[1] A. Mottok, C. Steidl, Biology of classical Hodgkin lymphoma: implications for prognosis and novel therapies, Blood. 131 (2018) blood-2017-09-772632. doi:10.1182/blood-2017-09-772632.
[2] A.S. LaCasce, Treating Hodgkin lymphoma in the new millennium: Relapsed and refractory disease, Hematol. Oncol. 37 (2019) 87–91. doi:10.1002/hon.2589.
[3] S.M. Ansell, Hodgkin lymphoma: 2018 update on diagnosis, risk-stratification, and management, Am. J. Hematol. 93 (2018) 704–715. doi:10.1002/ajh.25071.
[4] M. Tubiana, M. Henry-Amar, P. Carde, J.M. Burgers, M. Hayat, E. Van der Schueren, E.M. Noordijk, A. Tanguy, J.H. Meerwaldt, J. Thomas, Toward comprehensive management tailored to prognostic factors of patients with clinical stages I and II in Hodgkin’s disease. The EORTC Lymphoma Group controlled clinical trials: 1964-1987., Blood. 73 (1989) 47–56.
[5] D. Hasenclever, V. Diehl, A prognostic score for advanced Hodgkin’s disease. International Prognostic Factors Project on Advanced Hodgkin’s Disease., N. Engl. J. Med. 339 (1998) 1506–14. doi:10.1056/NEJM199811193392104.
[6] P.J. Bröckelmann, M.K. Angelopoulou, T.P. Vassilakopoulos, Prognostic factors in Hodgkin lymphoma, Semin. Hematol. 53 (2016) 155–164. doi:10.1053/j.seminhematol.2016.05.003.
[7] M. Kirienko, M. Sollini, A. Chiti, Hodgkin lymphoma and imaging in the era of anti-PD-1/PD-L1 therapy, Clin. Transl. Imaging. (2018). doi:10.1007/s40336-018-0294-7.
[8] V. Spina, A. Bruscaggin, A. Cuccaro, M. Martini, M. Di Trani, G. Forestieri, M. Manzoni, A. Condoluci, A. Arribas, L. Terzi-Di-Bergamo, S.L. Locatelli, E. Cupelli, L. Ceriani, A.A. Moccia, A. Stathis, L. Nassi, C. Deambrogi, F. Diop, F. Guidetti, A. Cocomazzi, S. Annunziata, V. Rufini, A. Giordano, A. Neri, R. Boldorini, B. Gerber, F. Bertoni, M. Ghielmini, G. Stüssi, A. Santoro, F. Cavalli, E. Zucca, L.M. Larocca, G. Gaidano, S. Hohaus, C. Carlo-Stella, D. Rossi, Circulating tumor DNA reveals genetics, clonal evolution and residual disease in classical Hodgkin lymphoma, Blood. (2018) blood-2017-11-812073. doi:10.1182/blood-2017-11-812073.
[9] M. Sollini, L. Antunovic, A. Chiti, M. Kirienko, Towards Clinical Application of Image Mining: A Systematic Review on Artificial Intelligence and Radiomics, Eur. J. Nucl. Med. Mol. Imaging. (2019).
[10] M. Sollini, L. Cozzi, G. Ninatti, L. Antunovic, L. Cavinato, A. Chiti, M. Kirienko, PET/CT radiomics in breast cancer: mind the step, Methods. (2020). doi:10.1016/j.ymeth.2020.01.007.
[11] M. Sollini, F. Bandera, M. Kirienko, Quantitative imaging biomarkers in nuclear medicine: from SUV to image mining studies. Highlights from Annals of Nuclear Medicine 2018, Eur. J. Nucl. Med. Mol. Imaging. (2019).
[12] F. Ben Bouallègue, Y. Al Tabaa, M. Kafrouni, G. Cartron, F. Vauchot, D. Mariano-Goulart, Association between textural and morphological tumor indices on baseline PET-CT and early metabolic response on interim PET-CT in bulky malignant lymphomas, Med. Phys. 44 (2017) 4608–4619. doi:10.1002/mp.12349.
[13] S.A. Milgrom, H. Elhalawani, J. Lee, Q. Wang, A.S.R. Mohamed, B.S. Dabaja, C.C. Pinnix, J.R. Gunther, L. Court, A. Rao, C.D. Fuller, M. Akhtari, M. Aristophanous, O. Mawlawi, H.H. Chuang, E.P. Sulman, H.J. Lee, F.B. Hagemeister, Y. Oki, M. Fanale, G.L. Smith, A PET Radiomics Model to Predict Refractory Mediastinal Hodgkin Lymphoma, Sci. Rep. 9 (2019) 1322. doi:10.1038/s41598-018-37197-z.
[14] K.H. Lue, Y.F. Wu, S.H. Liu, T.C. Hsieh, K.S. Chuang, H.H. Lin, Y.H. Chen, Prognostic Value of Pretreatment Radiomic Features of 18F-FDG PET in Patients With Hodgkin Lymphoma, Clin. Nucl. Med. (2019). doi:10.1097/RLU.0000000000002732.
[15] B. Ganeshan, K.A. Miles, S. Babikir, R. Shortman, A. Afaq, K.M. Ardeshna, A.M. Groves, I. Kayani, CT-based texture analysis potentially provides prognostic information complementary to interim fdg-pet for patients with hodgkin’s and aggressive non-hodgkin’s lymphomas, Eur. Radiol. 27 (2017) 1012–1020. doi:10.1007/s00330-016-4470-8.
[16] T. Knogler, K. El-Rabadi, M. Weber, G. Karanikas, M.E. Mayerhoefer, W. Michael, G. Karanikas, K. Georgios, M.E. Mayerhoefer, M. Marius Erik, Three-dimensional texture analysis of contrast enhanced CT images for treatment response assessment in Hodgkin lymphoma: Comparison with F-18-FDG PET, Med. Phys. 41 (2014) 121904. doi:10.1118/1.4900821.
[17] C. Nioche, F. Orlhac, S. Boughdad, S. Reuze, J. Goya-Outi, C. Robert, C. Pellot-Barakat, M. Soussan, F. erique Frouin, I. Buvat, Lifex: A freeware for radiomic feature calculation in multimodality imaging to accelerate advances in the characterization of tumor heterogeneity, Cancer Res. 78 (2018) 4786–4789. doi:10.1158/0008-5472.CAN-18-0125.
[18] M.J. Nyflot, F. Yang, D. Byrd, S.R. Bowen, G.A. Sandison, P.E. Kinahan, Quantitative radiomics: impact of stochastic effects on textural feature analysis implies the need for standards, J. Med. Imaging. 2 (2015) 041002. doi:10.1117/1.JMI.2.4.041002.
[19] M. Hatt, M. Majdoub, M. Vallières, F. Tixier, C.C. Le Rest, D. Groheux, E. Hindié, A. Martineau, O. Pradier, R. Hustinx, R. Perdrisot, R. Guillevin, I. El Naqa, D. Visvikis, 18F-FDG PET Uptake Characterization Through Texture Analysis: Investigating the Complementary Nature of Heterogeneity and Functional Tumor Volume in a Multi–Cancer Site Patient Cohort, J. Nucl. Med. 56 (2015) 38–44. doi:10.2967/jnumed.114.144055.
[20] M. Sollini, L. Cozzi, L. Antunovic, A. Chiti, M. Kirienko, PET Radiomics in NSCLC: State of the art and a proposal for harmonization of methodology, Sci. Rep. 7 (2017). doi:10.1038/s41598-017-00426-y.
[21] C. Seiffert, T.M. Khoshgoftaar, J. Van Hulse, A. Napolitano, RUSBoost: A Hybrid Approach to Alleviating Class Imbalance, IEEE Trans. Syst. Man, Cybern. - Part A Syst. Humans. 40 (2010) 185–197. doi:10.1109/TSMCA.2009.2029559.
[22] J.E. Park, D. Kim, H.S. Kim, S.Y. Park, J.Y. Kim, S.J. Cho, J.H. Shin, J.H. Kim, Quality of science and reporting of radiomics in oncologic studies: room for improvement according to radiomics quality score and TRIPOD statement, Eur. Radiol. (2019). doi:10.1007/s00330-019-06360-z.
[23] E. Calabretta, F. D’Amore, C. Carlo-Stella, Immune and Inflammatory Cells of the Tumor Microenvironment Represent Novel Therapeutic Targets in Classical Hodgkin Lymphoma., Int. J. Mol. Sci. 20 (2019). doi:10.3390/ijms20215503.
[24] T. Karantanos, I. Politikos, V.A. Boussiotis, Advances in the pathophysiology and treatment of relapsed/refractory Hodgkin’s lymphoma with an emphasis on targeted therapies and transplantation strategies., Blood Lymphat. Cancer. 7 (2017) 37–52. doi:10.2147/BLCTT.S105458.
[25] S. Gillessen, C. Kobe, A. Engert, B. von Tresckow, PET positivity – the agony of choice: response assessment and interpretation of increased FDG uptake of residual mediastinal tissue after frontline therapy in Hodgkin lymphoma, Leuk. Lymphoma. 61 (2020) 251–254. doi:10.1080/10428194.2019.1711076.
[26] S.F. Barrington, N.G. Mikhaeel, When should FDG-PET be used in the modern management of lymphoma?, Br. J. Haematol. (2014). doi:10.1111/bjh.12601.
[27] H.K. Shim, W.W. Lee, S.Y. Park, H. Kim, S.E. Kim, Relationship Between FDG Uptake and Expressions of Glucose Transporter Type 1, Type 3, and Hexokinase-II in Reed-Sternberg Cells of Hodgkin Lymphoma, Oncol. Res. Featur. Preclin. Clin. Cancer Ther. 17 (2009) 331–337. doi:10.3727/096504009787721177.
[28] D. Banerjee, Recent Advances in the Pathobiology of Hodgkin’s Lymphoma: Potential Impact on Diagnostic, Predictive, and Therapeutic Strategies., Adv. Hematol. 2011 (2011) 439456. doi:10.1155/2011/439456.
[29] M. Tatsumi, K. Isohashi, K. Matsunaga, T. Watabe, H. Kato, Y. Kanakura, J. Hatazawa, Volumetric and texture analysis on FDG PET in evaluating and predicting treatment response and recurrence after chemotherapy in follicular lymphoma., Int. J. Clin. Oncol. 24 (2019) 1292–1300. doi:10.1007/s10147-019-01482-2.
[30] T.C. El-Galaly, D. Villa, L.C. Gormsen, J. Baech, A. Lo, C.Y. Cheah, FDG-PET/CT in the management of lymphomas: current status and future directions, J. Intern. Med. 284 (2018) 358–376. doi:10.1111/joim.12813.
[31] M. Carles, I. Torres-Espallardo, A. Alberich-Bayarri, C. Olivas, P. Bello, U. Nestle, L. Martí-Bonmatí, Evaluation of PET texture features with heterogeneous phantoms: complementarity and effect of motion and segmentation method, Phys. Med. Biol. 62 (2017) 652–668. doi:10.1088/1361-6560/62/2/652.
[32] A. Parvez, N. Tau, D. Hussey, M. Maganti, U. Metser, 18F-FDG PET/CT metabolic tumor parameters and radiomics features in aggressive non-Hodgkin’s lymphoma as predictors of treatment outcome and survival, Ann. Nucl. Med. 32 (2018) 410–416. doi:10.1007/s12149-018-1260-1.
[33] M.E. Mayerhoefer, C.C. Riedl, A. Kumar, P. Gibbs, M. Weber, I. Tal, J. Schilksy, H. Schöder, Radiomic features of glucose metabolism enable prediction of outcome in mantle cell lymphoma., Eur. J. Nucl. Med. Mol. Imaging. 46 (2019) 2760–2769. doi:10.1007/s00259-019-04420-6.
[34] F. Orlhac, S. Boughdad, C. Philippe, H. Stalla-Bourdillon, C. Nioche, L. Champion, M. Soussan, F. Frouin, V. Frouin, I. Buvat, A Postreconstruction Harmonization Method for Multicenter Radiomic Studies in PET., J. Nucl. Med. 59 (2018) 1321–1328. doi:10.2967/jnumed.117.199935.
[35] M. Kirienko, L. Cozzi, L. Antunovic, L. Lozza, A. Fogliata, E. Voulaz, A. Rossi, A. Chiti, M. Sollini, Prediction of disease-free survival by the PET/CT radiomic signature in non-small cell lung cancer patients undergoing surgery, Eur. J. Nucl. Med. Mol. Imaging. 45 (2018) 207–217. doi:10.1007/s00259-017-3837-7.