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Abstract
This paper proposes a machine learning model using privileged information (LUPI) and normalized
mutual information feature selection method (NMIFS) to build a robust and accurate framework to
diagnose patients with Temporomandibular Joint Osteoarthritis (TMJ OA). To build such a model, we
employ clinical, quantitative imaging and additional biological markers as privileged information. We
show that clinical features play a leading role in the TMJ OA diagnosis and quantitative imaging
features, extracted from cone-beam computerized tomography (CBCT) scans, improve the model
performance. As the proposed LUPI model employs biological data in the training phase (which boosted
the model performance), this data is unnecessary for the testing stage, indicating the model can be
widely used even when only clinical and imaging data are collected. The model was validated using 5-
fold strati�ed cross-validation with hyperparameter tuning to avoid the bias of data splitting. Our method
achieved an AUC, speci�city and precision of 0.81, 0.79 and 0.77, respectively.

1 Introduction
Osteoarthritis (OA) of the temporomandibular joint (TMJ) is a chronic, degenerative disease that affects
articular cartilage, synovial tissue and osseous structures of the condyle, articular eminence and articular
fossa [1]. It causes chronic pain, jaw dysfunction, deterioration of the quality of life and, in advanced
stages, necessitates joint replacement [2, 3]. Current diagnosis of TMJ OA occurs primarily at moderate-
severe stage of the disease, following the protocols of the diagnostic criteria for temporomandibular
disorders (DC/TMD) [4, 5]. Although various therapeutic measures can relieve disease symptoms at these
stages, to date, no treatment modality can cure or reverse degenerative changes within the joint tissues
[6]. Hence, identi�cation of diagnostic biomarkers that re�ect early pathological changes of the joint is
crucial for prevention of the irreversible sequelae of the disease [7].

Animal studies indicated that microstructural change of the subchondral bone was essential for the
initiation and progression of OA [8]. However, no robust tools were available to assess these changes, in
humans, at early stages of the disease. More recently, advancement of image processing/analysis and
high-performance computing techniques allowed extracting quantitative imaging features, i.e., radiomics,
which re�ect subtle changes within the examined tissues [9]. Along with radiomics, the level of
biochemical markers in saliva or blood samples could re�ect incipient pathological changes and improve
diagnosis, severity assessment and risk of progression of osteoarthritis [10, 11]. The potential of
radiomics and biochemical markers has been elucidated in early detection of various diseases, including
knee OA; nevertheless, their value in TMJ OA diagnosis has been scarcely investigated [8, 12–16]. Our
preliminary studies [17, 18], showed a signi�cant difference in radiomics at the condyles’ subchondral
bone in TMJ OA and control subjects. We also found a correlation between the resorptive/anabolic
changes of the condyles and the level of several biological markers in TMJ OA subjects [19]. As it is
unlikely that a single biomarker would drive or identify a complex disease such as osteoarthritis [17–20],
we hypothesize that clinical symptoms, subchondral bone radiomics and biological markers are optimal
integrative indicators of TMJ health status.
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Analysis of large and complex datasets derived from different sources yields better understanding of the
disease. However, detection of unknown patterns in big data requires the use of high-end computing
solutions and advanced analytical approaches such as machine-learning algorithms [21]. Although
prediction models can analyze a large amount of data, incorporating less variables into the model
reduces computing resources’ consumption and prevents model over�tting [22, 23]. Therefore, using a
dimensionality reduction technique to identify the optimal subset of the original features is crucial for
accurate construction of prediction models [5, 24]. Another challenge for developing a predictive model
for TMJ OA diagnosis is inclusion of the biochemical markers. This is due to the restricted specimens’
collection, cost and limitations of protein expression measurement systems [25].

In this study, we address the need for comprehensive quantitative phenotyping of OA in the whole jaw
joint. We employ a machine learning paradigm called learning using privileged information (LUPI) and
train it with clinical, quantitative imaging and additional biological features as privileged information to
classify TMJ OA patients. We also adopt feature selection method to remove redundant and irrelevant
features from the feature space. Furthermore, we utilize features occurrence and Shapely additive
explanations method to interpret the model predictions [26, 27].

2 Methods

2.1 Dataset
Our dataset consisted of 46 early-stage TMJ OA patients and 46 age and gender-matched healthy
controls recruited at the University of Michigan School of Dentistry. All the diagnoses were con�rmed by a
TMD and orofacial pain specialist based on the DC/TMD. The clinical, biological and radiographic data
described below were collected from TMJ OA and control subjects with informed consent and following
the guidelines of the Institutional Review Board HUM00113199.

2.1.1 Clinical data
Clinical dataset entailed three features obtained from diagnostic tests assessed by the same investigator:
1) headaches in the last month, 2) muscle soreness in the last month, 3) vertical range of unassisted jaw
opening without pain (mouth opening).

2.1.2 Biological data
Association of proteins expression with arthritis initiation and progression was investigated in a previous
study [28]. In this project, using customized protein microarrays (RayBiotech, Inc. Norcross, GA), the
expression level of 13 proteins was measured in the participants’ saliva and serum samples. The
analyzed proteins included: Angiogenin, BDNF, CXCL16, ENA-78, MMP-3, MMP-7, OPG, PAI-1, TGFb1,
TIMP-1, TRANCE, VE-Cadherin and VEGF. As the protein expression of MMP3 was not detected in the
saliva, it was excluded from subsequent analysis.

2.1.3 Radiological data



Page 5/19

Using the 3D Accuitomo machine (J. Morita MFG. CORP Tokyo, Japan), cone-beam computed
tomography (CBCT) scans were performed for each subject. Radiomics analysis was centered on the
lateral region of the articular fossa, articular eminence and condyle, a site where greater OA bone
degeneration occurs. Radiomic features were extracted using BoneTexture module in 3D-slicer software
v.4.11(www.3Dslicer.org) [29]. We measured 23 texture features: 5 bone morphometry features, 8 Gray
Level Co-occurrence Matrix(GLCM) and 10 Grey-Level Run Length Matrix (GLRLM) features. ClusterShade
and HaralickCorrelation measurements were highly variable among all participants, therefore, they were
not included in the following analysis.

Joint space measurement was evaluated using 3D condylar-to-fossa distances at the anterior,
anterolateral, medial, superior and posterior regions.

2.2 Statistical and machine learning approaches
In this section, we describe methods utilized for building a robust TMJOA diagnosis model (Fig. 1). These
methods include: 1) cross-validation and grid search, 2) feature selection and 3) learning using privileged
information.

2.2.1 Cross-validation and grid search
Cross-validation is an effective approach to model hyperparameter optimization and model selection that
attempts to overcome the over�tting issue. The dataset was split into 80% for training and 20% holdout
for testing. The 5fold cross-validation with the same portion of data split was nested inside the 80% train
dataset, and grid search was performed in each fold of data for hyperparameters tuning. The best
combination of hyperparameters was picked based on the mean and standard deviation of F1 scores
over the 5-fold cross-validation. The overall procedure was repeated 10 times with 10 random seeds to
avoid sampling bias from data partitioning. The �nal evaluation scores reported in this study are the
mean ± standard deviation of the holdout test set performance across all 10 repetitions.

2.2.2 Feature selection
Feature selection is a common dimensional reduction technique for building a machine learning model.
Increasing the number of features often results in decreasing the prediction error. However, it increases
the risk of model over�tting particularly with small datasets. Here, we customized a feature selection
method that takes the advantages of privileged variables and mutual information to improve the
performance of the classi�er.

Normalized mutual information feature selection (NMIFS) method and its modi�ed version called called
NMIFS + was used to measure the relevance and redundancy of features with the primary objective of
high accuracy with the least possible time complexity [30]. NMIFS + extends the NMIFS algorithm with the
LUPI framework, which could take full account of the privilege features along with standard features and
make feature selection from those two sets separately [31]. The NMIFS + was applied to all the LUPI
models in this study and, correspondingly, the NMIFS on non-LUPI models.

http://www.3dslicer.org/
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2.2.3 LUPI framework
The idea of learning using privileged information (LUPI) was �rst proposed as capturing the essence of
teacher-student-based learning by Vapnik and Vashist [32]. In contrast to the existing machine learning
paradigm, where the model learns and makes predictions with �xed information, the LUPI paradigm
considers several speci�c forms of privileged information, just like a teacher who provides additional
information, which can include comments, explanations, and logic to students and thus increases the
learning e�ciency.

In the classical binary classi�cation model, we were given training pairs (x1,y1),...,(xl,yl), where xi ∈ X, yi ∈
{−1,1}, i = 1,...,l, and each pair is independently generated by some underlying distribution PXY, which is
unknown. The model is trained to �nd among a given set of functions f(x,α), α ∈ ∧, the function y = f(x,α)
that minimizes the probability of incorrect classi�cations over the unknown distribution PXY .

In the LUPI framework, we were given training triplets

(x1,x∗1,y1),...,(xl,x∗l,yl), xi ∈ X, x∗i ∈ X∗, yi ∈{−1,1}, i = 1,...,l, which is slightly different from the classical
one. Each triplet is independently generated by some underlying distribution PXX∗Y, which is still
unknown. The additional privileged information is available only for the training examples, not for the test
phase. In this scenario, we can utilize X∗ to improve learning performance.

There are a few implementations of LUPI models. One of them is based on random vector functional link
network (RVFL) that is a randomized version of the functional link neural network [33, 34]. A kernel-based
RVFL, called KRVFL+, has been proposed based on the LUPI paradigm [35]. It incorporates e�cient ways
to use kernel tricks for highly complicated nonlinear feature training and train RVFL networks with
privileged information (Fig. 2).The parameters, including weights and biases, from the input layer to the
hidden layers are generated randomly from a �xed domain, and only the output weights need to be
computed.

3 Results

3.1 LUPI and non-LUPI models
Figure 3 shows the comparison of the classi�cation performance between LUPI and non-LUPI models.
We evaluated the diagnostic potential of imaging features extracted from the articular eminence, articular
fossa, condyle, and joint space measurement, as well as clinical features. Only the clinical feature sets
provided discriminative models (AUC = 0.723) for TMJ OA diagnosis. By introducing LUPI-based models
with additional biological features, LUPI paradigm signi�cantly enhanced the model performance on
clinical (AUC = 0.794), joint space measurement (AUC = 0.625), and condyle (AUC = 0.641) datasets.

3.2 Feature integration comparison
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Table 1 shows the classi�cation performances with different feature integration strategies. Given that
clinical features had strong discriminative power for TMJ OA diagnosis, two groups of experiments were
conducted to investigate the effect of an enlarged candidate pool for feature selection. Adding more
features into the clinical dataset and selecting from combined set improved the model performance
markedly, i.e., the models had higher AUC scores. With an AUC = 0.794, the clinical feature model achieved
fairly well performance. Selecting features from a pool of condyle radiomic features together with the
clinical features increased the AUC score to 0.804. The performance was even higher when feature
selection was conducted on all condyle, 3D measurements and clinical datasets, AUC = 0.807. Keeping all
clinical criteria and applying feature selection on the remaining dataset resulted in slightly higher AUC
values. The AUC scores became 0.808 and 0.809 for the condyle and condyle with additional 3D
measurement features models, respectively.

Table 1 Comparison of different feature integration methods (in percentage %)

Feature Set AUC F1 score Accuracy Sensitivity Speci�city Precision

Cl 79.4 ± 3.4 65.7 ± 12.7 69.9 ± 7.2 62.2.0 ± 19.8 77.6 ± 12.0 76.8 ± 7.8

(Cl + Cd)* 80.4 ± 3.8 67.5 ± 9.4 70.4 ± 5.6 64.4 ± 18.6 76.4 ± 16.0 76.1 ± 9.2

Cl + Cd* 80.8 ± 4.1 64.8 ± 11.6 69.4 ± 6.4 60.2 ± 19.4 78.7 ± 13.5 76.0 ± 9.3

(Cl + Cd JS)* 80.7 ± 3.8 64.2 ± 15.0 69.8 ± 6.9 61.3 ± 22.9 78.2 ± 15.3 75.1 ± 12.2

Cl + Cd JS* 80.9 ± 3.6 66.1 ± 12.2 70.9 ± 6.0 62.7 ± 19.7 79.1 ± 13.6 77.4 ± 9.8

Cl: Clinical; Cd: Condyle; Cd JS: Condyle and 3D Joint Space measurements.

* indicates feature selection by NMIFS + method.

The feature sets in parentheses have been pooled together for feature selection, otherwise it
proceeded on feature set with * separately.

All the models have been trained with KRVFL + with Biological data as privilege information.

3.3 Feature occurrence and importance
To interpret the prediction of our proposed model, we utilized feature occurrence and Shapley values. The
NMIFS + method is a measure of redundancy among features. The calculation of mutual information and
redundancy highly depends on the training samples which varied from split to split. Feature occurrence
means how many times a feature was selected by NMIFS + method among the total 50 models. The more
times a feature occurs, the more reliable its importance is (Figure A). Shapley values were used to
interpret the contribution of individual features into the prediction of the trained model. Contributing
features are shown in Fig. 4B according to the order of the mean absolute of Shapley values across all
the data, which indicate the average impact of feature on model output magnitude. Figure 4C provides
further indication of Shapley values and shows the complexity of feature contribution in models. Each
circle represents a feature value of one patient/control, either increases or decreases the
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prediction(positive value and negative value). Figure 4D combines feature importance with feature
effects. Here we picked one model for visualization instead of pulling all 50 models together. Each point
in the summary plot is a Shapley value for a feature and a patient/control. The order of the features on
the y-axis is based on their importance. The color represents the Shapley value of the features from low
to high. We divided the instances into TMJOA diseased group and Control group, displayed in different
markers. Higher values of headache, LongRunHighGreyLevelRunEmphasis and muscle soreness
increased the probability of assigning TMJ OA diagnosis.

4 Discussion
This study developed an enhanced model for TMJ OA diagnosis, utilizing state-of the art machine
learning technology and considering clinical, quantitative imaging markers, and additional biological
features used only for training. This is the �rst study to utilize quantitative imaging markers of the whole
joint: condyle, articular space, articular fossa and articular eminence. We employed feature selection to
minimize feature sets and improve the model robustness. Furthermore, feature occurrence and Shapley
value were assessed to reduce the black-box nature of the machine learning model, as well as improve
the domain experts’ con�dence in the model’s prediction. This study �ndings demonstrate excellent
performance of the feature integration methods and LUPI paradigm in predicting TMJ OA status.

The Diagnostic Criteria for Temporomandibular Disorders (DC/TMD) have been the most utilized protocol
for TMJ OA diagnosis. However, these criteria are dependent on subjective clinical signs/symptoms and
subjective radiological interpretation of imaging features associated with irreversible bone changes [4, 5].
Early treatment and modi�cation of the disease course requires precise diagnosis of TMJ OA at initial
stages [36]. In this study, we utilized multi-source data collected from subjects at early stages of TMJ OA.
We employed the LUPI paradigm and used biological features of in�ammation, neuroception, bone
resorption and angiogenesis as privileged information. The LUPI algorithm allowed bene�ting from
diagnostic information within the existing biological data and eliminated future need for biological
samples’ collection and analysis. Inclusion of biological data with the LUPI framework boosted our model
performance, con�rming the need for biological data only for model training.We developed a robust
model for TMJ OA diagnosis and validated its performance using extensive evaluation metrics (Fig. 1).
Our model demonstrated sensitivity and speci�city of 63% and 79%, respectively. These values exceeded
the sensitivity and speci�city, 58% and 72%, of TMJ OA diagnosis following DC/TMD protocol without
imaging [4]. Honda and colleagues [37] reported that the CBCT scan’s use improved the sensitivity and
speci�city for detecting condylar osseous defects to 80% and 90%, sequentially. Nevertheless, CBCT
sensitivity is dependent on the defects’ size, it is challenging to detect early alterations that are < 2mm.
Hence, we extracted objective, quantitative imaging features from the subchondral bones of the condyle,
articular fossa and articular eminence. Using the LUPI-based model, we found that only condyle’s
radiomics could differentiate between healthy and diseased subjects (Table 1). In line with this
observation, Massilla and Sivasubramanian [38] reported that patients with early TMJ OA had
osteoarthritic bone alterations in their condyles (69.93%) more than articular fossa (10%) and articular
eminence (6.6%). Interestingly, we noted that the superior 3D joint space distinguished TMJ OA subjects
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using LUPI-based models (AUC = .63), denoting the importance of this feature in detecting osteoarthritic
changes. In fact, in another study [38], joint space narrowing was the second predominant radiographic
sign observed in patients with early TMJ OA. Along with radiomics and joint space measurements, we
supplemented the model with clinical signs that were measurable in both groups. Elimination of leaky
variables prevents biasing the model and promotes its reliability and well generalization with new data
[39].

Machine learning models are leveraged for clinical predictive modeling, where clinical values are used to
predict clinical diagnosis. However, these models do not explain the basis for their prediction. This raise
concerns in medical domains and challenge researchers to identify reasons behind the model outcomes
[40]. Here, we facilitated the interpretability of our model by reducing the number of candidate features. In
general, for a �xed sample size, the error of designed classi�er decreases and then increases as the
number of feature grows. Finding an optimal number of features is crucial in terms of reducing the time
to build the learning model and increasing the accuracy in the learning process. For uncorrelated features,
the optimal feature size is N-1, where the N is the sample size. As the feature correlation increases, the
optimal feature√size becomes proportional to N for highly correlated features [41]. Furthermore, texture
features turned out to be highly correlated in Cho’s work [42]. Those further proof of the necessity of
feature selection.

Using the NMIFS method, we calculated feature occurrence to identify the discriminative features of TMJ
OA. Moreover, we calculated Shapley values to demonstrate how each clinical and imaging feature is
contributing to the outcome/disease diagnosis in individual patients. Headache, muscle soreness and
limited range of vertical mouth opening without pain were among the top features that contributed to the
model prediction for TMJ OA. This aligns with the common observation of these symptoms in individuals
with painful temporomandibular disorders [43]. TrabecularNumber, superior 3D joint space and
LongRunHighGreyLevelRunEmphasis were the top imaging features selected in the majority of the
trained models. Importanly, the amalgamation of different data-sources in this study is essential for
comprehensive assessment of individuals’ health. In line with our results, Liang and colleagues found
signi�cant differences of the TrabecularNumber in subjects with TMJ OA compared to healthy
individuals [44]. Our �ndings corroborate those that indicate radiomics provide an objective assessment
of the pathological changes and may overcome the subjectivity of patients-reported symptoms [45].
Previous studies have reported joint space narrowing in subjects with TMJ OA [46, 47]. Zhang et al. [48]
validated the importance of detecting TMJ morphological changes using 3D measurements, showing
that 2D and 3D TMJ space measurements varied signi�cantly in CBCT scans of healthy individuals. The
present study is the �rst to test whole joint (condylar, articular eminence and articular fossa) radiomics
and incorporate 3D joint space measurements into a comprehensive diagnostic tool for TMJ OA.

5 Conclusion
Normalized mutual information feature selection method and LUPI paradigm established a robust model
for TMJ OA diagnosis. The identi�ed clinical and quantitative imaging markers can be considered a
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foundation for reliable detection of TMJ OA pathological alterations and are potential markers for
prediction of disease progression in future longitudinal studies.
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Figure 1

Diagram of training and testing process
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Figure 2

The architecture of KRVFL+ network. Solid lines are output weights and dash lines stand for random
weights and biases.
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Figure 3

Comparison of LUPI and non-LUPI models. The non-LUPI models only trained with normal features and
RVFL model. The LUPI model trained with KRVFL+ and biological data as privilege information.
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Figure 4

A. Feature occurrence in 50 trained models using NMIFS method. B. Feature importance measured as the
mean absolute Shapley values in 50 models. C. Distribution of Shapley values in each query point in the
50 models. The order of the features shown in the x-axis is based on the feature occurrence. D. Shapley
summary plot for one model. The boxplots represent the distribution of TMJOA and control groups (each
TMJOA patient is shown as a circle and control as a diamond). The Heatmap color bar shows the value
of the feature itself from high to low (yellow to blue). Low number of Shapley value of features reduce the
predicted TMJOA diseased probability, a large number of Shapley value increase the probability.


