manufacturing costs, and time.  283 

 284 

Against this backdrop, the current endeavor was to establish a more reasonable machine learning algorithm 285 

based on a reliable and large-scale data set for a broader range of material properties. The aim of the study 286 

was to develop a methodology for the unsupervised and supervised machine learning algorithms to classify 287 

and predict mechanical properties including yield strength of LPBF processed specimens in connection 288 

with the LPBF process parameters based on LPBF manufactured 316L SS data from published literature. 289 

Finally, the accuracy and validity of the proposed machine learning algorithms and models were 290 

experimentally validated by printing several 316L SS samples with a random set of the LPBF process 291 

parameter values. The physical and mechanical properties of the printed samples were experimentally 292 

measured and compared to those predicted by the developed machine learning algorithms and models. 293 

  294 

2. EXPERIMENTAL PROCEDURE FOR VALIDATION RUN 295 

The predictive methodology described in the next section (Section 3. machine learning) was verified using 296 

the real experimental data generated from the LPBF of 316L SS samples. A set of processing parameters 297 

that were close to those recommended by the manufacturer for 316L SS material was selected for the 298 

validation run in this study. The selected processing parameters are listed in Table 1. 299 

 300 

Table 1 Laser powder bed fusion (LPBF) operational process parameters. 301 

Processing Parameters Value 

Laser Power (W) 100 
Laser Energy Density (J / mm3) 59.59 
Scanning Speed (mm/s) 600 
Hatch Distance (µm) 85 
Layer thickness (µm) 32.9 

 302 
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316L stainless steel powder was used for the LPBF. The powder was manufactured using gas atomization 303 

and supplied by Trumpf (Germany) with a size range of 20- 40 μm. The powder was characterized by a 304 

Gaussian- like particle size distribution. The particle diameter distribution values D10, D50, and D90 are 305 

20.6 μm, 28.3 μm, and 39.5 μm, respectively [75]. 306 

2.1. LPBF Process 307 

The 3D printed specimens were produced at room temperature and relative humidity of 50 ~ 70 % using a 308 

TruPrint 1000 LMF (TRUMPF, GmbH, Germany) with 200 W TRUMPF fiber laser system, laser 309 

wavelength of 1070 nm, standard beam diameter of 55 μm, layer thickness of 10 – 50 μm, build rate of 2 – 310 

18 𝑐𝑚3 ℎ⁄ , standard minimum measurable oxygen level down to 3000 ppm, and the shielding gases 311 

Nitrogen and Argon.  The system was equipped with an integrated high- resolution camera and an automatic 312 

image processing function for optimal powder bed process monitoring, which gives the option to a constant 313 

overview of the state of the component and investigate the quality parameters layer by layer. Argon was 314 

used to prevent excessive oxidation during the printing process; simultaneously, the oxygen level was kept 315 

constant to increase the quality of the parts.  316 

 317 

The printing process started with filling the powder feed chamber, then the powder re-coater was used to 318 

coat the first layer of powder on the build plate (printing stage), and immediately after that the laser was 319 

applied to melt the powder layer selectively. Once the built plate is coated, the re-coater was used to dispose 320 

the excess powder into an overflow bin, then a new layer of powder was applied uniformly on the printed 321 

surface and the fabrication process continued for the new top powder layer until the part is completed. Three 322 

dog–bone shaped samples were separately printed with a gauge length cross-section of 3.1 mm × 5 mm and 323 

gauge length of 33.7 mm according to ASTM E8/E8M-11, as shown in Fig. 1(a) and Fig. 1(b) [76]. The 324 

alternating stripes laser scanning strategy has been conducted, where the scanning direction was changed 325 

90° from the previous layer after the completion of each layer, as shown in Fig. 1(c). All samples were 326 

printed in the building direction along the Z axis, as indicated in Fig. 1(d). 327 

 328 
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 329 

Fig. 1 (a) LPBF printed 3 dog-bone sample, (b) LPBF made sample with scale, (c) Schematic diagram of 330 

Printing Strategy by alternating scanning direction by 90, (d) Schematic diagram of build direction. 331 

 332 

A few studies [3, 22, 29,77, 78, 87] show that besides the process parameters, the specimen building 333 

direction, shield gas circulation speed, and oxygen content may influence the final mechanical properties 334 

of SLM processed specimens. In the present study, only vertically built (direction) specimens are 335 

considered. It was due to the fact that the most of the available data in literature sources that could be used 336 

in this study were from the vertically built specimens. Therefore, to be consistent with the available data to 337 

be used for developing machine learning algorithm and model validation, specimens were built vertically 338 

for experimental examinations in this study. 339 

   340 

2.2. Microstructure Analysis 341 

The metallography samples were ground, polished, and etched prior to the microscopic observation. The 342 

etching was done using a solution consisting of HNO3 (10 ml) and H2O (30 ml) for 60 seconds, as 343 

recommended by ASTM E407-07 (2015) [79]. Zeiss Axiovert 40 MAT Optical Microscope (Focus 344 

Precision Instruments, Victoria, MN) and JEOL JSM-6490LV Scanning Electron Microscope (SEM) 345 

(JEOL Peabody, MA, USA) were used for microstructural investigations. Grain size and melt pool were 346 
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measured using the linear intercept method according to ASTM E112-13 (2013) [80]. Density measurement 347 

was carried out using the hydrostatic balance principle according to ASTM B 311-17 [81].  348 

 349 

2.3. Vickers Indentation 350 

The hardness tests on the LPBF processed 316L SS samples were conducted using a Sun-Tec Hardness 351 

Testing machine under an applied load of 9.8 N for 12 seconds according to ASTM E E384-17 [82]. The 352 

measurements were performed in a plane parallel to the building direction (surface) as well as perpendicular 353 

to the building direction (cross section) of the LPBF printed 316L SS specimens. The results were obtained 354 

from the average of 10 indentations while maintaining a reasonable distance from each other to prevent 355 

work hardening effects.  356 

 357 

2.4. Tensile Test 358 

The uniaxial tensile tests were conducted using an Instron 8874 equipment that is a servo-hydraulic power 359 

drive machine equipped with a 250 kN load cell and a 20 Hz sampling frequency. The samples were printed 360 

with a dog bone shape according to the ASTM E8/E8M-11 where the gauge length of the sample was 33.7 361 

mm, the thickness was 3.1 mm, and the width was 5 mm [76]. Tensile tests were carried out with a loading 362 

perpendicular to the laser printing tracks on three LPBF processed samples with a cross head speed of 2.5 363 

mm/min. 364 

 365 

3.  MACHINE LEARNING 366 

3.1. Machine Learning Implementation Algorithm 367 

In the present study, we have tried several algorithms by providing input data (process parameters) and the 368 

output results (materials properties) were compared in terms of accuracy of predicted response variables.  369 

The machine learning method was implemented using a feedback loop system on six logically inter-linked 370 

steps, as shown in the flow-chart algorithm presented in Fig. 2.  371 

 372 

Step 1. Data Collection. Experimental data from reliable literature reported on characterization of LPBF 373 

processed 316L SS samples were collected in this step. Experimental data from reliable literatures were 374 

tabulated and analyzed for consistency before use in this study. It was tried to mainly use data from 375 

vertically built specimens to increase consistency of the results.  In conclusion, the experimental data from 376 

sixty-seven literature sources were taken into consideration for the present study. In addition, five process 377 

parameters, namely, laser power, laser energy density, scanning speed, hatching distance, and layer 378 

thickness were evaluated here. It is worth noting that machine type and material quality such as powder 379 

particle size and type can also influence on the final material properties. However, due to the limited 380 
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availability of acceptable data they could not be examined in this study. Before applying machine learning 381 

models, all collected data are sorted and any missing data points were eliminated from the data set. 382 

Subsequently, all response data outliers also were removed completely from the data sets.   383 

 384 

Step 2. Data Categorization. The collected data was sorted into two subsets: a) a numerical display format 385 

of input data predictors consisting of process parameters such as laser power, laser density, scanning speed, 386 

and hatching distance and b) output responses consisting of hardness, yield strength, ultimate tensile 387 

strength, and relative density. 388 

 389 

Step 3. Data Division. The collected data was split into two sub-groups of model training data and model 390 

testing data (model validation data) using a uniform random data selection function. 391 

 392 

Step 4. Model Selection and Implementation. In this step, the model type, machine learning algorithm, and 393 

its initial parameters were selected. 394 

 395 

Step 5. Simulation. The selected machine learning algorithm with selected parameters was simulated with 396 

the training data set, and its performance was assessed, and its response prediction accuracy monitored, 397 

taking into account its missed/misclassified responses. This step was an iterative process run for a number 398 

of times (greater than 50) until the chosen model showed no more improvement in terms its accuracy 399 

coefficient of determination (𝑅2), root mean squared error (RMSE), mean absolute error (MAE),400 and accuracy in predicting the response values or accuracy reached greater than 85%. The values of 401 R2,  RMSE,  MAE, and  accuracy were computed from the following equations (2-5): 402 

 403 

 𝑅2 = 1 − ∑(𝑦𝑖 − 𝑓𝑖)2𝑛
𝑖=1 ∑(𝑦𝑖 − 𝑦̅𝑖)𝑛

𝑖=1⁄   (2) 

   
 𝑅𝑀𝑆𝐸 =  √∑(𝑦𝑖 − 𝑓𝑖)2𝑛

𝑖=1 𝑛⁄  
              (3) 

   
 𝑀𝐴𝐸 = ∑ |𝑦𝑖 − 𝑓𝑖| 𝑛⁄𝑛

𝑖=1  (4) 

   
 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑛⁄ ) ∗ 100% (5) 

 404 
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where 𝑦𝑖 is the observed value,  𝑦̅𝑖 is the mean of the observed data, 𝑓𝑖 is the predicted value, 𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 405 

number of correctly classified data points, and 𝑛 is the number of total observations. The final parameter 406 

values were stored and recorded to be optimized via an iterative process and k-fold validation. The 407 

Kullback-Leibler (KL) divergence criterion was employed for the selection of the improved model [83].   408 

  409 

Step 6. Model Validation. The optimized parameter values from the machine learning developed model 410 

were saved and taken for a cross-validation check with the testing data subset from Step 3. All model 411 

performances, such as predicted response and categories, were analyzed, stored, and reported as results. 412 

 413 

    414 

    415 

 416 

 417 

 418 

 419 

 420 

 421 

 422 

 423 

 424 

 425 

 426 

 427 

 428 

 429 

 430 

 431 

 432 

 433 

 434 

Fig. 2 Machine Learning model implementation algorithm. 435 
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 436 

 437 

3.2. Data Collection and Preparation 438 

Operational process parameters and properties from 67 literature sources [5, 8-12, 14, 15, 17, 18, 19, 20- 439 

29, 31, 32, 38, 84- 126] on LPBF processed 316L SS samples were collected and verified in this study. As 440 

it is mentioned in “Step 1” of the previous section, all of the literature considered for the present analysis 441 

was specifically on the SLM processed 316L SS, since limited amount of reports are available on the 442 

application of machine learning on the process- property optimization of SLM processed 316L SS. In 443 

addition, it has been tried to select literatures that were consistent with respect to the reported properties.  444 

A wide range of process parameter values were also considered here to ensure that the present model 445 

globally covers the effect of processing parameters on the properties for a wide variation of material 446 

properties.  447 

 448 

More than 170 data sets composed of the LPBF process parameters and the resulted mechanical properties 449 

of the samples were used as the input for machine learning process in this study. As it was mentioned in 450 

Section 1.1, the process parameters with a significant effect on properties of the final product in the LPBF 451 

process were identified as laser power in [W], laser energy density in [J/mm^3], scanning speed in [mm/sec], 452 

hatching distance [mm], and layer thickness [mm]. In addition to the density, mechanical properties such as 453 

ultimate tensile strength [MPa], yield strength [MPa], hardness [HV], and relative density [%] were also 454 

evaluated in this study.   455 

 456 

The collected experimental data from the literature varied significantly. For instance, the data for process 457 

parameters were at following ranges; laser power = 50-450 [W], scanning speed = 60 - 3000 [mm/s], 458 

hatching distance = 0.02 - 0.1 [mm], layer thickness = 0.01-0.14 [mm], and Laser energy density = 19.35- 459 

1333 [𝐽 𝑚𝑚3⁄ ]. The ranges of final properties of the specimens were: ultimate tensile strength = 178.37 - 460 

751.6 [MPa], yield strength = 148.6- 643 [MPa], relative density = 59.83 - 100 [%], hardness = 163 - 281.3 461 

[HV].  462 

  463 

Data collection process: All collected data were preprocessed.  There were couple of data points from each 464 

set of data, which were significant outliers which were removed.  All data used in model training and 465 

validation were used without any adjustments or normalization. After removing the outliers, the data sets 466 

were split into two sub-sets of data – model training and model validation by selecting the data points using 467 

a uniform random number generator function. Table 2 shows a small sample of the sorted data set from the 468 
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collected data from all the literature sources after initial deduction of overall collected data. After initial 469 

analysis, the sorted data were organized and categorized in the following order:     470 

 471 

Predictors: LPBF process parameters: laser power, laser energy density, scanning speed, hatching distance, 472 

and layer thickness; columns 1 – 5.  473 

Responses: Mechanical properties: yield strength, ultimate tensile strength, hardness, and relative density; 474 

columns 6 - 9.  475 

Validation. Finally, to validate the accuracy of the implemented machine learning models, 316L SS samples 476 

were produced from a random set of predicted process parameters. Density and mechanical properties of 477 

printed samples were experimentally measured and compared to those predicted by the machine learning 478 

process in this study.  479 

 480 

It is worth mentioning that almost all the literature referenced in this study have not reported all utilized 481 

process parameters (predictor data) used for the LPBF process in their studies, even though it applies to 482 

their investigation on physical mechanical properties (response data). Thus, Table 2 does not include the 483 

same number of data sets for all studied response variables. After the completion of sorting data in a 484 

tabulated format, the collected data were split into two data subsets: “training” and “testing.” In general, 485 

approximately 70-80% of the collected data were used for training and 20-30% of the data were used for 486 

testing. The data selection process for training and testing was conducted using a uniform random 487 

distribution approach. Moreover, while preparing the data for model training and testing, the collected and 488 

sorted data of the process parameters (the predictor variables, namely, laser power, laser energy density, 489 

scanning speed, hatching distance and layer thickness) were analyzed using the principal component 490 

analysis (PCA) to identify the predictor with the highest statistical significance and correlation with other 491 

predictors. 492 

 493 

 494 

 495 

 496 

 497 

 498 

 499 

 500 

 501 

 502 
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Table 2 The data obtained from literature for training the model. 

Ref Predictors: LPBF process parameters Responses: Mechanical properties 

Laser 

Power 

(W) 

Laser 

energy 

Density, 

J/mm3 

Scanning 

Speed, 

mm/s 

Layer 

Thickness, 

mm 

Hatch 

Distance, 

mm 

YS_ Ver (MPa) UTS_ Ver 

(MPa) 

Hardness, 

HV 

RD (%) 

 

[18] 90 20 1000 0.03 0.15 430.4±11 509.0±3.0 - - 

[29] 200 69.4 800 0.03 0.12 589.89±11.86 698.98±23.65 - - 

[05] 150 208.33 400 0.03 0.06 489.9±17.2 548.3±18.8 - - 

[96] 100 70 0.25 0.05 0.114 - - 215.65±10.4 - 

[124] 75 156 80 0.1 0.06 - - 215±6 - 

[112] 180 81.29 357 0.05 0.124    99.63±0.40 

[116] 150 600 500 0.05 0.01    92.38±0.63 

[5, 8-12, 14, 15, 
17, 19, 20- 28, 
31, 32, 38, 84- 
95, 97- 111, 
113-115, 117-  
126] 

… … … … … … … … … 
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3.3. Model Selection 534 

Previously, it was explained that two types of models: (a) supervised and (b) unsupervised, were 535 

implemented by machine learning process and their performances were also compared in this study. The 536 

appropriateness of the implemented models was checked using the Kullback-Leibler (KL) divergence 537 

criterion [83], k-fold cross validation, R2,  RMSE,  MAE, and accuracy. The KL divergence criterion 538 

measured the distances between the probability distribution of true values (data) and found fit model values 539 

[83]. Several distances, such as spearman, Minkowski, Euclidean, squared Euclidean, cosine, Chebyshev, 540 

city-block (Manhattan), and Mahalanobis distances, were taken into account and computed to cluster the 541 

predictor variable data. The KL criterion is commonly used in validating the appropriateness of a model 542 

[127].  The KL divergence between two models: (a) 𝑓(𝑋, 𝛽) and (b) 𝑔(𝑋, 𝜇), is defined by equation (6) [83, 543 

127]. 544 

 𝐼(𝑓, 𝑔) =  ∫ 𝑓(𝑋, 𝛽) log([𝑓(𝑋, 𝛽) 𝑔(𝑋, 𝜇)⁄ ]) 𝑑𝑋 
(6) 

 545 

where, X is predictor variables (independent variable), 𝛽 is parameterization of the models 𝑓(𝑋, 𝛽), and 𝜇 546 

is parameterization of the models 𝑔(𝑋, 𝜇). Note that in this case, 𝑓(𝑋, 𝛽) is the truth model (data), and 547 𝑔(𝑋, 𝜇) is the proposed model. The response (dependent) variable values 𝑌 are found from the regression 548 

model equations (7) and (8). 549 

 550 

 𝑌1 =  𝑓(𝑋, 𝛽) (7) 

 𝑌2 =  𝑔(𝑋, 𝜇) (8) 

 551 

The computed KL divergence was used to compute the Akaike information criterion (AIC) [128] and 552 

Bayesian information criterion (BIC) criterion [129] modified version of AIC from equation (9) and (10), 553 

respectively. 554 

 555 

 𝐴𝐼𝐶 = 2𝐾 − 2 log[ℒ(𝜇̂|x)] (9) 

 𝐵𝐼𝐶 = log (𝑛)𝐾 − 2 log[ℒ(𝜇̂|x)] (10) 

 556 

where 𝐾 is the number of model parameters, 𝑛 is the number of data points (or sample size), 𝜇̂ is an 557 

estimated value of the best parameters found based on the lowest KL divergence criterion in 𝑔(𝑋, 𝜇), and 558 x is the sample data (independent variable) of predictor variables.  The performance of the k-fold cross 559 

validation process is shown in Fig. 3. The data is composed of predictors and responses. The initial 560 

predictors were process parameters, namely laser power (LP), laser energy density (LED), scanning speed 561 
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(SSpeed), and responses were the end properties of the LPBF processed parts, namely ultimate tensile 562 

strength (UTS), yield strength (YS), hardness (HV), and relative density (RD).  563 

 564 

 565 

 566 

 567 

 568 

 569 

 570 

 571 

 572 

 573 

 574 

 575 

 576 

 577 

 578 

Fig. 3 Procedures of k-fold validation models [60]. 579 

 580 

3.4. Unsupervised Learning Models  581 

One unsupervised learning algorithm – dendrogram clustering algorithm was implemented to study the 582 

accuracy of clustering the response variables of the collected data.  A dendrogram is a simple hierarchical 583 

clustering algorithm [60] that is generated for either top-down or bottom-up approach. The following 584 

distance calculation methods between data points shown in equation (11 – 17) were taken in dendrogram 585 

and other supervised learning models [130-132]. 586 

 587 

 𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒     ‖𝑥𝑗 − 𝑥𝑘‖2 (11) 

   
 𝑆𝑞𝑢𝑎𝑟𝑒𝑑 𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒     ‖𝑥𝑗 − 𝑥𝑘‖22    (12) 

   
 𝑀𝑖𝑛𝑘𝑜𝑤𝑠𝑘𝑖 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒     √ ∑ (𝑥𝑗 − 𝑥𝑘)𝑝𝑛

𝑗=1,𝑘=1
𝑝

 

(13) 
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𝑋 1, 𝛽 1)

 

Training  
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 𝐶𝑖𝑡𝑦 𝑏𝑙𝑜𝑐𝑘 (𝑀𝑎𝑛ℎ𝑎𝑡𝑡𝑎𝑛) 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒     ‖𝑥𝑗 − 𝑥𝑘‖1 (14) 

   
 𝐶ℎ𝑒𝑏𝑦𝑠ℎ𝑒𝑣 (𝑀𝑎𝑥𝑖𝑚𝑢𝑚) 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒     ‖𝑥𝑗 − 𝑥𝑘‖∞ (15) 

   
 𝑀𝑎ℎ𝑎𝑙𝑎𝑛𝑜𝑏𝑖𝑠 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒     √(𝑥𝑗 − 𝑥𝑘)𝑇𝐶−1(𝑥𝑗 − 𝑥𝑘) 

(16) 

   
 𝐶𝑜𝑠𝑖𝑛𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒     1 − 𝑥𝑗𝑥𝑘′ √(𝑥𝑗𝑥𝑗′)(𝑥𝑘𝑥𝑘′ )⁄  

(17) 

 588 

where 𝑥𝑗, 𝑥𝑘 are predictor data points at 𝑗 and 𝑘 location, 𝐶−1 is the covariance matrix, and 𝑝 power values. 589 

A special case values of 𝑝 give the city-block (𝑝 = 1), Euclidean (𝑝 = 2), and Chebyshev (𝑝 = ∞) 590 

distances.  591 

 592 

3.5. Supervised Learning Models 593 

Three supervised learning models: (a) k-nearest neighbors (kNN), (b) ensemble learning decision tree, and 594 

(c) support vector machines (SVM) algorithms [133-136], were implemented in this study. The kNN, one 595 

of the commonly used machine learning algorithms, was implemented with optimized hyper parameters to 596 

classify the response variables using categorical and numerical arrays. The ensemble learning decision tree 597 

algorithm, composed of several decision tree models, was implemented with six different learner functions: 598 

(a) hyper parameter, (b) kNN, (c) tree, (d) linear discriminant, (e) single kNN template, and double kNN 599 

template. Finally, the SVM algorithm was implemented in five different model configurations, namely, (a) 600 

standardized predictor, (b) 5-fold cross validation, (c) Gaussian kernel function, (d) radial basis kernel 601 

function, and (e) polynomial kernel functions, to predict numerical values of the response variables based 602 

on regression. The implemented supervised learning models were trained and validated to classify and 603 

predict the response variables, namely, hardness in [HV], yield strength in [MPa], ultimate tensile strengths 604 

in [MPa], and relative density in [%] resulted from varying LPBF process parameter values according to 605 

pre-defined six categories (Grade A-F, see Table 3). In the developed machine learning models, the process 606 

parameters are taken as predictors, namely laser power in [W], laser energy density in [J/mm3], scanning 607 

speed in [mm/sec], hatching distance in [mm], and layer thickness in [mm]. In addition, the distances 608 

between the data points were computed using equations (10-16), while performing data classification with 609 

these supervised models. 610 

 611 

4.  SIMULATION AND DATA ANALYSIS TOOLS 612 
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All developed machine learning models, algorithms, and simulations were carried out using MATLAB 613 

software [137] using its built-in functions, such as Statistics and Machine Learning ToolboxTM   and data 614 

analysis tools [137-139].  615 

 616 

4.1. Principal Component Analysis of Predictors 617 

As mentioned before, the most effective process parameters that can influence additive manufacturing of 618 

metallic parts are laser power (LP), laser energy density (LED), scanning speed (SSpeed), layer thickness, 619 

and hatching distance (HD) [69, 71]. Moreover, the Equation (1) shows that LED is directly proportional 620 

to LP and inversely proportional to SSpeed, HD and layer thickness. The collected data from the literature 621 

sources show that many researchers specified LED values by incorporating the values of HD and layer 622 

thickness. Many other studies taken the same or similar values for HD and layer thickness. For instance, 623 

about half of the collected data from literature showed that they had used 0.03 mm of layer thickness, and 624 

0.08 and 0.124 mm for HD. In order to find out the influence of all these five input parameters, the principal 625 

component analysis (PCA) of the prepared and arranged data of predictor variables was performed before 626 

starting simulations on the developed machine learning models. The principal components were computed 627 

and compared against the five process parameters as shown in Fig. 4. This graph demonstrates that the five 628 

process parameters are not equally important in terms of their statistical significance on prediction of the 629 

properties of the LPBF processed parts. The most important process parameters were laser power (LP) with 630 

over 80% of variation, a second important one found to be the laser energy density (LED) with about 10% 631 

of variation and similarly, the third important process parameter is the scanning speed (SSpeed) with about 632 

8% of variation. The other two parameters, namely, layer thickness (Layer) and hatching distance (HD) 633 

were insignificant in predicting the properties of the LPBF processed parts.  It must be noted that the 634 

statistical significance was found based on the collected experimental data rather than mathematical 635 

significance or calculation of LED, from other parameters. Moreover, the overall working principles of ML 636 

algorithms and routines are based purely on statistical analysis of the input and output data and they are not 637 

based on mathematical derivations or calculations. According to the results obtained from PCA, three input 638 

parameters, i.e. LP, LED and SSpeed, are considered for simulations in this study as shown in Fig. 4. 639 

Therefore, HD and layer thickness were not taken into the account for the model training and validation 640 

steps.  In the next step, two types of common machine learning models, which are classification and 641 

regression, were trained and validated.  642 
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 643 

Fig. 4 Principal Component Analysis of Predictors. 644 

 645 

4.2. Simulation of Classification Models 646 

After sorting all collected data from the literature sources as shown in Table 2, missing data points and 647 

outliers are removed from the data sets. Then the processed data were clustered by employing unsupervised 648 

learning method to identify how many clusters (grade levels) of the response data, which are ultimate tensile 649 

strength, yield strength, hardness, and relative density. There were mostly two or three outlier points in 650 

response data. An example of application of an unsupervised learning algorithm with dendrograms is shown 651 

in Fig. 5 for the response data collected for ultimate tensile strength. The clustering simulation showed six 652 

clusters (six categories) of the response data of ultimate tensile strength using dendrogram analysis with 653 

“Euclidian” distance with 25 leaf nodes and 25% threshold values. The employed unsupervised learning 654 

(clustering approach) model to find out how many sub-groups to consider for classification purposes in the 655 

classification models. The reason for choosing 25 leaf nodes and resulted six clusters (Grade levels) was to 656 

make equal grids and symmetrical distribution of the response data (ultimate tensile strength, yield strength, 657 

hardness, and relative density) collected from the literature sources. The chosen 25 leaf nodes along y-axis 658 

in Fig. 5 show how indices of the data points laying in cluster (Grade A, B, C, D, E, F). The sub-clusters 659 

under Grade B is close to the ones in Grade C. Similarly, Grade D and E are also close to each other. On 660 

the other hand, the distance between Grade A is far from Grade B and C. The distance between Grade D 661 

and E are quite far from Grade F cluster elements. Similar dendrograms were obtained for yield strength, 662 

relative density, and hardness. Each cluster was defined to be one grade.  663 
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 664 

Fig. 5 Dendrograms of ultimate tensile strength data. 665 

 666 

The classified six categories, such as Grade A – F in a descending order shown in Table 3. These categorized 667 

response data were used as a training and testing data sets in simulation of kNN classification model. The 668 

classification of the response variables (hardness, yield strength, ultimate tensile strength, and relative 669 

density) was conducted using the ranges of values as listed in Table 3.  670 

 671 

Table 3 Created categories of the response data. 672 

Category  Hardness, [HV] Ultimate Tensile 
Strength, [MPa] 

Yield Strength, 
[MPa]  

Relative Density, 
[%] 

Grade A 263.1 ± 10 704 ± 48 602± 41 96.5 ± 3.5 
Grade B 243.1 ± 10 589 ± 48 558 ± 41 93 ± 3.5 
Grade C 223.1 ± 10 522 ± 48 476 ± 41 87 ± 3.5 
Grade D 213.1 ± 10 408 ± 48 394 ± 41 83.5 ± 3.5 
Grade E 193.1 ± 10 293 ± 48 312 ± 41 77 ± 3.5 
Grade F 173 ± 10 184 ± 48 148 ± 41 63.5 ± 3.5 

   673 

The k-nearest neighbor (kNN) classification method is one of the simplest supervised learning algorithms 674 

that is easy to understand, implement, and execute [83]. The kNN classification algorithm was modeled, 675 

trained, and tested with a 10 - nearest number neighborhood and optimized hyper parameters of the kNN 676 
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algorithm with the pre-separated training and testing data. The implemented kNN model using the 677 

optimized parameters reached 100% accuracy after several iterations with the training data, and these 678 

training data was composed of about 80% of the collected hardness data. All misclassified data sets from 679 

the initial iterations of a model training process were used again in the subsequent iterations. In measuring 680 

the distance between the classified data points and true values, Euclidian distance – Eq. (11) was employed. 681 

While optimizing kNN models, 5 to 10 data point k-fold values were used. The found best kNN model from 682 

the training data was validated with the remaining (20%) of the testing data. Fig. 6 shows the confusion 683 

chart of the classified (found) data of hardness with a 100% accuracy.  The 100% accuracy was obtained 684 

after several iterations of model training. The accuracy shows how many predicted values of hardness match 685 

with true hardness values given in the source experimental data. The numbers, shown inside blue colored 686 

square cells along the diagonals (Fig. 6), are the number of correctly categorized data points. Classification 687 

(categories) of the predefined Grade value ranges are given in Table 3. As an example, the number 6 in cell 688 

1 (Fig. 6) shows how many hardness data values lie within 173 ± 10 HV (Grade F), 12 shows that there are 689 

12 hardness data points are within 193.1 ± 10 HV (Grade E), and similarly, 23 shows that there are 23 hardness 690 

values under category D. The grades in Fig. 6 shows along x-axis are predicted class, and the ones along y-691 

axis are true class. The similar high accuracy was attained for the other data sets of ultimate tensile strength, 692 

yield strength, and relative density, and thus, the results are not shown here.      693 

 694 

Fig. 6 Classification of response variable – hardness with respect to pre-defined six classifications as 695 

listed in Table 1. 696 

 697 
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The ensemble tree-based classification algorithm is one of the most powerful supervised learning 698 

algorithms of machine learning.  During the ensemble tree-based classification algorithm, numerical 699 

(original) response data were directly used with no predefined classification (Grade A, B, …, F) similar to 700 

supervised learning models. Six different models of the ensemble tree algorithm were implemented, as 701 

listed in Table 4.  702 

 703 

Table 4 Classification models of the ensemble tree-based algorithm.  704 

Model type Model parameters 

Model 1. Hyper-Parameter 
Model 

Optimized Hyper Parameters: [Learning Rate = 1, Method = Tree] 

Model 2. kNN Model  
 

Learner: kNN, [Euclidian Distance, kNN=1, Method = Classification, Learning Rate 
= 1, Method = Tree, N(trained) = 100] 

Model 3. Tree Model    Learner: Tree, [Learning Rate = 1, Method = Tree, N(trained) = 100, N (nodes) = 
21] 

Model 4. Discriminant  
 

Learner: Discriminant, [Learning Rate = 1, Method = Tree, N(trained) = 100, method 
= pseudolinear] 

Model 5. Single kNN 
Template       
 

Learner: kNN Template, [Method = Classification, Learning Rate = 1, Method = 
Tree, N(trained) = 100, Learning Template kNN = 5] 

Model 6. Double kNN 
Template  
 

Learner: kNN Template, [Method = classification, learning Rate = 1, Method = Tree, 
N(trained) = 200, Learning Template1 kNN = 3, Learning Template2 kNN = 9] 

 705 

The prediction of relative density for LPBF processed 316L SS was conducted using total of 149 data points 706 

from variables extracted for laser power (LP), laser energy density (LED), scanning speed (SSpeed), and 707 

the response of relative density. 70% of the data points were used for training (i.e., 105 data points) and the 708 

rest were used for testing and validation (i.e., 44 data points). The simulation results shown in Fig. 7 and 709 

Table 5 indicated that Model 6 could predict density with accuracy greater than 86% with the smallest error 710 

(ERROR, MAE, RMSE) using collected data for LP, LED, and SSpeed. 711 
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 712 

Fig. 7 Classification of the relative density of LPBF processed 316L SS samples using Ensemble tree-713 

based classification algorithm with six different model configurations. 714 

 715 

Table 5 Relative density prediction via classification models. 716 

Assessment 
Parameter 

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

Accuracy  ~50% ~50% ~70% ~10% ~10 ~86% 

ERROR 0.1571 0.2571 0.1524 0.7524 0.2000 0.1364 

MAE 1.8059 2.3348 2.3008 3.0388 2.8909 0.4932 

RMSE 0.0276 3.4418 4.0033 4.6017 4.1117 1.5156 𝑅2 ~0.95 ~0.95 ~0.95 ~0.95 ~0.99 ~0.99 

 717 

Fig. 8 and Table 6 present the same results from prediction of hardness for LPBF manufactured 316L SS 718 

samples using different machine learning models. Seventy percent of the data points were used for training 719 

(i.e., 58 data points) and the rest were used for testing and validation (i.e., 27 data points). Again, Model 6 720 

demonstrated the highest accuracy (greater than 89%) and smallest error (ERROR, MAE, RMSE) in 721 

correctly predicting the response variable values based on the three predictors (LP, LED, and SSpeed).   722 

 723 
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 724 

Fig. 8 Classification prediction of the hardness of LPBF processed 316L SS samples using Ensemble 725 

tree-based classification algorithm with six different model configurations. 726 

 727 

Table 6 Hardness prediction via classification models. 728 

Assessment 
parameter 

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

Accuracy  
 

~10% ~60% ~10% ~10% ~50% ~89% 

ERR 0.8615 0.4308 0.2000 0.8308 0.3692 0.1111 
MAE 17.1019 18.6704 17.8815 21.0426 17.1009 2.8241 
RMSE 0.2188 25.8913 25.6930 26.6266 24.8690 10.0528 𝑅2 ~0.95 ~0.95 ~0.95 ~0.95 ~0.99 ~0.99 

 729 

The simulation results for prediction of ultimate tensile strength of the LPBF 316L SS are tabulated in Table 730 

7 and shown in Fig. 9. Seventy-five percent of the data points were used for training (i.e., 68 data points) 731 

and the rest were used for testing and validation (i.e., 26 data points).  Model 6 was the one with the highest 732 

accuracy (greater than 89%) and smallest error (ERROR, MAE, RMSE).  733 
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 734 

Fig. 9 Classification prediction of the ultimate tensile strength of LPBF processed 316L SS samples using 735 

Ensemble tree-based classification algorithm with six different model configurations. 736 

 737 

Table 7 Ultimate tensile strength prediction via classification models 738 

Assessment 
parameter 

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

Accuracy  ~10% ~60% ~10% ~10% ~50% ~89% 

ERR 0.8615 0.4308 0.2000 0.8308 0.3692 0.1111 

MAE 17.1019 18.6704 17.8815 21.0426 17.1009 2.8241 

RMSE 0.2188 25.8913 25.6930 26.6266 24.8690 10.0528 𝑅2 ~0.95 ~0.95 ~0.95 ~0.95 ~0.99 ~0.99 

 739 

Fig. 10 and Table 8 show the predictions of yield strength from collected data LP, LED, and SSpeed.  70% 740 

of the data points were used for training (i.e., 52 data points) and the rest were used for testing and validation 741 

(i.e., 21 data points). It should be noted that among all collected data sets from the literature, the number of 742 

reported data for the yield strength was significantly lower than the ones available for relative density, 743 

hardness, and ultimate tensile strength. The analysis of data using machine learning resulted in prediction 744 

of yield strength and Model 6 again demonstrated the highest accuracy (>85%) with smallest error margins 745 

(ERROR, MAE, RMSE). Table 9 shows the optimal process parameters found from the classification model 746 

6 for the highest response variables. It is interesting to note that the optimized laser energy density values 747 

fall between the range of ~40- 150 𝐽 𝑚𝑚3⁄ , which was reported to be an optimized range for achieving 748 

superior properties for a SLM processed 316L SS [140- 142].  749 
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 750 

 751 

Fig. 10 Classification prediction of yield strength of LPBF processed 316L SS samples using Ensemble 752 

tree-based classification algorithm with six different model configurations. 753 

 754 

Table 8 Yield strength prediction via classification models. 755 

Assessment 
parameter 

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

Accuracy  ~10% ~10% ~10% ~30% ~30% ~85% 

ERR 0.8615 0.4308 0.2000 0.8308 0.3692 0.1111 

MAE 17.1019 18.6704 17.8815 21.0426 17.1009 2.8241 

RMSE 0.2188 25.8913 25.6930 26.6266 24.8690 10.0528 𝑅2 ~0.95 ~0.95 ~0.95 ~0.95 ~0.99 ~0.99 

 756 

 757 

 758 

 759 

 760 

 761 

 762 

 763 

 764 
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Table 9 Optimal process parameters found via classification model 6 according to highest response variable 765 

values. 766 

LP, [W] SSpeed, [mm/s] LED, [𝐽 𝑚𝑚3⁄ ] Ultimate Tensile Strength, [MPa]  

Experimental Model 6 

195 1083 125.42 751.6 751.6 
   Yield Strength, [MPa]  

Experimental Model 6 
200 950 87.719 643 643 
   Hardness, [HV]  

Experimental Model 6 
160 1000 76.19 250 250 
   Relative Density (%)  

Experimental Model 6 
192 1000 91.4 100 100 

 767 

Most appropriate parameter values of all classification models were found using a trial and error approach.  768 

4.3. Application of SVM Models 769 

Five different support vector machine (SVM) regression algorithm models, listed in Table 10, were also 770 

employed to predict the numerical values of the response variables, i.e., relative density, hardness, ultimate 771 

tensile strength, and yield strength of LPBF processed SS 316L. 772 

 773 

Table 10 Different SVM algorithm models used in this study. 774 

Model type Model parameters 

Model A. Standardized Predictor  
Standardized Predictors, Solver: Sequential Minimal Optimization 
Algorithm [143] 

Model B. 5-Fold Cross Validation 
Standardized Predictor Model  

Standardized Predictors, 5-Fold Cross Validation, Solver: Standardized  

Model C. Gaussian Kernel Function 
model   

Kernel Function: Gaussian, Cross Validation Partition: 15, Solver: 
Standardized 

Model D. RBF Kernel Function  Kernel Function: Radial Basis Function, Solver: Standardized 

Model E. Polynomial Kernel Function 
Kernel Function: Polynomial, Solver: L1 – Quadratic Programming 
(L1QP) [144]  

 775 

The simulation from the application of five different types of SVM algorithm models to predict relative 776 

density of LPBF 316L SS samples are shown in Fig. 11 and Table 11. Model E demonstrated the highest 777 

accuracy (𝑅2 = 0.98)  and smallest error margins (Error, MAE, RMSE). 778 
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 779 

Fig. 11 Regression model prediction of relative density of LPBF processed 316L SS samples using SVM 780 

regression algorithm with five different models. 781 

 782 

Table 11 Relative density prediction using regression models. 783 

Assessment 
parameter 

Model A Model B Model C Model D Model E 

ERROR 3.6240 4.0814 3.5648 2.1569 1.9973 

MAE 1.4374 1.5433 1.4136 0.9587 0.9313 

RMSE 1.9037 2.0202 1.8881 1.4686 1.4133 𝑅2 ~0.95 ~0.95 ~0.95 ~0.98 ~0.98 

 784 

The hardness results obtained from application of SVM models indicated that Model C and E were capable 785 

of finding response values of hardness with highest accuracy (𝑅2 = 0.99)  and smallest error margins 786 

(Error, MAE, RMSE), as shown in Fig. 12 and Table 12.  787 

 788 
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 789 

Fig. 12 Regression model prediction of Hardness values using SVM regression algorithm with five 790 

different models. 791 

Table 12 HV prediction via regression models. 792 

Assessment parameter Model A Model B Model C Model D Model E 

ERROR 337.8061 377.8964 307.5434 186.1893 144.3593 

MAE 14.2539 15.3165 13.2390 9.3246 6.8986 

RMSE 18.3795 19.4396 17.5369 13.6451 12.0150 𝑅2 ~0.95 ~0.95 ~0.95 ~0.98 ~0.99 

 793 

Five different types of SVM models were also used to predict the ultimate tensile strength of LPBF 794 

processed 316L SS using data sets for LP, LD, and SSpeed process parameters, and the results are shown 795 

in Fig. 13 and listed in Table 13. Here, both Model D and Model E predicted the ultimate tensile strength 796 

with high accuracy (𝑅2 = 0.95)  and small error (Error, MAE, RMSE).   797 

 798 
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 799 

Fig. 13 Regression model prediction of ultimate tensile strength values using SVM regression algorithm 800 

with five different models. 801 

 802 

Table 13 The ultimate tensile strength prediction via regression models. 803 

Assessment 
parameter 

Model A Model B Model C Model D Model E 

ERROR 22917 23838 11772 7238 7469 

MAE 151.3840 154.3970 108.4993 85.0783 85.4227 

RMSE 113.6654 115.9051 78.8534 58.2736 60.1108 𝑅2 ~0.92 ~0.9 ~0.95 ~0.95 ~0.95 

 804 

SVM models were used to predict yield strength of LPBF manufactured 316L SS and the results are 805 

presented in Fig. 14 and Table 14. Again, Model D and Model E demonstrated highest accuracies (𝑅2 =806 0.95)  with the smallest error margins (Error, MAE, RMSE).   807 
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 808 

Fig. 14 Regression model prediction of yield strength values using SVM regression algorithm with five 809 

different models. 810 

 811 

Table 14 The yield strength prediction via regression models. 812 

Assessment 
parameter 

Model A Model B Model C Model D Model E 

ERROR 14709 15587 5127 2878 3141 

MAE 89.2092 93.1940 53.1256 37.7942 36.1886 

RMSE 113.6654 115.9051 78.8534 58.2736 60.1108 𝑅2 ~0.92 ~0.91 ~0.95 ~0.95 ~0.95 

 813 

Table 15 shows the optimal process parameters found from SVM regression Model E with respect to highest 814 

response variable values (ultimate tensile strength, yield strength, hardness, and relative density). 815 

According to SVM regression model E, the optimized laser energy density values fall between ~ 40-150 816 𝐽 𝑚𝑚3⁄  of optimum value ranges reported in literature [140-142]. The present optimized laser energy 817 

density values also support the experimental observation where it was reported that SLM processed 316L 818 

SS had higher porosity content at laser energy density, which was lower or higher than the optimized range 819 

of ~40-150 𝐽 𝑚𝑚3⁄  [140-142]. At lower laser energy, powder particles remained un-melted, and thus the 820 

porosity content became high. At higher laser energy density, excessive melting caused the formation of 821 

defects, such as keyholes, and thus the porosity content became high. Between the optimized range of ~40-822 
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150 𝐽 𝑚𝑚3⁄ , the porosity content was reported to be lowest, and thus highest relative density was achieved 823 

at this optimized range [140- 142].  824 

 825 

Table 15 Optimal process parameters found via SVM regression Model E according to highest response 826 

variable values. 827 

LP, [W] SSpeed, [mm/s] LED, [𝐽 𝑚𝑚3⁄ ] Ultimate Tensile Strength, [MPa]  

Experimental Model E 

195 1083 125.42 751.6 704.3883 
   Yield Strength, [MPa]  

Experimental Model E 
195 1083 125.42 637.9 573.40 
   Hardness, [HV]  

Experimental Model E 
90 770.55 58.4 240 237.99 
   Relative Density (%)  

Experimental Model E 
380 1500 101.33 99.825 99.606 

 828 

Most adequate parameter values of all SVM regression models were found using a trial and error approach.  829 

4.4. Validation of the Models using Experimental Results 830 

As it was indicated from the results, Model 6 of classification prediction algorithm (Section 4.2) and Model 831 

D and E of SVM regression algorithm (Section 4.3) of machine learning provided results with highest 832 

accuracy using data from literature for model training and testing. To validate the accuracy of these models 833 

in real conditions, a set of random process parameters was selected to print several samples using LPBF 834 

technology in this study. Mechanical and physical properties of LPBF processed samples were measured 835 

experimentally and compared to the ones predicted using the optimum machine learning algorithm (Model 836 

6 of classification algorithm and Model D and E of SVM regression algorithm) in this study. The details of 837 

experimental procedure have previously explained in Section 2.  838 

 839 

Fig. 15 (a) illustrates an etched cross section of LPBF processed 316L SS sample, which was observed in 840 

this study. The typical microstructure of a 3D printed metallic material containing semi-circular melt pools 841 

was clearly observed in this optical micrograph. The melt pools shown in Fig. 15 (a) formed in parallel to 842 

the printing direction, as indicated earlier in Fig 1 (d). These overlapped microstructural features (melt 843 

pools) indicated solidification of a high-density material resulting from the LPBF process. In Fig. 15 (b), 844 

an SEM micrograph showed an indentation on the un-etched cross section of the 316L SS sample produced 845 

in this study. A typical ductile deformation due to loading during indentation test was observed in this 846 

micrograph.  847 
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 848 

Fig. 15 (a) Optical micrograph of an etched cross section, and (b) SEM image of a Vickers indent on an 849 

un-etched cross section of LPBF processed 316L SS sample in this study.  850 

 851 

Three Stress-strain curves resulted from tensile tests on the 316L samples produced by LPBF technology 852 

in this study are presented in Fig. 16. Important tensile properties, such as elastic modulus, yield strength, 853 

and ultimate tensile strength were obtained for 316L SS samples. Note that the elastic modulus was not 854 

used in this study due to the limited number of available literatures.  855 

 856 

 857 

Fig. 16 Experimental stress- strain curve resulted from tensile tests on LPBF made 316L SS.  858 
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The experimentally measured density, hardness, and tensile property of the LPBF processed 316L SS 859 

samples are listed in Table 16 along with those calculated from Model 6 of classification algorithm and 860 

Model D and E of SVM regression algorithm.  861 

 862 

Table 16 Comparison of density, hardness, yield strength, and ultimate tensile property of LPBF processed 863 

316L SS with the predicted values from the application of optimum machine learning models in this study. 864 

Properties Measured Value Predicted Value: 

(Classification) 

Model 6 

Predicted Value: 

(SVM-Regression) 

Model D or E 

Relative Density (%) 98.98 98.98 96.31 (96.66) 
Hardness (HV) 221.04 ±8.91 220.00 221.30 (211.46) 
Yield Strength (MPa) 515±50 439.00 515.31 (511.90) 
Ultimate Tensile Strength (MPa) 573.82±17.45 573.30 588.59 (556.40) 

 865 

Model 6 of classification prediction algorithm demonstrated about 99% accuracy in determining relative 866 

density, hardness, and ultimate tensile strength; however, it was less accurate in determining the yield 867 

strength. Similarly, the accuracy of the SVM regression algorithm models—Model D and E—was greater 868 

than 98% accurate in determining the resulted values of hardness, yield strength, ultimate tensile strength, 869 

and relative density. The relatively lower accuracy in determining the resulting yield strength with the 870 

classification model can be attributed to availability of smaller number of reported data sets in literatures 871 

for the yield strength, which could affect the training process and consequently reduced the accuracy of the 872 

model.  It is indicated from the performed simulations and validation studies in this study that one 873 

classification algorithm-based model and two SVM regression algorithm models were found to be highly 874 

accurate in determining the end response values (relative density, hardness, yield strength, and ultimate 875 

tensile strength) of LPBF processed 316L SS samples. These highly accurate machine learning models, 876 

whose optimized parameter values were found via iterative simulations, demonstrated that they could work 877 

well with under 100 data samples. It is a very promising result for application of machine learning in 878 

characterization of properties of samples produced by an advanced additive manufacturing technology.  879 

 880 

5. CONCLUSION AND RECOMMENDATIONS 881 

 882 

Over 170 sets of experimental data for LPBF processed 316L SS samples were collected from 67 literature 883 

sources and analyzed using unsupervised and supervised machine learning algorithms. The collected data 884 

were divided into predictor and response types of data sets. The predictor variables were the LPBF process 885 

parameters, such as laser power, laser energy density, scanning speed, layer thickness, and hatching 886 

distance. The performed principal component analysis of the collected predictor data sets showed that only 887 
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three out of the five predictors had a statistical significance. These are laser power, laser energy density, 888 

and scanning speed, which were implemented to both unsupervised and supervised machine learning 889 

algorithms. The response values, which are the mechanical properties of LPBF manufactured 316L SS, 890 

were predicted and classified by these three predictors. Six different classification models of the ensemble 891 

classification tree algorithm were also implemented in this study. The model with double kNN learning 892 

template with three and nine nearest neighbor data points showed consistently high accuracy (greater than 893 

85%) for all simulated data sets of response and predictor data in predicting the response values according 894 

to the three predictors, which are LPBF process parameter values.  895 

 896 

This study also examined application of five different support vector machine (SVM) regression models of 897 

supervised learning algorithms by machine learning to predict the end relative density, hardness, yield 898 

strength, and ultimate tensile strength of the LPBF processed 316L samples. Two of the applied SVM 899 

models with radial basis and polynomial kernel functions performed highest accuracy with smallest error 900 

(deviation), RMSE, MAE, and highest 𝑅2 ranging from 0.95 to 0.99. Moreover, the validation studies with 901 

the experimental data demonstrated that the optimal SVM models (Model D and E) were highly accurate 902 

in predicting the mechanical properties of the 3D printed samples. To validate the result obtained from 903 

application of machine learning in this study, several of 316L SS samples were manufactured using LPBF 904 

technology. A random set of process parameters was selected to manufacture 316L SS samples. A series of 905 

experimental tests were performed to measure density, hardness, and tensile properties of the LPBF 906 

processed samples. The experimentally measured properties were very close to the ones predicted by the 907 

optimum classification and regression machine learning algorithm models in this study. The simulations of 908 

the implemented machine learning models using a large number of data collected from the literature resulted 909 

in the high accuracy prediction of characteristics of 3D printed metallic parts, which has not been previously 910 

reported in literature. Finally, this study demonstrates that three different machine learning models (one 911 

based on classification algorithm and two based on SVM regression algorithm) are found to predict 912 

mechanical characteristics of 3D printed 316L SS samples with high accuracy under 100 data points.  913 

 914 

While results from this study are very promising, the capability of this technique to be applied as an 915 

industrial tool needs to be examined in more detail in future. In addition, the accuracy of the machine 916 

learning models can be improved not only with a large number of training data sets, but also with more 917 

predictor features. Therefore, future studies will be dedicated to study the influence of the LPBF process 918 

parameters on the micro-structure and cross-property connections using machine learning algorithms along 919 

with artificial neural networks in connection with application of image processing analysis.  920 

 921 
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