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 2 

Abstract  22 

Current evolutionary theories of senescence predict that the force of selection on survival will 23 

decline from maturity to zero at the age of last reproduction, and the force of selection on 24 

reproduction will decline monotonically from birth. These predictions rest upon the assumption 25 

that individuals within a population do not interact with one another. This assumption, 26 

however, is violated in social species, where an individual’s survival and/or reproduction may 27 

shape the fitness of other group members. In such species, it is inclusive fitness that natural 28 

selection optimises. Yet, it remains unclear how the forces of selection on survival and 29 

reproduction might be modified when inclusive fitness, rather than population growth rate, is 30 

considered the appropriate metric for fitness. Here, we derive inclusive fitness forces of 31 

selection for hypothetical populations of social species. We show that selection on survival is 32 

not always constant before maturity, and can remain above zero in post-reproductive age 33 

classes, contrary to conventional models of senescence. We also show how the trajectory of 34 

the force of selection on reproduction does not always decline monotonically from birth, as 35 

predicted by classical theory, but instead depends on the balance of benefits to direct fitness 36 

and costs to indirect fitness. Our theoretical framework provides the unique opportunity to 37 

expand our understanding of senescence across social species, with important implications to 38 

species with variable life histories.   39 

  40 
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Main Text 41 

To date, there are no general theories for how senescence might evolve differently in groups 42 

of social species. At the demographic level, senescence is defined as the decline in organismal 43 

fitness with increasing age1. Hamilton2 provided a mathematical explanation for the seemingly 44 

counter-intuitive evolution of senescence: the force of natural selection weakens with age, and 45 

so detrimental alleles acting late in life can persist despite their negative effects on fitness3-6. 46 

Two years prior, Hamilton7,8 also introduced the concept of inclusive fitness, which has had a 47 

profound impact on our understanding of the evolution of social life histories9-11. Inclusive 48 

fitness quantifies (i) an individual’s number of offspring in the absence of social effects and 49 

(ii) the effects an individual has on the number of offspring produced by other individuals, 50 

weighted by relatedness7,8. It has not yet been fully considered from a theoretical standpoint, 51 

however, how these effects an individual has on the fitness of others may alter the evolution of 52 

senescence. 53 

 54 

An age-specific force of selection describes the relative effect on fitness at different age classes 55 

of a mutant allele that impacts survival or reproduction. How might the components that 56 

contribute to such age-specific forces of selection differ between a solitary and a social species? 57 

First, consider an individual of a solitary species. When this individual dies, it loses access to 58 

any future reproduction it might have achieved. If a mutant allele arises in this population that 59 

increases the risk of dying at a certain age, say 𝑥, then the force of selection that acts against 60 

the allele is proportional to the expectation of residual reproduction that the individual may 61 

have realised2. Now, imagine instead a social species in which individuals within a group 62 

influence one another’s survival and reproduction, for example, through the provision of 63 

alloparental care or through competition for limiting resources. For an individual, death means 64 

the loss of any future reproduction, just as in the solitary case. However, in social species, an 65 
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individual’s death may also alter the survival and reproduction of other individuals12,13. For 66 

instance, the death of an individual providing alloparental care may lead to a reduction in 67 

breeder productivity. Alternatively, where there is competition within groups for resources, the 68 

death of an individual may release resources that other group members may use for survival 69 

and reproduction. If individuals within a group are related, then these effects will be under kin 70 

selection. For example, an increase in mortality late in life can be adaptive if relatives stand to 71 

benefit from the death of a focal individual14-20. On the other hand, mortality may be more 72 

strongly selected against if individuals can transfer beneficial resources to others21-23. When 73 

the death and reproduction of a focal individual not only impacts its own fitness, but also the 74 

fitness of relatives, the force of selection acting on a mutant allele at age x must also consider 75 

these complex social effects.  76 

 77 

To incorporate social interactions into the evolutionary theory of senescence, we develop a 78 

general model for quantifying age-specific inclusive fitness forces of selection in social 79 

species. Here, we focus on the effects of cooperative interactions between individuals and the 80 

corresponding forces of selection, but note that our model also has scope to consider other 81 

scenarios, such as cases of harm (see Discussion). Using an infinite island framework to 82 

describe a resident social population16,20,24-34, we explore the fate of a mutant allele that alters 83 

(i) survival rate from age 𝑥 to age 𝑥 + 1 and (ii) reproduction at age 𝑥. We derive inclusive 84 

fitness forces of selection acting on these mutant alleles, which indicate how the efficacy of 85 

natural selection changes with age with respect to socio-demographic parameters. After 86 

deriving general analytical results, we explore the applicability of our framework to different 87 

social settings by providing numerical solutions for two examples of social structures: (i) the 88 

grandmother hypothesis: post-reproductive individuals aiding juvenile survival and (ii) 89 
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cooperative breeding: juveniles aiding reproduction by adults. We conclude by discussing the 90 

implications and possible extensions for our model.  91 

 92 

Results 93 

Model 94 

We consider a population divided into an infinite number of patches, and model the population 95 

dynamics of a focal patch. This infinite island approach16,20,24-34 allows kin selection to be 96 

modelled while also considering the effects of demography, which is appropriate for 97 

considering an age-structured population in which individuals have effects on one another’s 98 

fitness. Each patch, which could also be conceptualised as a territory, contains discrete groups 99 

of exactly 𝑁 individuals that are, for simplicity, haploid and asexual. We also assume that 100 

patches produce a large number of offspring in each breeding season so that no position on any 101 

patch is vacant at the start of each breeding season (i.e. a density-dependent stationary 102 

population). Offspring that establish on to a patch are designated age 1 and can survive until 103 

some maximum age, , at which point they die. Time proceeds in a series of discrete breeding 104 

seasons, during which individuals have a probability of surviving to the next breeding season, 105 𝑝(𝑥), and a rate of reproduction, 𝑏(𝑥), that may vary with age, and can be described by a 106 

population matrix model (A). Individuals may receive contributions to their survival and 107 

reproduction from the other 𝑁 − 1 individuals on their patch, and may themselves contribute 108 

to the survival and reproduction of the 𝑁 − 1 conspecifics on the patch.  109 

 110 

Fundamental to this model is the concept of ‘transfers’. Biologically, transfers represent the 111 

help or harm to other individual’s fitness components: survival and reproduction. Transfers 112 

occur in the currency of genetic offspring equivalents, the same currency as survival and 113 

reproduction. Here, we assume that the transfers an individual makes to others is a function of 114 
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the ages of both the actor and recipient (Fig. 1). We display transfers between individuals as 115 𝑇𝑦𝑧𝑥 : if 𝑦 = 1, this represents an individual in age class 𝑥’s social effect on the reproduction of 116 

age class 𝑧, while 𝑦 = 𝑧 + 1 would represent an individual in age class 𝑥’s social effect on the 117 

survival of age class 𝑧.  118 

 119 

To quantify the inclusive fitness contributions of a focal individual of age 𝑥, a series of key 120 

considerations must be made. Specifically, we must (i) exclude the fraction of the class-𝑦 121 

offspring of a focal class-𝑥 individual that are born or survive as a consequence of the social 122 

environment (the help or harm of other individuals), and (ii) augment the total production of 123 

class-𝑦 offspring from all other age classes, including other individuals in age class 𝑥, that are 124 

born or survive due to the social contributions of a focal class-𝑥 individual. These latter 125 

offspring contributions are weighted by the coefficient of relatedness between an individual of 126 

age class 𝑥 and the class-𝑦 offspring of the recipient class7,8. For example, a focal individual 127 

aged 𝑥 survives with probability 𝑝(𝑥) and has a rate of reproduction 𝑏(𝑥). A fraction of these 128 

rates of survival and reproduction may be due to social interactions. These fractions are 129 

excluded from the inclusive fitness of the focal individual, leaving 𝑝̇(𝑥) and 𝑏̇(𝑥), with dot 130 

notation representing the effect of a focal individual’s own genotype on its own survival or rate 131 

of reproduction, i.e. direct fitness. Of the 𝑏̇(𝑥) offspring produced due to the genotype of an 132 

individual aged 𝑥, a proportion 𝑑 disperse, and a proportion 1 − 𝑑 remain at their natal patch. 133 

A fraction 𝑐 of the dispersing offspring die, representing a cost of dispersal. Surviving, 134 

dispersed offspring are evenly distributed among all sites, regardless of distance, and compete 135 

(fair lottery) for sites freed by adults that die in the current breeding season. Asymmetric 136 

competition is assumed so that juveniles do not displace resident adults, and die if they do not 137 

gain a breeding position on a patch. Offspring of a focal individual aged 𝑥 face a probability 138 
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of establishment 𝑔(𝑥) onto their natal patch, and 𝑔̅ on a different, random patch in the 139 

population. 140 

 141 

In a population with social interactions between patch members, we can populate a matrix (W) 142 

with the inclusive fitness (genetic offspring) contributions of individuals in age class 𝑥 to 143 

individuals in age class 𝑦 (𝑤𝑦𝑥): 144 

 145 

𝑤𝑦𝑥 = {𝑝̇(𝑥) + 𝑇𝑥+1,𝑥𝑥  , if 𝑦 = 𝑥 + 1𝐹̇(𝑥), if 𝑦 = 10 𝑂𝑅 𝑇𝑦𝑧𝑥  𝑖𝑓 𝑦 = 𝑧 + 1 , 146 

                [1] 147 

where 148 𝑝̇(𝑥) = 𝑝(𝑥)  −  ∑ 𝑇𝑥+1,𝑥𝑧𝑧  149 

             [2]     150 

and 151 𝑏̇(𝑥) =  𝑏(𝑥) − ∑ 𝑇1,𝑥𝑧𝑧    152 

             [3] 153 

and 154 𝐹̇(𝑥) = 𝑏̇(𝑥) + ∑ 𝑇1,𝑧𝑥𝑧 [(1 − 𝑑)𝑔(𝑥) + (1 − 𝑐)𝑑𝑔̅]  .  155 

             [4] 156 

 157 

The proportions of the survival and reproduction of a focal individual aged 𝑥 that are due to 158 

the genotypes of other individuals are represented in the summation terms on the right-hand 159 

side of [2] (survival) and [3] (reproduction) (where 0 ≤  ∑ 𝑡𝑥+1,𝑥𝑧𝑧  < 𝑝(𝑥), and 0 ≤  ∑ 𝑡1,𝑥𝑧𝑧  <160 
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𝑏(𝑥)). Importantly, these proportions are distributed to other age classes, thus ensuring that no 161 

offspring is ‘double counted’35,36. A focal individual of age 𝑥 may also contribute to the 162 

survival and reproduction of others, accumulating indirect fitness through the transfer of 163 

genetic offspring. Contributions to survival are captured as 𝑇𝑦,𝑧𝑥  (where 𝑦 = 𝑧 + 1, and 𝑦 ≠164 1), and reproduction as 𝑇1,𝑧𝑥  (summed across age classes to equal ∑ 𝑇1,𝑧𝑥𝑧 ). The magnitude of 165 

these contributions will depend on i) the expected number of individuals in the recipient age 166 

class, ii) the fraction of the total contribution of all age classes combined to the survival or 167 

reproduction of the recipient age class individuals that is due to a focal individual aged 𝑥, and 168 

iii) the relatedness between a focal individual aged 𝑥 and an individual in the recipient age 169 

class (see Supplementary Information). This approach to modelling social interactions 170 

assumes that there are fractions of survival and fecundity of each age class that are due to the 171 

social environment (which could equal zero), and that these fractions are distributed to other 172 

individuals across age classes. If there are no explicit social interactions between multiple 173 

individuals on a patch, equation [2] simplifies to a population with limited dispersal and Ronce 174 

& Promislow’s20 kin competition selection gradients can be computed. With full dispersal (no 175 

offspring stay at the patch in which they’re born) and no social interactions, equation [1] 176 

simplifies to Hamilton’s panmictic population, and his forces of selection can be computed2.  177 

 178 

An inclusive fitness force of selection 179 

To compute forces of selection, we are ultimately concerned with a hypothetical mutation that 180 

alters survival rate or rate of reproduction at age 𝑥. The derivative of the growth rate of the 181 

mutant population, , with respect to the phenotypic effect of the mutation, , gives an indicator 182 

of the force of selection acting on the mutant allele2,20,37,38. We consider mutations of weak 183 

effects (small ) and first-order effects of selection39. Using this ‘sensitivity’ approach for an 184 
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age-structured population20,37,38,40-42, the force of selection acting on a mutant allele can be 185 

written as: 186 

 187 

𝑆 =  𝑑𝜆𝑑𝛿𝛿=0 = ∑ ∑ 𝑓𝑥𝑣𝑦𝐟 . 𝐯 𝑑𝑤𝑦𝑥𝑑𝛿 𝛿=0𝑦𝑥  188 

               [5] 189 

where f and v are the vector of asymptotic frequencies and the vector of inclusive reproductive 190 

values for the different age classes in the resident population. The term 𝑓𝑥 denotes the 191 

asymptotic frequency of age class 𝑥, and f is the dominant right eigenvector of the demographic 192 

projection matrix (A). In this model, the term 𝑣𝑥 represents the inclusive reproductive value of 193 

age class 𝑥, and is instead derived from an inclusive fitness matrix (W) that decomposes the 194 

demographic projection matrix into inclusive fitness contributions between age classes. 195 

Therefore, v is the dominant left eigenvector of W. Thus, the growth rate of the mutant 196 

population, , represents an inclusive fitness growth rate of the allele. Finally, the term  𝑤𝑦𝑥 197 

represents the class 𝑦 offspring of a class 𝑥 individual (genetic offspring equivalents). 198 

Therefore, 𝑑𝑤𝑦𝑥 represents the difference in the contribution of an individual age 𝑥 to 199 

individuals aged 𝑦 in the mutant population compared to the resident population. Overall, the 200 

sign of S predicts the direction of selection on the mutant allele with respect to the resident 201 

population wild type allele, whilst the magnitude of S conveys information about the force of 202 

selection2,20.  203 

 204 

The inclusive fitness force of selection on survival  205 

A mutant allele that alters the survival rate between age 𝑥 and 𝑥 + 1 changes inclusive fitness 206 

contributions between age class according to the following (see Methods): 207 
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𝑑𝑤𝑦𝑥 = { 𝑑𝑝̇(𝑥) , if y = x + 1−𝑑𝑝̇(𝑥)[ℎ̇(𝑥) + 𝑘̇(𝑥)𝑟̂(𝑥)], if y = 1                              0,                         otherwise  208 

 [6]               209 

where  ℎ̇(𝑥) is the proportion of offspring after dispersal at the local patch that are the direct 210 

and indirect contributions of a focal individual aged 𝑥, 𝑘̇(𝑥) is the proportion of offspring that 211 

are born due to the genotypes of other individuals on the patch, and 𝑟̂(𝑥) is the relatedness of 212 

an individual aged 𝑥 to the offspring of other patch mates (see Methods). As we assume 213 

mortality occurs between breeding seasons, a focal individual’s contributions to the survival 214 

and reproduction of other age classes are only affected at 𝑥 + 1, not in the current breeding 215 

season. 216 

 217 

Let 𝑆𝑝(𝑥) be the component of the force of selection due the effect of a mutant allele on the 218 

survival rate between age 𝑥 and 𝑥 + 1. Using equations [5] and [6], in a stationary population 219 

with limited dispersal and social interactions between individuals, this can be written as: 220 

 221 

𝑆𝑝(𝑥) =  𝑑𝑝̇(𝑥)𝑑𝛿 𝑓𝑥(𝑣𝑥+1 − [ℎ̇(𝑥) + 𝑘̇(𝑥)𝑟̂(𝑥)]𝑣1)𝐟. 𝐯    222 

 [7] 223 

                       224 

Equation [7] shows that the overall direction of the force of selection acting on a mutant allele 225 

that affects the survival rate between age 𝑥 and 𝑥 + 1 is a balance of two forces: the inclusive 226 

reproductive value at age 𝑥 + 1 vs the reproductive value of offspring (displaced by the 227 

survival of the focal individual) that have varying relatedness to the focal individual aged  𝑥. 228 

The term 𝐟. 𝐯 acts to scale the forces of selection in terms of generation time2,20.  229 

 230 
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The inclusive fitness force of selection on reproduction  231 

A mutant allele that alters reproduction at age 𝑥 changes inclusive fitness contributions 232 

between age class according to the following (see Methods and Supplementary 233 

Information): 234 

 235 

𝑑𝑤𝑦𝑥 = {   0, if y = x + 1𝑑𝑏̇(𝑥)[(1 − 𝑑)𝑔(𝑥)[(1 − ℎ(𝑥)) − 𝐼̇(𝑥) − 𝑘̇(𝑥)𝑟̂(𝑥) ] + (1 − 𝑐)𝑑𝑔̅], if y = 1                                                                                                                           0,      otherwise  236 

             [8] 237 

 238 

Then, let 𝑆𝑚(𝑥) be the component of the force of selection due the effect of a mutant allele on 239 

reproduction at age 𝑥. Using [5] and [8], in a stationary population with limited dispersal and 240 

social interactions between individuals, this can be written as: 241 

 242 

𝑆𝑚(𝑥) =  𝑑𝑏̇(𝑥)𝑑𝛿 𝑓𝑥𝑣1𝐟. 𝐯  [(1 − 𝑑)𝑔(𝑥)[(1 − ℎ(𝑥)) − 𝐼̇(𝑥) −  𝑘̇(𝑥)𝑟̂(𝑥) ] + (1 − 𝑐)𝑑𝑔̅]. 243 

                         [9] 244 

 245 

where 246 

 247 

𝐼̇(𝑥) =  ∑ 𝑇1,𝑧𝑥𝑧 (1 − 𝑑)𝑏(𝑥)(1 − 𝑑) + (𝑁 − 1)𝑏̅(1 − 𝑑) +  𝑁𝑏̅(1 − 𝑐)𝑑 248 

           [10] 249 

is the fraction of all offspring at the local patch after dispersal that exist due to indirect effects 250 

of the genotype of a focal individual aged 𝑥. Equation [9] shows that the overall force of 251 

selection acting on a mutant allele that affects the rate of reproduction at age 𝑥 is also comprised 252 

of two components: (i) the effect of the allele on the probability of establishment of different 253 
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types of offspring onto the local patch and (ii) the effect of the allele on the dispersing offspring 254 

that are part of the direct fitness of the focal individual aged 𝑥. Selection for effect (ii) will 255 

always be positive; however, selection for effect (i) will depend on the relative weights each 256 

class of offspring contributes to the overall effect. In this model, an increase in direct 257 

reproduction is, all else being equal, beneficial for the direct fitness of a focal individual, but 258 

detrimental to the indirect fitness of the focal individual.  259 

 260 

Applications of the model 261 

Equations [7] and [9] provide general solutions for age-specific inclusive fitness forces of 262 

selection on individual survival and reproduction in group structured populations. To visualise 263 

the results, we consider two hypothetical populations of iteroparous individuals with social 264 

interactions (Fig. 2, Fig. 3). For each, we consider background demography described by age-265 

specific vital rates, 𝑝(𝑥) and 𝑏(𝑥). We parameterise mortality risk at age 𝑥 using the Siler 266 

model43: 267 𝜇(𝑥) =  𝛼1𝑒−𝛽1𝑥 +  𝛼2𝑒𝛽2𝑥 268 

           [11] 269 

The probability of survival at age 𝑥, 𝑝(𝑥), is therefore equal to 𝑒−𝜇(𝑥). The probability of 270 

survival to age 𝑥 (𝑙(𝑥)) is then 𝑙(𝑥) =  ∏ 𝑝(𝑥)𝑥−11 , with 𝑙(1) = 1. As we assume all patches 271 

have no breeding positions available at the start of each breeding seasons (i.e., a density-272 

dependent stationary population), we can calculate the asymptotic frequency (𝑓𝑥) of each age 273 

class as  274 

𝑓𝑥 = 𝑙(𝑥)∑ 𝑙(𝑦)𝑦  .   275 

           [12] 276 

We then parameterise individual rate of reproduction at age 𝑥 as:  277 
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 278 

𝑏(𝑥) = { 0, 𝑖𝑓 𝑥 < 𝜀(𝑥 − 𝜀)𝑒−𝜑(𝑥−𝜀), 𝑖𝑓 𝑥 ≥  𝜀0, 𝑖𝑓 𝑥 > 𝜅    279 

                       [13] 280 

where 𝜀 designates the age of reproductive maturity, 𝜅 represents an age at which reproduction 281 

ceases, and 𝜑 modulates the shape of reproduction across age classes.  282 

 283 

Fig. 2A and Fig. 3A illustrate the life cycles of the two hypothetical social populations. Fig. 2A 284 

considers a population with post-reproductive individuals providing care for juveniles, as seen 285 

in humans44, orcas45, and Asian elephants46. Fig. 3A considers a population with juvenile 286 

individuals providing help to the reproduction adult breeders, as is found in many 287 

cooperatively-breeding species47. Fig. 2B and Fig. 3B display the modelled survivorship and 288 

reproduction as a function of individual age. We then apply our methodology (see Model) to 289 

partition these vital rates into inclusive fitness contributions between age classes and compute 290 

a fitness matrix (W) with elements described in [1]. Fig. 2C and Fig. 3C show the forces of 291 

selection acting on survival and reproduction at age x in these hypothetical social populations 292 

according to equations [7] and [9].  293 

 294 

We show that the force of selection acting on survival in social populations is not necessarily 295 

constant before maturity, as predicted by classical theory2. The exact pattern depends on 296 

whether pre-reproductive individuals gain indirect fitness through transfers or not. When 297 

juveniles do not engage in helping behaviour, the force of selection increases in the juvenile 298 

period as relatedness to newborn offspring decreases with increasing juvenile age (Fig. 2C; 299 

Fig. 2D). This decline in local relatedness facilitates a more ‘selfish’ force of selection on 300 

survival throughout the juvenile period. On the other hand, when juveniles provide help to 301 
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adult reproduction, the force of selection on survival generally decreased from the age at which 302 

indirect fitness was first accrued (Fig. 3C; Extended Data Fig. 3), rather than the age of first 303 

reproduction. In both examples, the force of selection on survival then declines throughout 304 

adulthood as future inclusive reproductive value declines and the relatedness to newborn 305 

offspring increases. When post-reproductive adults continue to accrue indirect fitness, the force 306 

of selection on survival can remain above zero in post-reproductive age classes (Fig. 2C; 307 

Extended Data Fig. 1). The magnitude of the force of selection is greater in post-reproductive 308 

age classes when juvenile dispersal is lower (and so there is higher local relatedness) and the 309 

magnitude of help provided by post-reproductive individuals is higher (Extended Data Fig.1). 310 

In general, the force of selection on survival will always have a positive component until the 311 

final age at which inclusive fitness is accrued, rather than necessarily the age of last 312 

reproduction. At this age, when future survival is no longer possible, the first term on the 313 

numerator of Equation [7] is zero, and so, if there is some level of local relatedness (i.e. 𝑟̂(𝑥) >314 0), selection will favour increased mortality as it will benefit the establishment of related 315 

juveniles.  316 

 317 

In populations with relatively long lifespans, the force of selection on reproduction was weaker 318 

than the force of selection on survival. The force of selection acting on reproduction at age 𝑥  319 

generally declined from birth, as predicted by Hamilton’s model2, but not always (Extended 320 

Data Fig. 4), and the decline was more rapid when the rate of dispersal was lower (Extended 321 

Data Fig. 2). This more rapid decline is likely due to the greater inclusive fitness costs of 322 

increasing personal reproduction when local relatedness is higher. The force of selection on 323 

reproduction in early life is also weaker when post-reproductive adults have a more significant 324 

impact on juvenile survival. In all iterations of the model (Fig. 3C; Extended Data Fig. 3), there 325 
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was a slight increase in the force of selection acting on reproduction in the final age class, when 326 

the force of selection on rate of survival becomes negative. 327 

 328 

When considering the evolution of demographic senescence, evolutionary biologists use 329 

population growth rate, 𝑟, as the measure of fitness48 (but see49). The magnitude of the change 330 

in population growth rate due to an age-specific change in survival and/or reproduction 331 

generally declines with age (but see50 for other indicators of the force of selection), and this 332 

decline facilitates the evolution of senescence2. However, for social species, it is crucial to 333 

consider explicitly the inclusive fitness of individuals as the quantity that natural selection 334 

seeks to maximise10. Indeed, the change in inclusive fitness due to an age-specific change in 335 

individual survival and/or reproduction must consider the combined effect on all individuals 336 

that are affected by the change24. Here, we show that, in an age-structured model for patch-337 

structured social populations, considering the inclusive fitness effects of an allele significantly 338 

alters the form of the forces of selection acting on age-specific survival rate and rate of 339 

reproduction.  340 

 341 

Our framework provides several key insights into the force of selection acting on survival and 342 

reproduction in social species. First, the force of selection acting on the survival rate of that 343 

age class is the product of future inclusive reproductive value (IRV), rather than conventional 344 

reproduction value (RV48), and the asymptotic frequency (stationary age distribution) of that 345 

age class. Since IRV remains above zero after reproduction ceases, if post-reproductive adults 346 

continue to accrue indirect fitness benefits, selection on survival of post-reproductive age-347 

classes does not necessarily go to zero as in Hamilton’s model2. Importantly, this finding 348 

provides a formal inclusive fitness framework for the ‘grandmother hypothesis’51,52, supporting 349 

work that has suggested indirect fitness benefits are essential to sustained post-reproductive 350 
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lifespan23,31. In our framework, the force of selection on survival of social species will remain 351 

non-zero until there is no future IRV. At this point, if there is some local relatedness, the force 352 

of selection on increased survival will be negative. Combined with an increase in the force of 353 

selection on reproduction at a ‘final age class’, a kin-selected terminal investment strategy, in 354 

which it pays to invest heavily in reproduction at the expense of survival to maximise the 355 

establishment of kin, may be favoured19.  356 

 357 

The incorporation of age-specific indirect fitness into the evolutionary theory of senescence 358 

means that selection on survival before maturity is not necessarily constant (Fig. 2C; Fig. 3C). 359 

This difference occurs because of the balance between the future IRV of the individual and the 360 

IRV of newborns displaced by increased survival. If relatedness to other individuals declines 361 

throughout the juvenile period as a focal individual ages, and the focal individuals own IRV 362 

increases as they approach maturity, the balance in Equation [7] is weighed more heavily 363 

towards the first term, and the force of selection on increased survival will increase. On the 364 

other hand, in populations where juveniles help and accrue indirect fitness, the force of 365 

selection on survival will declined from the age at which indirect fitness is first gained. This 366 

result implies that, in species with pre-reproductive help, senescence should start from the age 367 

at which inclusive fitness is first gained, rather than the age of first reproduction, as in 368 

conventional models2,20.  369 

 370 

An inclusive fitness force of selection acting on reproduction depends on the costs and benefits 371 

associated with increasing personal reproduction. In our framework, selection for increased 372 

reproduction will always have a positive component due to the increased probability of an 373 

offspring (whether philopatric or dispersive) establishing on to a patch. However, the 374 

subsequent decrease in probability of other locally produced offspring establishing on to the 375 
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patch reduces the magnitude of the force of selection acting on reproduction. This result may 376 

be especially important for groups experiencing strong competition over resources12. For 377 

example, a negligible force of selection on reproduction may favour reproductive restraint by 378 

some individuals within cooperatively-breeding groups, when access to reproduction is limited 379 

and inclusive fitness costs of increasing personal reproduction would be substantial32.  380 

 381 

Discussion  382 

Our framework builds on previous work that has made significant ground in incorporating 383 

social effects into the evolutionary theory of senescence. Lee’s23 model showed that the force 384 

of selection acting on age-specific mortality can be modified by intergenerational transfers of 385 

resources. However, kin selection did not enter the formal model as no explicit spatial 386 

structured was considered. Here, by explicitly considering a patch structured population with 387 

dispersal, we allow for variation in relatedness and thus a larger breadth of possible kin 388 

selection effects to be considered. Ronce & Promislow20 derived analytical solutions that 389 

provided the baseline framework for the model here, showing that the force of selection on 390 

increased survival includes a negative component driven by the displacement of offspring from 391 

establishing on the local patch. This term is similar to the negative term in [7]; however, our 392 

framework also explicitly considers the impact of survival on the establishment of other locally 393 

produced offspring. By only considering single individuals on a patch, social interactions in 394 

Ronce & Promislow’s model were limited to kin competition between parent and offspring 395 

over residency on the patch. Here, by including multiple individuals on the patch, we can also 396 

incorporate social effects into the form of the force of selection on reproduction ([10]). Finally, 397 

Moorad & Nussey53 took a quantitative genetics approach to add indirect genetic effects, 398 

explicitly considering maternal effect senescence, but modelled no explicit demography. A 399 
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combination of explicit demography, as modelled here, and quantitative genetics could prove 400 

a major future step. 401 

 402 

The framework we present here provides a base to expand our understanding of senescence 403 

across social species. For example, previous work has found mixed evidence for extended 404 

lifespan in cooperative breeders54-57, and some evidence for differences in rates of senescence 405 

between cooperative and non-cooperative breeders58. Previous theory suggests that it is longer 406 

life and overlapping generations that initially favour cooperation26, but also that a delayed age 407 

of first reproduction as a result of queuing for reproduction might be a self-reinforcing 408 

mechanism for extended lifespan in cooperative breeders59. However, multiple other facets of 409 

the demography of cooperative breeding systems, including the process of group formation60, 410 

the structure of dominance hierarchies61 and levels of reproductive skew62 all have the potential 411 

to play a role in determining lifespan and rates of senescence. All have the potential to 412 

contribute to the shape of the age class asymptotic frequency and inclusive reproductive value 413 

distributions that, as we have shown here, underpin inclusive fitness forces of selection. Our 414 

model provides a framework to stimulate further theoretical work for how these features of 415 

cooperative breeding systems may impact the evolution of lifespan and senescence. 416 

 417 

Here, we focused on how cooperative interactions between members of a group can alter age-418 

specific inclusive fitness forces of selection. However, in many groups, competitive 419 

interactions over limited resources are also rife. In our model, transfers between age classes 420 

reflect the net effect of the presence of an individual in one age class on the survival and 421 

reproduction of an individual in another age class. If the net effect is negative, then the genetic 422 

offspring transfer is also negative. For example, consider again the social system illustrated in 423 

Figure 2. Instead of post-reproductive individuals having a positive effect of the survival of 424 
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juveniles, let us instead imagine a scenario in which the presence of post-reproductive 425 

individuals is harmful to the survival of juveniles. An allele that increases the rate of survival 426 

in such post-reproductive individuals will be selected against due to the inclusive fitness costs 427 

imposed from the negative effects on related juvenile individuals, potentially hastening the 428 

evolution of more rapid senescence. Finally, in our model, we only considered indirect fitness 429 

returns from social interactions. In many cooperative breeding systems, however, direct fitness 430 

returns from social interactions can be the main driver for alloparental care47. Some form of 431 

direct fitness benefits could be incorporated into the model by delaying the age at which returns 432 

from social interactions are realised, as hypothesised by group augmentation theory63.  433 

 434 

In summary, recent research has focused on the potential for social interactions to drive 435 

variation in senescence across species1,64. The model we present here shows that when 436 

inclusive fitness consequences of increasing individual survival or reproduction are considered, 437 

age-specific forces of selection can vary markedly from previous asocial models. Our results 438 

thus support the hypothesis that sociality can shape patterns of senescence in nature. Further 439 

theoretical, empirical and comparative studies are now needed to determine the amount of 440 

variation in senescence patterns that can be explained by social modes of life.    441 

  442 
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Methods 443 

 444 

Appendix A: Relatedness 445 

 446 
In order to quantify indirect genetic contributions, it is essential to consider the relatedness between different age 447 

classes of individuals in the population. The relatedness of a focal individual aged 𝑥 to other individuals on the 448 

patch, including themselves, can then be described as:  449 

 450 𝑟(𝑥) =  1𝑁 + 𝑁 − 1𝑁 𝑟̂(𝑥)  . 451 

              [A1] 452 

 453 

Then, let 𝑟𝑦𝑥 denote the probability that an allele sampled randomly from a given locus in an individual aged 𝑥 is 454 

identical by descent (IBD) to an allele sampled randomly from the same locus in an individual aged 𝑦26,27,32,34,65,66. 455 

The term 𝑟̂(𝑥) represents the average relatedness of a breeding individual aged 𝑥 to another random breeder on 456 

the same patch26,27, which is equivalent to the mean relatedness of a focal individual aged 𝑥 across all age classes 457 

(𝑟̂(𝑥) = 𝑟𝑦𝑥̅̅ ̅̅ ). Given the assumption of haploid genetics and asexuality, 𝑟̂(𝑥) is therefore also the relatedness of a 458 

focal individual aged 𝑥 to the offspring of the other individuals on the patch. Under the assumption of infinite 459 

patches, any immigrants arriving at the focal patch will not have any relatives when they arrive, and the relatedness 460 

of individuals on the patch of any age to these immigrants is equal to 0.   461 

 462 

Let us define ℎ(𝑥) as the proportion of offspring after dispersal at the local patch that are the offspring (not 463 

partitioned into inclusive fitness contributions) of a focal individual aged 𝑥: 464 

 465 ℎ(𝑥) =  𝑏(𝑥)(1 − 𝑑)𝑏(𝑥)(1 − 𝑑) + (𝑁 − 1)𝑏̅(1 − 𝑑) + 𝑁𝑏̅𝑑(1 − 𝑐) 466 

[A2] 467 

 468 

where 𝑏̅ represents the average rate of reproduction. For simplicity, we assume no demographic stochasticity 469 

within patches (see Discussion). Then, let 𝑘(𝑥) define the proportion of offspring after dispersal at the local patch 470 

that are the demographic offspring of other individuals on the patch besides the focal individual aged 𝑥: 471 

 472 𝑘(𝑥) =  (𝑁 − 1)𝑏̅(1 − 𝑑)𝑏(𝑥)1 − 𝑑) + (𝑁 − 1)𝑏̅(1 − 𝑑) + 𝑁𝑏̅𝑑(1 − 𝑐) 473 

[A3] 474 

 475 

Using equations [A2] and [A3], we can describe the relatedness between an individual aged 𝑥 to a different 476 

individual on the patch aged 𝑦 as a function of both individual’s ages: 477 

 478 

𝑟𝑦𝑥 = { ℎ(𝑥 − 𝑦) + 𝑘(𝑥 − 𝑦)𝑟̂(𝑥 − 𝑦), 𝑦 < 𝑥(1 − 𝑑)2[ℎ̅2  + (1 − ℎ̅2)𝑟̂(1) ] , 𝑦 = 𝑥ℎ(𝑦 − 𝑥) + 𝑘(𝑦 − 𝑥)𝑟̂(1), 𝑦 > 𝑥  . 479 
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              [A4] 480 

First, consider the case when the individual of age 𝑥 is older than the individual of age 𝑦 (top row of [A4]). The 481 

individual aged 𝑦 was born 𝑥 − 𝑦 breeding seasons ago, when the individual aged 𝑥 was 𝑥 − 𝑦 years old. At age 482 𝑥 − 𝑦, the proportion of offspring at the local patch after dispersal that are the offspring of an individual aged 483 𝑥 − 𝑦 is defined as ℎ(𝑥 − 𝑦). Therefore, with probability ℎ(𝑥 − 𝑦), the individual aged 𝑦 is the offspring of the 484 

individual aged 𝑥 from 𝑥 − 𝑦 breeding seasons ago, and thus the relatedness between the two individuals is one. 485 

Then, let 𝑘(𝑥 − 𝑦) define the proportion of offspring at the local patch after dispersal 𝑥 − 𝑦 breeding seasons ago 486 

that were the offspring of other individuals on the patch. With probability 𝑘(𝑥 − 𝑦), therefore, the individual aged 487 

aged 𝑦 was born to another individual on the patch. Therefore, the relatedness of the individual aged 𝑥 to the 488 

individual aged 𝑦 is equal to the relatedness of an individual aged 𝑥 − 𝑦 to a random offspring born locally to the 489 

patch, which is equal to the relatedness of an individual aged 𝑥 − 𝑦 to another random individual on the patch 490 

(𝑟̂(𝑥 − 𝑦)). The remaining proportion of offspring at the patch after dispersal 𝑥 − 𝑦 breeding seasons ago (1 −491 ℎ(𝑥 − 𝑦) − 𝑘(𝑥 − 𝑦)) were from elsewhere in the population and thus relatedness is 0.  492 

 493 

Second, consider the case when both individuals are the same age (second row of [A4]). The probability that both 494 

are local to the patch is (1 − 𝑑)2. If both individuals are born locally, we then have to consider the probability 495 

that both individuals were born to the same mother, and thus are siblings related by 1. If the average proportion 496 

across age classes of offspring that are born to an individual is ℎ̅, then the probability that two offspring born 𝑥 497 

breeding seasons ago were born to the same mother is equal to ℎ̅2. One minus ℎ̅2is then the probability that these 498 

two locally born offspring 𝑥 breeding seasons ago were born to different mothers, in which case the relatedness 499 

of an individual aged 𝑥 to a same aged individual is equal to the relatedness of an individual to a random member 500 

of the patch at age 1 when the focal individual established onto the patch (𝑟̂(1)). The final scenario (bottom row 501 

of [A4]) considers the case when the individual aged 𝑦 is older than the individual aged 𝑥. In this case the logic 502 

is the opposite to the case when the individual aged 𝑥 is older than the individual aged 𝑦.  503 

 504 

To calculate 𝑟̂(𝑥), the average relatedness of an individual aged 𝑥 to another individual on the patch, we need to 505 

calculate the average relatedness of individuals aged 𝑥 to all other age classes. Using each possible relatedness 506 

between age classes ([A4]), we can do this by weighting each age class specific relatedness term by the asymptotic 507 

frequencies of the relevant age classes:  508 

 509 

𝑟̂(𝑥) = (∑ 𝑓𝑦[(ℎ(𝑥 − 𝑦) + 𝑘(𝑥 − 𝑦)𝑟̂(𝑥 − 𝑦)]𝑦<𝑥 ) + 𝑓𝑥(1 − 𝑑)2(ℎ̅2 + (1 − ℎ̅2)𝑟̂(1))510 

+ ( ∑ 𝑓𝑦[ℎ(𝑦 − 𝑥) + 𝑘(𝑦 − 𝑥)𝑟̂(1)]𝑦=𝜔
𝑦=𝑥+1 ) 511 

                                       512 

[A5] 513 

  514 
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Deriving 𝒓̂(𝟏) 515 
 516 
To find a general solution for 𝑟̂(1), which is the relatedness of an individual aged 1 to another random breeder on 517 

the patch, let us consider a case of a population with 3 age classes (𝜔 = 3). Using the logic that 𝑥 = 1 is the first 518 

age class and therefore 𝑦 cannot be younger than 𝑥, 𝑟̂(1) with 3 age classes becomes: 519 

 520 

𝑟̂(1) = 𝑓1(1 − 𝑑)2[ℎ̅2 + 𝑟̂(1)(1 − ℎ̅2)] + ∑ 𝑓𝑦[ℎ(𝑦 − 𝑥) + 𝑘(𝑦 − 𝑥)]𝑟̂(1)3
𝑦=2  521 

                         [A6] 522 

Expanding the summation term, this becomes: 523 

 524 𝑟̂(1) = 𝑓1(1 − 𝑑)2[ℎ̅2 + 𝑟̂(1)(1 − ℎ̅2)] + 𝑓2[ℎ(1) + 𝑘(1)𝑟̂(1)] + 𝑓3[ℎ(2) + 𝑘(2)𝑟̂(1)]  525 

 526 

                                                [A7] 527 

Expanding out each term, this becomes: 528 

 529 𝑟̂(1) =  𝑓1(1 − 𝑑)2ℎ̅2 + 𝑓1(1 − 𝑑)2𝑟̂(1)(1 − ℎ̅2) + 𝑓2 ℎ(1) + 𝑓2𝑘(1)𝑟̂(1) + 𝑓3 ℎ(2) +   𝑓3𝑘(2)𝑟̂(1) 530 

 531 

                                                [A8] 532 

Factoring on the RHS by 𝑟̂(1), this becomes: 533 

 534 𝑟̂(1) =  𝑟̂(1)[𝑓1(1 − 𝑑)2(1 − ℎ̅2) + 𝑓2𝑘(1) + 𝑓3𝑘(2)] + 𝑓1(1 − 𝑑)2ℎ̅2 + 𝑓2 ℎ(1) + 𝑓3 ℎ(2) 535 

 536 

                                                                          [A9] 537 

 538 

Re-arranging, and factoring on the LHS by 𝑟̂(1) this becomes: 539 

 540 𝑟̂(1) [1 − [𝑓1(1 − 𝑑)2(1 − ℎ̅2) +  𝑓2𝑘(1) + 𝑓3𝑘(2)]] =  𝑓1(1 − 𝑑)2ℎ̅2 +  𝑓2 ℎ(1) + 𝑓3 ℎ(2) 541 

        542 

                                   [A10]543 

  544 

Dividing both sides by [1 − [𝑓1(1 − 𝑑)2(1 − ℎ̅2) +  𝑓2𝑘(1) + 𝑓3𝑘(2)]], this becomes: 545 

 546 

 547 𝑟̂(1) =  𝑓1(1 − 𝑑)2ℎ̅2 + 𝑓2 ℎ(1) + 𝑓3 ℎ(2)1 − [𝑓1(1 − 𝑑)2(1 − ℎ̅2) +  𝑓2𝑘(1) + 𝑓3𝑘(2)] 548 

 549 

                                         [A11] 550 

Finally, to generalise for all possible number of age classes, we can re-write [A11] as 551 
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 552 𝑟̂(1) =  𝑓1(1 − 𝑑)2ℎ̅2 + ∑ 𝑓𝑦ℎ(𝑦 − 1)𝜔𝑦=21 −  [𝑓1(1 − 𝑑)2(1 − ℎ̅2) + ∑ 𝑓𝑦𝑘(𝑦 − 1)𝜔𝑦=2  ] 553 

  554 

            [A12] 555 

Once we have 𝑟̂(1), 𝑟̂(𝑥) for all other age classes can be solved recursively. 556 

  557 
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Appendix B: Analytical Solutions 558 

 559 
The effect of a mutant allele that alters age-specific survival in a social population 560 
 561 
Let us first consider how, in a resident population with limited dispersal and social interactions, a mutant allele 562 

that affects survival at age 𝑥 will alter the number of class-𝑦 offspring of a focal individual aged 𝑥. First, the most 563 

obvious effect of this allele is to change the individual’s probability of survival to the next breeding season, which 564 

is 𝑑𝑝̇(𝑥). A change in survival will also alter the contributions a focal individual aged 𝑥 makes to the offspring 565 

class, 𝑤1𝑥. For example, if the mutant allele increases survival at age 𝑥, then there is a greater chance the focal 566 

individual survives to age 𝑥 + 1, and this subsequently reduces the probability that an offspring at the focal patch 567 

after dispersal will establish onto the patch before the next breeding season. Four classes of offspring will exist at 568 

the focal patch after dispersal: 1) the offspring of a focal individual aged 𝑥, 2) the offspring of other individuals 569 

on the patch that exist due to the genotype of a focal individual aged 𝑥, 3) the offspring of other individuals on 570 

the patch that don’t owe their existence to the genotype of a focal individual aged 𝑥, and 4) offspring from 571 

elsewhere in the population. As we are interested in the inclusive fitness effect of the mutant allele, we must 572 

consider the fates of all the offspring that are impacted by the effect of the allele24.  573 

 574 

We can consider the first two sets of offspring together and ask how a change in survival at age 𝑥 alters the direct 575 

and indirect production of offspring of a focal age 𝑥 individual (working showed below). 576 

 577 𝑑𝑤1𝑥(1,2)𝑑𝑝̇(𝑥) = 𝐹̇(𝑥)[(1 − 𝑑)𝑔(𝑥) + (1 − 𝑐)𝑑𝑔̅] − 𝐹̇(𝑥)[(1 − 𝑑)𝑔′(𝑥) + (1 − 𝑐)𝑑𝑔̅]  578 

                                                               [B1] 579 

with 𝑔′(𝑥) displaying that the effect of the allele is to alter the probability that the direct and indirect offspring of 580 

the individual aged 𝑥 establish on to the patch. [B1] can be worked through and simplified as: 581 

 582 𝑑𝑤1𝑥(1,2)𝑑𝑝̇(𝑥) = 𝐹̇(𝑥)(1 − 𝑑)𝑔(𝑥) + 𝐹̇(𝑥)(1 − 𝑐)𝑑𝑔̅ − 𝐹̇(𝑥)(1 − 𝑑)𝑔′(𝑥) − 𝐹̇(𝑥)(1 − 𝑐)𝑑𝑔̅ 583 

 584 = 𝐹̇(𝑥)(1 − 𝑑)𝑔(𝑥) − 𝐹̇(𝑥)(1 − 𝑑)𝑔′(𝑥) 585 

 586 = 𝐹̇(𝑥)(1 − 𝑑)[𝑔(𝑥) − 𝑔′(𝑥)] 587 

 588 = 𝐹̇(𝑥)(1 − 𝑑) [ 1 − 𝑝(𝑥) + (𝑁 − 1)(1 − 𝑝̅)𝑏(𝑥)(1 − 𝑑) + (𝑁 − 1)𝑏̅(1 − 𝑑) +  𝑁𝑏̅(1 − 𝑐)𝑑589 

− 1 − 𝑝′(𝑥) + (𝑁 − 1)(1 − 𝑝̅)𝑏(𝑥)(1 − 𝑑) + (𝑁 − 1)𝑏̅(1 − 𝑑) +  𝑁𝑏̅(1 − 𝑐)𝑑 ] 590 

 591 = 𝐹̇(𝑥)(1 − 𝑑) [ −𝑑𝑝̇(𝑥)𝑏(𝑥)(1 − 𝑑) + (𝑁 − 1)𝑏̅(1 − 𝑑) +  𝑁𝑏̅(1 − 𝑐)𝑑 ] 592 

 593 
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=  −𝑑𝑝̇(𝑥) [ 𝐹̇(𝑥)(1 − 𝑑)𝑏(𝑥)(1 − 𝑑) + (𝑁 − 1)𝑏̅(1 − 𝑑) +  𝑁𝑏̅(1 − 𝑐)𝑑] 594 

 595 

Finally, let ℎ̇(𝑥) = 𝐹̇(𝑥)(1−𝑑)𝑏(𝑥)(1−𝑑)+(𝑁−1)𝑏̅(1−𝑑)+ 𝑁𝑏̅(1−𝑐)𝑑 be defined as the proportion of offspring at the focal patch 596 

after dispersal that are born due the genotype of a focal individual aged 𝑥. Note, ℎ̇(𝑥) is different from ℎ(𝑥) (see 597 

Methods Appendix A), as ℎ(𝑥) does not partition the offspring with respect to inclusive fitness contributions. 598 

The relatedness of the indirect offspring has already been discounted in the calculation of 𝐹̇(𝑥), and the relatedness 599 

of a focal individual to its own offspring is 1, so we can re-write [B1] as 600 

 601 𝑑𝑤1𝑥(1,2)𝑑𝑝(𝑥) = −𝑑𝑝̇(𝑥)ℎ̇(𝑥) 602 

                         [B2] 603 

 604 

Let us now consider the third set of offspring and ask how a change in survival of a focal individual at age 𝑥 605 

impacts the offspring of other individuals on the patch that don’t owe their existence to the genotype of a focal 606 

individual aged 𝑥. In the resident population, this contribution is 0. However, an increase in survival of an 607 

individual aged 𝑥, for example, will reduce the likelihood that any of these offspring that do not disperse will 608 

establish onto the patch before the next breeding season. We can write the average number of offspring of all 609 

other individuals on the patch, in the presence of a focal individual aged 𝑥, that will establish onto the local patch 610 

as  611 

 612 (𝑁 − 1)𝐹̅(1 − 𝑑)𝑔(𝑥) 613 

              [B3] 614 

The effect of a mutant allele that alters the survival of a focal individual aged 𝑥 on this expected number of 615 

offspring can then be written as 616 

 617 𝑑𝑤1𝑥(3)𝑑𝑝̇(𝑥) =  (𝑁 − 1)𝐹̅(1 − 𝑑)𝑔(𝑥) − (𝑁 − 1)𝐹̅(1 − 𝑑)𝑔′(𝑥) 618 

[B4] 619 

 620 

[B4] can then be worked through and simplified as  621 

 622 𝑑𝑤1𝑥(3)𝑑𝑝̇(𝑥) =  (𝑁 − 1)𝐹̅(1 − 𝑑)[𝑔(𝑥) − 𝑔′(𝑥)] 623 

 624  = (𝑁 − 1)𝐹̅(1 − 𝑑) [ 1 − 𝑝(𝑥) + (𝑁 − 1)(1 − 𝑝̅)𝑏(𝑥)(1 − 𝑑) + (𝑁 − 1)𝑏̅(1 − 𝑑) +  𝑁𝑏̅(1 − 𝑐)𝑑625 

− 1 − 𝑝′(𝑥) + (𝑁 − 1)(1 − 𝑝̅)𝑏(𝑥)(1 − 𝑑) + (𝑁 − 1)𝑏̅(1 − 𝑑) +  𝑁𝑏̅(1 − 𝑐)𝑑 ] 626 

 627 
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= (𝑁 − 1)𝐹̅(1 − 𝑑) [ −𝑑𝑝̇(𝑥)𝑏(𝑥)(1 − 𝑑) + (𝑁 − 1)𝑏̅(1 − 𝑑) +  𝑁𝑏̅(1 − 𝑐)𝑑 ] 628 

 629 =  −𝑑𝑝̇(𝑥) [ (𝑁 − 1)𝐹̅(1 − 𝑑)𝑏(𝑥)(1 − 𝑑) + (𝑁 − 1)𝑏̅(1 − 𝑑) +  𝑁𝑏̅(1 − 𝑐)𝑑] 630 

 631 

Similar to the logic above, let 𝑘̇(𝑥) = (𝑁−1)𝐹̅(1−𝑑)𝑏(𝑥)(1−𝑑)+(𝑁−1)𝑏̅(1−𝑑)+ 𝑁𝑏̅(1−𝑐)𝑑 be defined as the proportion of offspring at 632 

the focal patch after dispersal that are average direct and indirect offspring of all other individuals bar the focal 633 

individual aged 𝑥. These offspring are related to the focal individual by 𝑟̂(𝑥) and so the above becomes 634 

 635 𝑑𝑤1𝑥(3)𝑑𝑝̇(𝑥) =  −𝑑𝑝̇(𝑥)𝑘̇(𝑥)𝑟̂(𝑥)   636 

              [B5] 637 

Given our assumptions of an infinite population, we can assume that relatedness of any individual on a patch to 638 

offspring that have dispersed from elsewhere will be equal to zero. Therefore, the relatedness of a focal individual 639 

aged 𝑥 to the proportion of offspring after dispersal that were not born locally on the patch is zero. Thus, there is 640 

an overall balance of the effect of the mutant allele on a focal individual of age 𝑥’s production of newborns 641 

weighted on one side by locally produced offspring (with varying relatedness) and on the other side by dispersed 642 

offspring. The total effect of a mutant allele that alters age-specific survival on the production of offspring can 643 

then be summed as  644 

 645 𝑑𝑤1𝑥𝑑𝑝̇(𝑥) = −𝑑𝑝̇(𝑥)ℎ̇(𝑥) − 𝑑𝑝̇(𝑥)𝑘̇(𝑥)𝑟1𝑥 =  −𝑑𝑝̇(𝑥)[ℎ̇(𝑥) + 𝑘̇(𝑥)𝑟̂(𝑥) ] 646 

              [B6] 647 

 648 

The overall effect (𝑑𝑤𝑦𝑥 for all y) of a mutant allele that alters age-specific survival is then shown in [6] in the 649 

main text. 650 

651 
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The effect of a mutant allele that alters age-specific reproduction in a social population 652 
 653 

Let us now consider how a mutant allele that affects reproduction at age 𝑥 will alter the class-𝑦 offspring a focal 654 

individual aged 𝑥 in our social population. First, we assume for simplicity that a change in reproduction of a focal 655 

individual aged 𝑥 does not alter the individual’s probability of survival to the next breeding season, or its 656 

contributions to the survival of other individuals alive on the patch. These are obvious extensions for future 657 

iterations of the model (see Discussion). We therefore limit the effects of a change in reproduction to altering the 658 

contributions a focal individual aged 𝑥 makes to the offspring class, 𝑤1𝑥. There are four different types of offspring 659 

to consider: 1) the offspring of a focal individual aged 𝑥 that exist due to its own genotype, 2) the offspring of 660 

other individuals on the patch that exist due to the genotype of a focal individual aged 𝑥, 3) the offspring of other 661 

individuals on the patch that don’t owe their existence to the genotype of a focal individual aged 𝑥, and 4) offspring 662 

from elsewhere in the population. Again, as we are interested in the inclusive fitness effect of the mutant allele, 663 

we must consider the fates of all the offspring that are impacted by the effect of the allele24.  664 

 665 

The inclusive fitness effects of a mutant allele that causes a change in the direct rate of reproduction of a focal 666 

individual aged 𝑥 for each class of offspring can be displayed as follows: 667 

 668 𝑑𝑤1𝑥(1)𝑑𝑏̇(𝑥) = 𝑏̇(𝑥)[(1 − 𝑑)𝑔(𝑥) + (1 − 𝑐)𝑑𝑔̅] −  𝑏̇′(𝑥)[(1 − 𝑑)𝑔′(𝑥) + (1 − 𝑐)𝑑𝑔̅]   669 

                                    [B7] 670 

 671 𝑑𝑤1𝑥(2)𝑑𝑏̇(𝑥) = ∑ 𝑇1,𝑧𝑥𝑧 (1 − 𝑑)𝑔(𝑥) −  ∑ 𝑇1,𝑧𝑥𝑧 (1 − 𝑑)𝑔′(𝑥)  672 

                                    [B8] 673 

 674 𝑑𝑤1𝑥(3)𝑑𝑏̇(𝑥) = (𝑁 − 1)𝐹̅(1 − 𝑑)𝑔(𝑥) −  (𝑁 − 1)𝐹̅(1 − 𝑑)𝑔′(𝑥) 675 

                                    [B9] 676 

 677 

with prime notation displaying that the explicit effects of the allele. Above, [B7] considers the effect of the allele 678 

on the focal individual’s direct production of offspring, [B8] the effect of the allele on the indirect offspring of 679 

focal, and [B9] the effect on offspring born to other individuals on the patch not due to the genotype of focal, but 680 

whom focal might be related to more than the population average (zero). Again, individuals that disperse from 681 

elsewhere in the population to the focal patch are assumed to be related to any individual on the patch by zero, 682 

and so the inclusive fitness effect of the allele with regards to the fourth class of offspring is also equal to zero. 683 

Furthermore, given our assumption of infinite patches, the effect of the allele on the second and third classes of 684 

offspring is limited to those offspring which do not disperse i.e. compete for a site at the local patch. The 685 

simplification of [B7 – B9] follows the same logic as [B1 – B5]. The resulting derivations are lengthy and so are 686 

available in the Supplementary Information. The overall effect of the mutant allele that causes a change in the rate 687 

of reproduction of a focal individual aged 𝑥 is the sum of the effects [B7 – B9] and can be expressed as: 688 
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 689 𝑑𝑤1𝑥𝑑𝑏̇(𝑥) =  𝑑𝑏̇(𝑥)[(1 − 𝑑)𝑔(𝑥)[(1 − ℎ(𝑥)) − 𝐼(̇𝑥) − 𝑘̇(𝑥)𝑟̂(𝑥) ] + (1 − 𝑐)𝑑𝑔̅] 690 

            [B10] 691 

 692 

The overall effect (𝑑𝑤𝑦𝑥 for all y) of a mutant allele that alters age-specific reproduction is then shown in [8] in 693 

the main text. 694 

 695 

  696 
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 37 

Figure 1. An example of a genetic offspring transfer between two individuals using inclusive fitness.  To illustrate transfers, we consider a 854 

patch with two individuals, one of age 𝑥 and the other of age 𝑦. The individual aged 𝑥 has 𝑏(𝑥) offspring, survives with probability 𝑝(𝑥), and 855 

receives no social transfers from other individuals in the population when aged 𝑥. We imagine a social behaviour exists whereby the individual 856 

aged 𝑥 contributes to the reproduction of individuals aged 𝑦. In this scenario, the individual aged 𝑦 has 𝑏(𝑦) offspring in the current breeding 857 

season, but one of these offspring is due to the transfer from the focal individual aged 𝑥. Following inclusive fitness logic, the offspring produced 858 

due to the social behaviour of the individual aged 𝑥 is stripped from the inclusive fitness of the individual aged 𝑦, leaving 𝑏̇(𝑦) as their inclusive 859 

fitness contribution to age class 1. The inclusive fitness contribution of the focal individual aged 𝑥 to age class 1 is 𝑏̇(𝑥) + 𝑇1𝑦𝑥 𝑟̂(𝑥), where 𝑟̂(𝑥) 860 

represents the relatedness of an individual aged 𝑥 to the offspring it helped to produce. 861 

  862 
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 39 

Figure 2. Age specific forces of selection in a social population with post-reproductive help. A) A hypothetical population of iteroparous 864 

individuals classified into three life cycle stages: juvenile (J), reproductive adult (A), and post-reproductive adult (PRA). The red arrow from A to 865 

J represents the reproduction of adult individuals, whereas the dark blue arrow from PRA to J represents the social contributions from post-866 

reproductive adults to the survival of juveniles. B) The background vital rates of survivorship and reproduction of the model social population. 867 

Survival probability at age 𝑥 is produced from a Siler model ([11]) with parameters: 𝛼1 = 0.4 , 𝛽1 = 0.6 , 𝛼2 = 0.1 , 𝛽2 = 0 (See SOM for further 868 

details). Reproduction at age 𝑥 is modelled according to [13] with parameters: 𝜀 = 15, 𝜑 = 0.125, and 𝜅 = 40 (SOM). C) The forces of selection 869 

acting on survival at age 𝑥 increases during the juvenile period and then decreases but remains above zero in the post-reproductive period. The 870 

force of selection acting on reproduction at age 𝑥 is weaker than the force of selection acting on survival and declines from birth. Other demographic 871 

parameters to produce these forces of selection were set to 𝑐 = 0, 𝑑 = 0.5, 𝑁 = 4 and 𝜔 = 50. (see Model and SOM D) The relatedness of an 872 

individual aged 𝑥 to another random individual on the patch declines throughout the juvenile (pre-reproductive) window, and then increases during 873 

adult reproduction before declining again as reproduction ceases.  874 
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Figure 3. Age specific forces of selection in a social population with pre-reproductive help. A) A hypothetical population of iteroparous 880 

individuals with two lifecycle stages: juvenile (J) and reproductive adult (A). The red arrow from J to A represents the social contributions from 881 

juveniles to the reproduction of adults. Note that here, help is in the currency of reproduction, rather than survival (See Fig. 2A). B) The background 882 

vital rates of survivorship and reproduction. Survival at age 𝑥 is produced from a Siler model ([11]) with parameters: 𝛼1 = 0.4 , 𝛽1 = 0.6 , 𝛼2 =883 0.1 , 𝛽2 = 0. Rate of reproduction at age 𝑥 is modelled according to [13] with parameters: 𝜀 = 5, 𝜑 = 0.2, and 𝜅 = 21. C) The force of selection 884 

acting on survival at age 𝑥 declines from birth. The force of selection acting on reproduction at age 𝑥 is weaker than the force of selection on 885 

survival and also declines from birth but then increases in the final age class. Other demographic parameters to produce these forces of selection 886 

were set to 𝑐 = 0, 𝑑 = 0.5 and 𝑁 = 4 and 𝜔 = 20. D) The relatedness of an individual aged 𝑥 to another random individual on the patch declines 887 

throughout the juvenile period, and then increases during adult reproduction. 888 
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