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Abstract

Background
Pancreatic cancer is one of the highly invasive and the seventh most common cause of death among cancers worldwide. To identify essential genes and the
involved mechanisms in pancreatic cancer, we used bioinformatics analysis to identify potential biomarkers for pancreatic cancer management.

Methods
Gene expression pro�les of pancreatic cancer patients and normal tissues were screened and downloaded from The Cancer Genome Atlas (TCGA)
bioinformatics database. The Differentially expressed genes (DEGs) were identi�ed among gene expression signatures of normal and pancreatic cancer, using
R software. Enrichment analysis of the DEGs, including Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
analysis, was performed by an interactive and collaborative HTML5 gene list enrichment analysis tool. The protein-protein interaction (PPI) network was also
constructed using the Search Tool for the Retrieval of Interacting Genes (STRING) database and followed by identifying hub genes of the top 100 DEGs in
pancreatic cancer using Cytoscape software.

Results
Over 2000 DEGs with variable log2 fold (LFC) were identi�ed among 34,706 genes. Principal component analysis showed that the top 20 DEGs, including H1-
4, H1-5, H4C3, H4C2, RN7SL2, RN7SL3, RN7SL4P, RN7SKP80, SCARNA12, SCARNA10, SCARNA5, SCARNA7, SCARNA6, SCARNA21, SCARNA9, SCARNA13,
SNORA73B, SNORA53, SNORA54 might distinguish pancreatic cancer from normal tissue. GO analysis showed that the top DEGs have more enriched in the
negative regulation of gene silencing, negative regulation of chromatin organization, negative regulation of chromatin silencing, nucleosome positioning,
regulation of chromatin silencing, and nucleosomal DNA binding. KEGG analysis identi�ed an association between pancreatic cancer and systemic lupus
erythematosus, alcoholism, neutrophil extracellular trap formation, and viral carcinogenesis. In PPI network analysis, we found that the different types of
histone-encoding genes are involved as hub genes in the carcinogenesis of pancreatic cancer.

Conclusion
In conclusion, our bioinformatics analysis identi�ed genes that were signi�cantly related to the prognosis of pancreatic cancer patients. These genes and
pathways could serve as new potential prognostic markers and be used to develop treatments for pancreatic cancer patients.

1. Background
Pancreatic cancer is a highly invasive and aggressive cancer of the digestive system, making it the seventh most common cause of death among cancers
worldwide [1, 2]. The incidence rate of this cancer is increasing annually worldwide, and it is estimated to become the second leading cause of cancer-related
mortality in 2030 [1, 3]. Pancreatic adenocarcinoma identi�es common subtypes of pancreatic cancer, approximately 90% of cases. Therefore, pancreatic
adenocarcinoma and pancreatic cancer are used instead of each other [4, 5]. Many risk factors, including smoking, obesity, pancreatitis, family history, speci�c
genetic polymorphisms, and diabetes introduced for pancreatic cancer [6]. Surgery, immunotherapy, radiotherapy, and chemotherapy are standard therapies in
treating pancreatic cancer, which unfortunately have unsatisfactory outcomes, and their side effects reduce the patient’s quality of life [7–9]. For many
different reasons, such as the placement of the pancreas deep in the abdomen, late-onset clinical manifestations, high invasiveness, and early metastasis,
pancreatic cancer is diagnosed in the advanced stages in more than 75% of patients [9, 10]. The pancreatic cancer prognosis is very poor, and only 7% of
patients have a 5-year overall survival. Hence, most patients will die within six months after pancreatic cancer diagnosis [9]. In addition, current diagnostic
procedures for pancreatic cancer, especially early diagnosis, such as biomarkers, imaging examination, etc., have many limitations [11].

Gene expression signature includes the expression data of a set of genes, characterized by high-throughput sequencing methods. Examining the signature
genes in certain diseases, such as cancers, and comparing them with the normal cell pattern can indicate the differentially expressed genes (DEGs). Analysis
of recognized DEGs by bioinformatics methods can lead to identifying pathogenic mechanisms of cancer, which can improve the diagnosis, management,
and prognosis. Bioinformatics analysis, a powerful and preferred approach for identifying critical biomarkers in cancer, investigate gene expression raw data
obtained from high-throughput methods and identi�es differences between the normal and disease. High-throughput sequencing technologies are modern,
cost-effective, and high-speed approaches that allow the analysis of a huge number of gene transcripts in parallel at the same time [12–14].

In this study, we selected pancreatic cancer gene expression pro�les from The Cancer Genome Atlas (TCGA) database and used bioinformatics tools to screen
the DEGs in pancreatic cancer. In addition, the enrichment analysis including Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathways analysis was performed. Moreover, we used the STRING database and Cytoscape software to construct a protein-protein interaction (PPI)
network to identify the hub genes in pancreatic cancer. Finally, we found a set of key genes involved in the biological processes and underlying diseases of
pancreatic cancer that we hope will serve as novel biomarkers shortly to better manage the healthcare of pancreatic cancer patients.

2. Methods

2.1. Screening database
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We extracted gene expression pro�les of 30 pancreatic cancers and 52 normal adjacent tissue obtained by RNA-sequencing methods from The TCGA
bioinformatics database in the HTSeq-Count �le format. Each gene expression pro�le belonged to a patient. The cases were selected and clustered into two
groups, the pancreatic cancer group, and the normal group. The search strategy included the following criteria in the cancer group: i) primary site was the
pancreas. ii) disease types were adenomas and adenocarcinomas. iii) sample type was a primary tumor. iv) 13 cases were female, and 17 cases were male,
and v) race was white. In addition, the search criteria included the following items for the normal group: i) primary site was the pancreas. ii) sample type was
solid normal tissue. iii) 20 cases were female, and 32 cases were male, and iv) race was white.

Because of the low number of non-white patients recorded in the TCGA database, the cases were selected from the white race. Moreover, to prevent the effect
of other malignant diseases on gene expression, patients with a history of malignancy, except pancreatic cancer, were removed using data �ltering in the
TCGA database.

2.2. Data collection and preprocessing
After applying the above �ltering, there were about 797 pancreatic cancer cases in the TCGA database. However, the expression data of 30 cases were
available. Patient gene expression pro�les were downloaded and converted into a single dataset using R programming language version 3.6.3. Preliminary
data included more than 60,000 genes in 82 tissue samples. In the downloaded gene expression data �le, the expression index of each gene was the ensemble
gene ID. In the next step, the gene index was converted to a gene symbol using the R language and the BioMart package. Nevertheless, some gene IDs were
removed from the gene groups because the equivalent gene symbol has not been de�ned yet. Then, a data set, including the expression data of 34706
different genes and 82 tissue samples, was obtained, and this data set was imported to R software for further analysis.

2.3. Normalization of gene expression pro�le data
The expression levels of the same mRNAs in the same cells should be in the same range. But different methods, as well as the variable length of genes, affect
the measured level of mRNA. Therefore, raw data need to be normalized before analysis. For this purpose, the DESeq2 package, one of the most reliable
software packages for �nding genes with distinct expressions, was used. This package normalizes the data according to the depth of sequencing and RNA
structure [15, 16].

In the next step, the mean expression of housekeeping genes was compared between normal and adenocarcinoma tissue samples. This comparison was
made to ensure the quality of gene expression pro�le data. Housekeeping genes are used as a control in gene expression studies. The expression of the
housekeeping gene is not affected under any of the conditions applied. To perform this step, the mean expressions of these genes in both normal and
adenocarcinoma groups were obtained and plotted on a graph. The bisector was plotted and considered a criterion for comparing gene expression pro�les.
The closer the points are more similar gene expression pro�les is between each other than compared distance points [17].

2.4. Univariate analysis using an independent t-test to �nd DEGs
Gene expression differentiation can be interpreted as over-expression or down-expression from normal to cancer. To specify the DEGs, gene expression
differentiation in normal and adenocarcinoma groups has been evaluated and compared by an independent t-test. The independent t-test answers whether
there is a statistically signi�cant difference between the means of the two separate groups [18].

2.5. P-value adjustment with false discovery rate
P-value adjustment was performed using a false discovery rate according to Benjamini- Hochberg method. When the number of variables is more extensive
than the number of cases, we deal with large data, and the number of tested statistical assumptions is high, the chance of observing rare phenomena also
increases and enhances the probability of rejecting the null hypothesis or the �rst type (α) error, while the null hypothesis is true [19, 20].

2.6. Data Visualization based on DEGs
The resulting data were shown as heat map diagrams and clustered with dendrogram diagrams. A heat map is a visualization tool in which different colors
and intensities in diverse cells, represent the value of each cell in the map or matrix. The dendrogram is a tree-like diagram drawn for clustering the samples at
the edge of the heat map. The main package used to draw diagrams and data visualization was ggplot2 [21, 22].

2.7. Principal component analysis
In principal component analysis, linear combinations of variables (here DEGs) are constructed to explain the highest dispersion between normal and
cancerous data. In addition, it reduces the dimensionality of big data. In this way, according to the coe�cients of variables in these linear combinations, the
roles in the data dispersion can be understood [23, 24]. In the present study, this analysis was performed to answer the question of the extent to which all the
DEGs and all the gene pro�les can justify the differentiation between cancer and normal. To ensure no interference at dimensional reductions, principal
component analysis was performed between a set of 20 random genes and a set of the 20 DEGs.

2.8. Enrichment analysis of DEGs
Based on the analysis of the datasets several DEGs have been obtained, and it is necessary to determine which cell processes and functions are signi�cantly
affected. An enricher web-based tool was used to evaluate the top 20 DEGs. Enricher is an enrichment analysis tool that provides interpretable output from
input DEGs function by interacting with other databases related to gene function, such as the KEGG and GO. The DEGs clustering was performed based on
cellular components (CC), biological processes (BP), molecular function (MF), and diseases. We selected enriched functional clusters with a cutoff of p < 0.05
in this study [25, 26].

2.9. Establishment of the PPI network
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The online tool STRING (Search Tool for the Retrieval of Interacting Genes) version 11.5 was used to map the PPI network of the primary DEGs. Then,
Cytoscape software version 3.8.2 was used to visualize and analyze the PPI networks. The maximum number of interactors = 0 and con�dence score ≥ 0.4
were selected. PPI network analysis methods are essential for obtaining a comprehensive view of biological processes and describing physical interactions
between proteins [27–29].

3. Results

3.1. Normalization of gene expression pro�le data
A data set including the expression data of 34,706 different genes in 82 tissue samples (30 samples of pancreatic cancer and 52 normal tissues) was
analyzed. For normalization of gene expression pro�le data, EIF1B, ATF1, PABPN1, ATF2, ATF4, ATF6, EIF1, and EIF6 genes were selected from 2176 existing
housekeeping genes in the dataset, and their mean expression between normal and adenocarcinoma groups was calculated. As expected and shown in the
upper part of Fig. 1, the expression of these genes did not differ signi�cantly between both groups, and all of those are located close to the bisector.

3.2. Comparison of gene expression pattern between normal and adenocarcinoma tissue
samples
Considering a signi�cance level of less than 0.05 for the p-value adjusted by the Benjamini- Hochberg method among 34706 genes, more than 2000 DEGs
were found in the adenocarcinoma group compared to the normal group. All DEGs were downregulated in adenocarcinoma samples compared to normal
tissue samples. As well, no association was found between the DEGs and gender. The top 100 DEGs are shown in Table 1, in order of the highest to the lowest
p-value. It should be noted that to better visualize the genes, their mean expressions at the log base two scales have been used. Figure 2 demonstrates the
clustering of adenocarcinoma and normal samples based on the DEGs in the heat map and dendrogram diagrams. As seen in this �gure, the adenocarcinoma
group has formed clusters on the right side.

Table 1
The top 100 DEGs, the most signi�cantly downregulated with the highest to the lowest p-value.

No. DEGs log2 fold
change (LFC)

No. DEGs log2 fold
change (LFC)

No. DEGs LFC log2 fold
change (LFC)

No. DEGs log2 fold
change (LFC)

1 SCARNA7 -9.872191923 21 STARD13-
AS

− 
6.586138982

41 CHORDC1P4 -6.138641061 61 SNORA49 -9.875984788

2 SCARNA6 -9.136192135 22 H4C5 -7.003969725 42 PRKCA-AS1 -7.192091768 62 MAPK6P3 -6.312623969

3 RN7SL2 -8.483314601 23 ZBTB20 -5.575275315 43 CYP2U1-AS1 -5.936144925 63 KLF7-IT1 -4.772020331

4 RN7SL3 -9.588784426 24 SNORA2C -7.362649511 44 H2AC14 -8.335678769 64 DIAPH1-
AS1

-7.242754254

5 SCARNA21 -9.034023563 25 SNORD94 -5.905646794 45 SNHG22 -4.906674691 65 H4C8 -4.283608225

6 RN7SKP80 -8.067611544 26 H4C4 -7.400316925 46 H2BC13 -6.700252189 66 RPL3P6 -5.407536123

7 SNORA73B -8.539411443 27 KCNJ13 -6.707619781 47 H2AC17 -6.293731146 67 ATP1A3 5.128644134

8 H4C3 -9.376120494 28 SNORA71A -5.845018752 48 MMADHCP2 -6.548399417 68 TAS2R30 -7.975290336

9 SCARNA5 -10.24679653 29 H2AC20 -5.667385694 49 FOXP1-IT1 -6.595447618 69 TATDN1P1 -6.019952411

10 RN7SL4P -8.546085682 30 RN7SL5P -8.826507055 50 BMP2KL -8.580881172 70 SNORA12 -7.258979178

11 SNORA53 -7.979723615 31 KRT18P31 -6.625644209 51 RNY1 -9.808546291 71 RNU5B-1 -10.34663995

12 H1-4 -7.276132193 32 MRTFA-AS1 -5.704040111 52 H2BC3 -9.708488287 72 KRT18P57 -6.261010722

13 SCARNA9 -7.107154892 33 POU5F2 -6.643217509 53 H1-3 -6.851746017 73 SNORA23 -7.520624732

14 SCARNA13 -7.073519738 34 MIR3609 -9.828421275 54 H2AC12 -8.239600629 74 H2BC6 -5.604485706

15 SNORA54 -9.297686808 35 MALAT1 -5.106068934 55 SYT5 5.789893437 75 PHBP2 -5.492474884

16 H4C2 -8.971268737 36 ZNF460 -5.153904002 56 H2AC21 -7.111029988 76 MARK2P8 -6.28853337

17 SNORD17 -8.439895562 37 RN7SL648P -8.058409434 57 H2BC17 -6.1974086 77 RBMS3-
AS2

-6.51653129

18 SCARNA12 -6.924204908 38 RNU5A-1 -9.872167322 58 UHRF2P1 -8.035063773 78 H3C7 -8.457592556

19 SCARNA10 -9.544811817 39 LCMT1-AS2 -5.755003979 59 H2AC4 -8.486362848 79 H3C11 -7.976305302

20 H1-5 -8.570333537 40 RLIMP1 -7.241890326 60 MIR181A1HG -6.495394522 80 ADAM20 -5.086396233

3.3. Principal component analysis results
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In this study, when all the DEGs were used in the principal component analysis, they could distinguish 38.29% of the adenocarcinoma samples from the
normal samples (Fig. 3). Thus, using all DEGs cannot differentiate between cancer and normal samples. But in contrast, the principal component analysis of
the top 20 DEGs could distinguish the cancer samples from the normal samples (Fig. 4).

3.4. Enrichment analysis of DEGs
As described in the previous section, the top 20 DEGs were more likely to distinguish between the two groups of normal and adenocarcinoma. Hence, we used
a web-based software enrichment analysis tool to analyze the top 20 DEGs to obtain the GO and KEGG pathways. Although all DEGs were downregulated, by
analyzing GO enrichment, we found that the DEGs in BP were more enriched in negative regulation of gene silencing, negative regulation of chromatin
organization, negative regulation of chromatin silencing, nucleosome positioning, and regulation of chromatin silencing (Fig. 5 and Table 2). As for MF, the
DEGs were just enriched in nucleosomal DNA binding (Fig. 5 and Table 2). There was no signi�cant difference among the top 20 genes in the CC category (p-
value > 0.05). The KEGG pathway analysis showed that the DEGs were signi�cantly enriched in systemic lupus erythematosus, alcoholism, neutrophil
extracellular trap formation, and viral carcinogenesis (Fig. 6 and Table 2).

Table 2
Enrichment analysis of DEGs.

Expression analysis Category Term P-value Involved
genes

Down-
regulated

GO
analysis

Biological process
(BP)

negative regulation of gene silencing (GO:0060969) 0.0000736129304247206 H1-5;H1-4

negative regulation of chromatin organization
(GO:1905268)

0.0000736129304247206 H1-5;H1-4

negative regulation of chromatin silencing
(GO:0031936)

0.0000736129304247206 H1-5;H1-4

nucleosome positioning (GO:0016584) 0.0000989757503698103 H1-5;H1-4

regulation of chromatin silencing (GO:0031935) 0.000678284581571347 H1-5;H1-4

DNA packaging (GO:0006323) 0.001293831 H1-5;H1-4

negative regulation of DNA metabolic process
(GO:0051053)

0.002513274 H1-5;H1-4

regulation of DNA recombination (GO:0000018) 0.002994673 H1-5;H1-4

chromosome condensation (GO:0030261) 0.003055262 H1-5;H1-4

negative regulation of DNA recombination
(GO:0045910)

0.004001058 H1-5;H1-4

positive regulation of gene expression, epigenetic
(GO:0045815)

0.004001058 H1-5;H1-4

chromatin assembly (GO:0031497) 0.005981624 H1-5;H1-4

nucleosome organization (GO:0034728) 0.009068935 H1-5;H1-4

positive regulation of histone H3-K9 methylation
(GO:0051574)

0.014957134 H1-5

establishment of protein localization to chromatin
(GO:0071169)

0.015946713 H1-5

regulation of histone H3-K9 methylation (GO:0051570) 0.02238257 H1-5

establishment of protein localization to chromosome
(GO:0070199)

0.022810625 H1-5

protein localization to chromatin (GO:0071168) 0.034669113 H1-5

positive regulation of histone methylation
(GO:0031062)

0.040568327 H1-5

Molecular function
(MF)

nucleosomal DNA binding (GO:0031492) 0.000492368756376955 H1-5;H1-4

Cellular Compartment
(CC)

no signi�cant results

KEGG analysis Systemic lupus erythematosus 0.00793534776758775 H4C2;H4C3

Alcoholism 0.014642007150812 H4C2;H4C3

Neutrophil extracellular trap formation 0.0150924344910985 H4C2;H4C3

Viral carcinogenesis 0.0172729137884516 H4C2;H4C3



Page 6/15

3.5. PPI network analysis of the DEGs
Analysis of the top 20 DEGs in the STRING database provided a network of three nodes containing HIST1H1B, HIST1H1E, and HIST1H4F genes (Fig. 7C). This
network could not be analyzed in Cytoscape due to its small size. Therefore, the top 100 DEGs were selected and placed in the STRING database for PPI
network analysis. Analyzing the resulting network in the Cytoscape provided 14 nodes and 178 edges (Fig. 7A). The degree of connectivity for each gene is
speci�ed in Fig. 7B. The top genes with the highest degree of connectivity were considered hub genes. Hub genes in the PPI network, with the most connected
nodes, can play a critical role in gene expression. Hub genes included HIST1H1B, HIST1H1D, HIST1H4F, HIST1H2AE, HIST1H1E, HIST1H2AJ, HIST1H2BL,
HIST2H2AB, HIST1H3J, HIST1H2AI and HIST2H2AC (Fig. 7C).

4. Discussion
Pancreatic cancer is one of the most invasive human cancers that has become increasingly prevalent in recent years. It is estimated that by 2030, this cancer
will be the second leading cause of death among cancers. Therefore, identifying sensitive and speci�c biomarkers for the early diagnosis and treatment of
pancreatic cancer, as well as predicting its survival and prognosis, is crucial. High-throughput analysis can �nd gene expression differences and critical
molecular pathways in normal and cancerous cases, leading to the development of biomarkers for better management of pancreatic cancer. In this study, a
data set, including the expression data of 34,706 different genes in 82 different samples of pancreatic cancer and normal tissues, was analyzed in the TCGA
database. Meanwhile, 2000 DEGs were found in cancer samples compared to normal tissues, considering the signi�cance level of p < 0.05. All DEGs were
down-expressed in pancreatic cancer in comparison to normal tissue. To have a deep understanding of the function of the DEGs, we performed enrichment
analysis and PPI network analysis to screen the genes and pathways associated with pancreatic cancer that are more important in the development and
progression of pancreatic cancer.

In our studies, the results of the principal component analysis showed that the top 20 DEGs might be potential diagnostic and prognostic biomarkers to
improve pancreatic cancer treatment, including four genes encoding histone proteins called H1-4, H1-5, H4C3, and H4C2 and 16 genes encoding non-coding
RNAs named RN7SL2, RN7SL3, RN7SL4P, RN7SKP80, SCARNA12, SCARNA10, SCARNA5, SCARNA7, SCARNA6, SCARNA21, SCARNA9, SCARNA13,
SNORA73B, SNORA53, SNORA54, and SNORD17 (Table 1). Previous studies have revealed that histones, as chromatin-regenerating proteins, are essential in
cancer pathogenesis. Histones undergo severe changes during cancer promotion/progression and may involve in causing the disease. Among the four genes
encoding histones, histone H1 is a cancer promoter and a cancer biomarker in different malignancies [30–32]. The exact molecular function of the majority of
non-coding RNAs found in the present study was unclear, and there are few articles about those non-coding RNAs. Several studies have shown that long-
noncoding RNAs such as RN7SL2 and RN7SL4P are overexpressed in patients with multiple myeloma [33]. RN7SL2 is abundant in the cancer patient’s
plasma [34]. In contrast, another report presented that the RN7SL3 is downregulated in hepatocellular carcinoma [35]. SNORA73 is a chromatin-associated
snoRNA and is effective in genome stability [36, 37]. SNORA54 has been studied in many human cancers such as breast, melanoma, lymphoma, and
myeloma. This snoRNA has upregulated in most cancer patients but is down-expressed in patients with melanoma [38, 39]. According to the literature,
SNORD17 is overexpressed in cases of hepatocellular carcinoma, and its upregulation is usually associated with poor clinical outcomes [40, 41].

Unfortunately, no pancreatic cancer study has been performed on the found non-coding RNA expression and function. However, one study demonstrated that
SCARNA6 is overexpressed in patients with autism spectrum disorders [42]. This �nding can be signi�cant due to the close relationship between gene
expression in the pancreas and neural tissues. SCARNA7 is correlated with many cancers such as breast, prostate, and non-small cell lung cancers. This
SCARNA is usually upregulated in breast cancer, and it is associated with poor prognosis [43–45]. The �ndings of the other study revealed that SCARNA9 was
signi�cantly overexpressed in colon cancer. In contrast, another study suggested that downregulation of SCARNA9 is negatively associated with endometrial
cancer [46, 47]. Numerous studies have investigated the expression of SCARNA10 in liver �brosis and hepatocellular carcinoma. These studies showed that
the expression of SCARNA10 increased, and is usually associated with the physio-pathological features of these diseases. Hence, this SCARNA has been
introduced as a diagnostic biomarker and therapeutic target in liver �brosis and hepatocellular carcinoma. Silencing of SCARNA10 gene in hepatocytes has
displayed down-expression of TGFβ, TGFβRI, SMAD2, SMAD3, and KLF6 [48–51]. SCARNA13 is highly expressed in hepatocellular carcinoma, and it is
involved in tumorigenesis and metastasis [52–54].

GO analysis of the top 20 DEGs in our study showed that those are mainly enriched in the pathways associated with negative regulation of gene silencing,
negative regulation of chromatin organization, negative regulation of chromatin silencing, nucleosome positioning, regulation of chromatin silencing, DNA
packaging, negative regulation of DNA metabolic process, regulation of DNA recombination, chromosome condensation, negative regulation of DNA
recombination, positive regulation of gene expression, epigenetic regulation, chromatin assembly, nucleosome organization, positive regulation of histone H3-
K9 methylation, the establishment of protein localization to chromatin, Histone H3-K9 methylation, protein localization to chromosome, protein localization to
chromatin and positive regulation of histone methylation/DNA binding (Table 2). Interestingly, among the 20 DEGs, only two genes, H1-4 and H1-5, were
identi�ed as in�uential genes in GO analysis.

The KEGG analysis of the top 20 DEGs demonstrated a relationship between pancreatic cancers and other diseases such as systemic lupus erythematosus,
alcoholism, neutrophil extracellular trap formation, and viral carcinogenesis, due to the function of H4C2 and H4C3 genes. Other studies have proved that
alcoholism (consumption of high amounts of alcohol) is one of the critical risk factors in the progression and development of pancreatic cancer, especially in
patients with Kirsten rat sarcoma viral oncogene homolog (KRAS) mutations [55–58]. There have been many reports on the effect of neutrophil extracellular
trap (NET) formation in pancreatic cancer, but its exact role in the development of pancreatic cancer is still unknown. At present, only one article has pointed to
the anti-cancer effects of NET, still, most studies have emphasized the function of NET formation in symptom exacerbation, resistance to immunotherapy, and
induction of migration and invasion in pancreatic cancer cells. The NET formation has even been suggested to be involved in predicting the survival of
pancreatic cancer patients after surgery [59–62]. There is ample evidence linking systemic lupus erythematosus to the risk of developing various cancers. In a
meta-analysis study, systemic lupus erythematosus was associated with an increased risk of pancreatic cancer [63]. But in another study, no signi�cant
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relationship was found between the two diseases [64]. In line with our results, other studies show the role of viral infections in pancreatic carcinogenesis
including the SARS family of coronaviruses and the hepatitis family (B and C). Certainly, careful monitoring of patients with these diseases may help in the
early diagnosis of pancreatic cancer and predict the prognosis of these patients [65–67].

In the last part of this study, PPI network analysis was performed for the top 100 DEGs. As described in the results (Fig. 7A), 14 nodes were identi�ed with
these DEGs. Eleven nodes with a degree of connectivity equal to 13 were selected as hub genes. Interestingly, these hub genes were histone-encoding genes,
include H4C3, H1-4, H4C2, H1-5, H4C5, H4C4, H2AC20, H2AC14, H2BC13, H2AC17, H2BC3, H1-3, H2AC12, H2AC21, H2BC17, H2AC4, H4C8, H2BC6, H3C7,
H3C11, H4C1, H4C6 and H4C13. These results indicated the role of histones in the development of pancreatic cancer. Numerous reports suggest that histone
gene expression pro�les in many cancer types such as breast, lung, prostate, kidney, and pancreas may play a role in pancreatic cancer prognosis. For
instance, the expression of histone H1.3 in pancreatic cancer patients can predict the clinical outcome after pancreatic surgery. Therefore, H1.3 was identi�ed
as one of the prognostic biomarkers in pancreatic cancer [30, 32, 68, 69]. Finally, studies on histones and non-coding RNAs should be performed to determine
their role and function in pancreatic cancer.

5. Conclusion
Brie�y, our studies present a gene expression pro�le analysis of the patients with pancreatic cancer, the identi�ed DEGs and their associated biological
pathways showed that it could be the link between pancreatic cancers and several diseases. During this study, we identi�ed many critical genes that could
serve as potential candidates for the diagnosis and prognosis of pancreatic cancer in the future. The role of some of those, such as H1.3, is now identi�ed as
a prognostic biomarker. However, more extensive studies are needed to determine the role of each of these genes in the prognosis, diagnosis, and treatment of
pancreatic cancer.
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Figure 1

Normalization of gene expression data. The mean expression of housekeeping genes of cancer and normal samples has been calculated and shown in the
upper part of the �gure. In addition, the expression value of the top 10 DEGs in both normal and adenocarcinoma groups has been depicted.

Figure 2



Page 12/15

Clustering of adenocarcinoma and normal samples based on the DEGs.

Figure 3

The ability of principal components to explain the variation among samples using all the DEGs.
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Figure 4

The ability of principal components to explain the variation among samples using the top 20 DEGs.

Figure 5
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The most signi�cant GO enrichment analysis of the top 20 DEGs.

Figure 6

KEGG enrichment analysis of the top 20 DEGs.
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Figure 7

Protein-protein interaction (PPI) network. A) The PPI network of the top 100 DEGs. B) The PPI network of the 20 top DEGs. C) The connectivity degree of hub
genes. Genes with a degree of connectivity ≥13 were considered hub genes.


