
Heteroscedastic Process: A M-quantile Approach
Patrick Ferreira Patrocinio  (  patrick.ferreira-patrocinio@centralesupelec.fr )

CentraleSupelec/UFES https://orcid.org/0000-0002-8541-2447
Valderio A. Reisen 

Federal University of Espirito Santo https://orcid.org/0000-0002-8313-7648
Pascal Bondon 

Paris-Saclay Universite https://orcid.org/0000-0002-5158-7337
Edson Z. Monte 

Federal University of Espirito Santo https://orcid.org/0000-0002-6878-5428
Ian M. Danilevicz 

CentraleSupelec/UFMG https://orcid.org/0000-0003-4541-0524

Research Article

Keywords: GARCH, M-quantile, Robust, Outliers

Posted Date: July 12th, 2022

DOI: https://doi.org/10.21203/rs.3.rs-1848078/v1

License:   This work is licensed under a Creative Commons Attribution 4.0 International License.  
Read Full License

https://doi.org/10.21203/rs.3.rs-1848078/v1
mailto:patrick.ferreira-patrocinio@centralesupelec.fr
https://orcid.org/0000-0002-8541-2447
https://orcid.org/0000-0002-8313-7648
https://orcid.org/0000-0002-5158-7337
https://orcid.org/0000-0002-6878-5428
https://orcid.org/0000-0003-4541-0524
https://doi.org/10.21203/rs.3.rs-1848078/v1
https://creativecommons.org/licenses/by/4.0/


Springer Nature 2021 LATEX template

Heteroscedastic Processes: A M-Quantile

Approach

Patrick F. Patrocinio�1,3*, Valderio A.

Reisen�1,2,3†, Pascal Bondon�3†, Edson Z. Monte�1†

and Ian M. Danilevicz�2,3†

1*PPGEco and Department of Economics, Federal University of
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Abstract

As is well known, outliers are quite common observations in different
application areas and these types of data can cause large biases in the
estimates of the mean, variance, correlation and, consequently, in the
parameter estimates. Thus, robust estimation methods are needed to
obtain reliable statistical models. There are empirical evidences that the
financial time series and the distributions of returns are not well approxi-
mated by Gaussian models, which is an assumption generally considered
to model these data. Therefore, both quantile and M-regression meth-
ods have been suggested to estimate GARCH model. In this paper, these
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2 Heteroscedastic Processes: A M-Quantile Approach

two methodologies are combined to obtain a robust estimator for condi-
tional volatility. Empirical evidence indicates that the proposed method
seems to be more resistant to additive outliers than the M- and Quan-
tile regressor estimators. Some technical issues are addressed, and an
application illustrates the usefulness of the method in a real data set.

Keywords: GARCH, M -quantile, Robust, Outliers

1 Introduction

Much attention has been paid to the study of methods in the context of pro-
cesses that contain atypical observations (outliers) among other particularities.
In the case of the effect of outliers in estimating time series models, several
authors have shown that the presence of outliers can dramatically deteriorate
the estimates of a time series model.

The effects of outliers with respect to model identification, estimation and
forecasting time series data depend on the type of outlier. There are four types
of outliers proposed in the literature of univariate time series: additive outliers,
innovation outliers, level shifts and temporal changes (see, for example, Chen
and Liu (1993), Tularam and Saeed (2016), Reisen et al. (2019)).

Additive outlier is quite common in practical problems and seems to be
more dangerous than the other outlier types in time series. For example, in
the standard structure of Box-Jenkis models, Ledolter (1989) showed that the
range predictions in Integrated Autoregressive Moving Averages (ARIMA)
models are considerably sensitive to additive outliers. Chang, Tiao, and Chen
(1988) and Chen and Liu (1993) demonstrated that the estimated parameters
of the ARMAmodel become biased when the data contains outliers. In the case
of long-memory and periodic time series, see, for example, the recent papers
by Reisen, Lévy-Leduc, and Taqqu (2017) and Sarnaglia, Reisen, Lévy-Leduc,
and Bondon (2021).

The effect of additive outliers on the estimation of heterocedastic models
is clearly discussed in Franses and Ghijsels (1999), Mendes (2000), Carnero
(2003), Carnero, Peña, and Ruiz (2005) and Carnero, Peña, and Ruiz (2012).
These authors study the bias of the sample autocovariance and of the different
estimation methods in ARCH and GARCH models. In general, they show that
additive outliers can substantially distort the estimation of the parameters of
the ARCH(q) and GARCH(p, q) models in the same way as in the standard
linear time series models.

As is well discussed in the literature, the estimators derived from the M-
regression method are robust alternative approaches to obtain estimates of the
parameters in time series contaminated by outliers or generated by probability
distributions with heavy tails, see for example Bai, Rao, and Wu (1992), Wu
(2007) and Li (2008). In addition to M-regression, the applying of quantile
regression method offer some advantages, which are: (i) not depend of the error
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distribution. (ii) provide useful information about the error distribution. (iii)
can indicates the presence of asymmetry on the series, see for example Xiao
and Koenker (2009), Lee and Noh (2013) and Zheng, Qianqian, Li, and Xiao
(2016).

In this study we consider the M-quantile regression method, proposed
by Breckling and Chambers (1988), to estimate the parameters of the
GARCH(p,q) model. In this framework, the conditional distribution of the
response variable is characterized in terms of different location parameters,
the M-quantiles. Although these have a less intuitive interpretation than stan-
dard quantiles, M-quantile regression also offers a number of advantages. (i) it
easily allows for robust estimation. (ii) it can trade robustness and efficiency
in inference by selecting the tuning constant of the influence function. (iii) it
offers computational stability due to the wide range of available continuous
influence functions with respect to the more standard absolute value used in
the quantile regression context.

Since outliers typically appear in microeconomics and financial series,
robust estimation methods for estimating heteroscedastic time series models
become an important research topic from both applied and theoretical points
of view. A thorough search of the relevant literature on robust estimation in
heteroscedastic processes indicates that there are not much articles devoted to
this topic. According to the best of our knowledge, the most recent literature
on the subject are Muler and Yohai (2008), Mukherjee (2008) and Iqbal (2013).

Therefore, to fill part of this gap in this theme, this paper proposes the
use of a M-quantile regression to estimate the parameters of the GARCH(p,q)
model, denoted in this paper as MQGARCH(p,q). A simulation study is car-
ried out to show the performance of the proposed estimation method in the
context of contaminated and non-contaminated heteroscedastic processes with
additive outliers. For comparison purpose, the classical Quasi Maximun Like-
lihood (QML), M-regression and the Quantile methods are considered in the
simulation. Daily returns data of two financial indices are used to illustrate
the use of the robust method in real problems.

This paper is organized as follows: in Section 2 the GARCH(p,q) model and
theM -estimation methods are presented. In Section 3 an empirical robustness
study using the M -quantile method is carried out. In Section 4 a real appli-
cation is reported. Finally, the conclusion of this study is provided in Section
5.

2 The GARCH model and the estimation
methods

Let Θ be a compact subset of (0,∞)p+1 × (0, 1)q where p and q are the maxi-
mum nonzero lags in the GARCH(p,q) model. Let a process {Xt}{t∈Z} := {Xt}
with E(X4

t ) <∞. {Xt} is defined as a GARCH(p,q) model, with orders p and
q, if satisfies
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{

Xt = σtεt

σ2
t = ω +

∑p
i=1 αiX

2
t−i +

∑q
j=1 βjσ

2
t−j

, (1)

where ω > 0, αi ≥ 0, and βj ≥ 0 are constants, {εt, t ∈ Z} ∼ IID(0, 1) and
εt is independent of {Xt−h, h ≥ 1} for all t ∈ Z. Additionally, we assume that
∑max(p,q)

i=1 (αi + βi) < 1, where αi = 0 for i > p and βj = 0 for j > q. Under
these conditions, {Xt} becomes a unique strict stationary process (see, e.g.,
Fan and Yao (2002) and Francq and Zakoian (2019)). Note that if q = 0, {Xt}
is an ARCH(p) model.

Now, let θθθ = (ω, α1, ..., αp, β1, ..., βq)
′

∈ Θ. Theorem 1 in Berkes, Hovath,
and Kokoszka (2003) establishes the following representation of σ2

t

σ2
t = c0 +

∞
∑

i=1

ciX
2
t−i, (2)

where c0 = ω
1−

∑q
j=1

βj
and the coefficients c′is are determined by the equation

∑∞
i=1 ciz

i =
∑p

i=1
αi zi

1−
∑q

j=1
βjzj , z ≤ 1, see, e.g, Section 4.2.2 in Fan and Yao (2002)

. Under the model assumptions given above, c1, c2, ... decay exponentially fast.

2.1 M-estimators for GARCH process

Using Equation 2, the variance function on Θ of the process in Equation 1 can
be defined as

vXt
(θθθ) = c0(θθθ) +

∞
∑

j=1

cj(θθθ)X
2
t−j , θθθ ∈ Θ , t ∈ Z, (3)

where the coefficients {cj(θθθ), j ≥ 0} are given above see, also, Berkes et al.
(2003) and Mukherjee (2008).

Remark 1 Under some conditions, Theorem 2.4 in Berkes et al. (2003) shows that
vXt

(θθθ) = σt, t ∈ Z, is the unique almost sure representation.

As an example, consider the GARCH(2,2) model with θθθ =
(ω, α1, α2, β1, β2)

′

. Thus, the coefficients {cj(θθθ), j ≥ 0} are given as follows

c0(θθθ) =
ω

1− β1 − β2
, c1(θθθ) = α1 , c2(θθθ) = α2 + β1α1

and
cj(θθθ) = β1cj−1(θθθ) + β2cj−2(θθθ), j ≥ 3.

Other examples are given in Liu and Mukherjee (2020).
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Let X1, X2, ..., Xn be a sample from the process {Xt}. Following Mukherjee

(2008), the M -estimator of θθθ, say θ̂M̂θM̂θM , is the solution of

θ̂M̂θM̂θM = argmin
θθθ∈Θ

M̂̂M̂Mn(θθθ), (4)

where M̂̂M̂Mn(θθθ) =
∑n

t=1 m̂̂m̂mt(θθθ),

m̂̂m̂mt(θθθ) = ρ(Xt/v̂
1/2
t (θθθ)) +

1

2
log(v̂t(θθθ)) , (5)

v̂t(θθθ) = c0(θθθ) +

t−1
∑

j=1

cjX
2
t−j , θθθ ∈ Θ , 2 ≤ t ≤ n, (6)

and ρ(x), x ∈ R, is the loss-function. Equivalently, θ̂M̂θM̂θM can be computed using

the derivatitive of M̂̂M̂Mn(θθθ), say M̂̂M̂M
′

n(θθθ), satisfying the equation

M̂̂M̂M
′

n(θθθ) =

n
∑

i=1

v̂
′1/2

Xt
(θθθ)

2v̂
1/2
Xt

(θθθ)

(

1−H

(

Xt

v̂
1/2
Xt

(θθθ)

))

= 0, (7)

where H(x) := xψ(x) is the score function, and ψ(x) is the derivative of ρ(x).
The loss-function ρ(x) has to satisfies the following assumptions: (I) ρ(0) =

0, (II) ρ(x) = ρ(−x) ( or ψ(x) = −ψ(−x)), (III) 0 ≤ x ≤ x∗ =⇒ ρ(x) ≤ ρ(x∗),
(IV) supx(ρ(x)) <∞, and (V) ρ(x) has second derivative almost surely (a.s.).

Remark 2 Under some conditions and as n → ∞, Mukherjee (2008) estates the

following asymptotic property on θ̂M̂θM̂θM :

• n1/2(θ̂̂θ̂θn − θθθH) → N [0, σ2(H)GGG−1], such that θθθH :=
(cHω, cHα1, · · · , cHαp, β1, · · · , βq)

where H(x) is defined previously,

σ2(H) := 4 var

(

H

(

εt

c
1/2
H

))

/E

(

εt

c
1/2
H

H
′

(

εt

c
1/2
H

))

,

GGG := E
(

v
′

X1
(θθθH)v

′T
X1

(θθθH)/v2X1
(θθθH)

)

and cH is a positive real number satisfying E

(

H

(

εt
c
1/2
H

))

= 1, see, also, Muler and

Yohai (2008) and Boudt and Croux (2010).

There are many candidate functions for H(x) ( or ρ(x) ). Here, we will
consider the two classical ones, Huber and QML, which are given as follows:

1. HH(x) =

{

x2, |x| ≤ k

k|x|, otherwise
and ρH(x) =

{

1
2x

2, |x| ≤ k

k|x| − 1
2k

2, otherwise
,

for the Huber estimation method,
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2. HQML(x) = x2 and ρQML(x) =
1
2x

2, for the QML estimator method,
where k is a tuning constant.

2.2 The M-quantile estimator

In the M-quantile regression estimation approach, we consider the loss function
proposed by Breckling and Chambers (1988) with Huber loss function ρH(x)
defined previously. The M-quantile loss function is then given by

ρτ (x) =

{

ρH{(1− τ)x} (x < 0)

ρH(τx) otherwise
, (8)

where τ is the quantile satisfying 0 < τ < 1. As an alternative to obtain a
M-quantile regression estimator, Breckling and Chambers (1988) also propose
the influence function

ψτ (x) =

{

(1− τ)ψ(x) (x < 0)

τψ(x) otherwise
. (9)

.

Remark 3 Although Equation 8 does not satisfy Assumption II, reasonable results
are reported in Section 3. Additionally, as pointed out by Breckling and Chambers
(1988), the use of Equation 8 instead 9 provides a better approximation to the sample
τ th quantile. Therefore, the choice of Equation 8 is justified.

Thus, the M -quantile estimator of θθθτ , say θ̂M,τθ̂M,τθ̂M,τ , is the solution of

θ̂M,τθ̂M,τθ̂M,τ = argmin
θτθτθτ∈Θ

M̂̂M̂Mn,τ (θτθτθτ ), 0 < τ < 1, (10)

where M̂̂M̂Mn,τ (θτθτθτ ) =
∑n

t=1 m̂̂m̂mt,τ (θτθτθτ ),

m̂̂m̂mt,τ (θθθτ ) = ρτ (Xt/v̂
1/2
t,τ (θτθτθτ )) +

1

2
log(v̂t,τ (θθθτ )) (11)

and, for each τ , v̂t,τ (·) is computed as in Equation 6.
Now, the robustness property of the M-quantile regression method is

discussed. Firstly, suppose that ρ satisfies the following assumption:
(VI) ρ(x) is convex and ψ(−∞) < 0 < ψ(∞). Note that the Huber loss

function satisfy the assumptions (I)-(VI), see for example Huber (1964, 1984)
Denote by ϵ̂A the additional breakdown point and ϵ̂SR the simplified

replacement breakdown point.
For ρ satisfying (VI), any sample size n, such that 1 ≤ t ≤ n, ϵ̂A and ϵ̂SR

are given as follows
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ϵ̂A = ϵ̂SR = min

{

−ψ(−∞)

ψ(∞)− ψ(−∞)
,

ψ(∞)

ψ(∞)− ψ(−∞)

}

, (12)

if ψ is bounded. On the other hand, ϵ̂A = 1/(n + 1), ϵ̂SR = 1/n if ψ is
unbounded. For more details see, for example, Zhang and Li (1998) and He,
Jureckova, Konker, and Portnoy (1990). Note that the QML estimator has a
breakdown point equal to zero, because his influence function is unbounded.

Example 1 Chose the Huber loss function in Equation 8 and suppose that ρτ satisfy
(VI). Let ψ∗

τ = ∂ρτ

∂x , so ψ∗
τ is given by

ψ∗
τ (x) =

{

ψH{(1− τ)x}(1− τ) (x < 0)

τψH(τx) otherwise
, (13)

where ψ∗
τ is bounded and ρ

′

H(x) = ψH(x) is defined as

ψH(x) =

{

x, |x| < k

ksign(x), otherwise.

Therefore, the asymptotic breakdown point of ρτ , denoted by ϵ̂ρτ , is given by

ϵ̂ρτ = min

{

(1− τ)2

τ2 + (1− τ)2
,

τ2

τ2 + (1− τ)2

}

.

It is important to note that the breakdown point of ρτ not depend of
tuning constant k (see Huber (1984) and Chao (1986)). Furthermore, we have
ϵ̂ρτ

= 1/2 ⇐⇒ τ = 0.5. Therefore, is expected that the M-quantile estimator
at τ = 0.5 be more robust than QML estimator.

3 Empirical Study

Let {Xt, t ∈ T} be a sample from a process as defined in Equation 1 and let
{Zt, t ∈ T} be a sample of the process defined by

Zt = Xt +mI
(T1)
t , (14)

where the parameter m represents the magnitude of the outlier, and I
(T1)
t is a

random variable with probability p of the occurrence of outliers, defined as a
random variable with

P (It = −1) = P (It = 1) = p/2 and P (It = 0) = 1− p ,

where E[It] = 0 and V ar(It) = p. It is the product of Bernoulli(p) and
Rademacher random variables; the latter equals 1 or −1, both with probability
1/2.Xt and It are independent random variables. Note that, ifm = 0.0 {Zt, t ∈
T} is a time series with no outlier. Other methods for including outliers in
time series can be found at Carnero et al. (2005) and Carnero et al. (2012)
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Three sample sizes {100, 500, 1000} generated according to a GARCH(1,1)
model are examined in simulation over 100 repetitions. The contaminated data
{Zt, t ∈ Z}, were generated from Equation 14 with p = {1%, 0.2%, 0.1%} for
each sample size respectively with magnitudes m = 0 (no outliers) and 7. The
following method estimators will be used to carry out a comparison study:
QML, Huber and Quantile (proposed by Lee and Noh (2013)). We consider
the following true parameter values: ω = 0.1, α1 = 0.1, β1 = 0.8 where

{

Xt = σtεt

σ2
t = ω + α1Xt−1 + β1σ

2
t−1

, (15)

with {εt, t ∈ Z} ∼ N(0, 1). The tuning constant k = 1.5 was considered for the
Huber and M-quantile estimators. Additionally, in each instance we estimate
the set of values τ = {0.05, 0.25, 0.45, 0.50} for the Quantile and M -quantile
estimator methods.

Remark 4 To formulate the quantile regression problem for GARCH models Lee and
Noh (2013) proposed a reparametrization approach, addressed below, since under
the Equation 1 the τ th of {Xt} conditional on the past observations up to time t− 1
is not identifiable. So, the model is reformulated as

{

Xt =
√
htut

ht = 1 +
∑p

i=1 γiXt−1 +
∑q

j=1 βjht−j ,

where ht = σ2t /ω, ut =
√
ωεt and γi = αi/ω. Since ω is unknown, the parameter

ω̂ is considered, where ω̂ is a consistent estimator of ω based on the QML method.
See Lee and Noh (2013).

Tables 1, 2, 3 presents the empirical mean and MSE (Mean Squared Error)
of the estimators considered in this study. The item (a) of the aforementioned
tables shows the empirical Mean and MSE for the results of all estimators here
considered for series generated without outliers. It can be seen that, in general,
the classical QML and the M-quantile methods perform similarly, that is, under
the scenario of a non-contaminated time series both estimation methods lead
to comparable results, with estimates close to the real values of θθθ,

The item (b) of the tables below presents the empirical mean and MSE
for the estimators of θθθ considering the series with outliers (m = 7 and
p = {1%, 0.2%, 0.1%}). As can be perceived from the tables, the classical QML
estimator is clearly affected by additive outliers, which is in line with results
discussed in Carnero et al. (2012). On the other hand, the robust one, proposed
in this study, keeps almost the same mean and MSE of the non-contaminated
scenario. This simple empirical investigation leads to conclusions that the clas-
sical QML estimator is completely influenced by the outliers while, in general,
the M-quantile is not. Therefore, the M-estimation method proposed in this
paper can be an alternative estimator to deal with a heteroscedastic time series
with possible additive outliers or not.
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Table 1: Empirical Mean and MSE of GARCH(1,1) model estimated by QML, Huber, quantile and M-quantile methods,
considering n = 100

(a) Whithout Outliers

Mean MSE

ω̂ α̂1 β̂1 ω̂ α̂1 β̂1
QML Method

0.1826 0.0908 0.7264 0.0405 0.0114 0.0695
Huber Method

0.2465 0.1251 0.6009 0.0897 0.0252 0.1605
Quantile Method

τ
0.05 0.1749 0.1201 0.5758 0.0432 0.0312 0.1564
0.25 0.1772 0.1019 0.5925 0.0450 0.0214 0.1508
0.45 0.1981 0.1596 0.5886 0.0460 0.0446 0.1519
0.50 0.1892 0.0937 0.6216 0.0391 0.0220 0.1360

M-quantile Method

τ
0.05 0.1815 0.0923 0.6700 0.0594 0.0028 0.0957
0.25 0.2364 0.0845 0.6553 0.1031 0.0028 0.1086
0.45 0.2170 0.1270 0.6125 0.0723 0.0099 0.1129
0.50 0.2081 0.1320 0.6411 0.0444 0.0129 0.1086

(b) Whith Outliers

Mean MSE

ω̂ α̂1 β̂1 ω̂ α̂1 β̂1
QML Method

0.2454 0.1364 0.6874 0.1001 0.0474 0.1130
Huber Method

0.3011 0.1264 0.5729 0.1222 0.0343 0.1727
Quantile Method

τ
0.05 0.2214 0.0901 0.6578 0.0857 0.0340 0.1569
0.25 0.2541 0.1254 0.6715 0.0999 0.0620 0.1565
0.45 0.2191 0.1397 0.6218 0.0918 0.0607 0.1576
0.50 0.2137 0.1490 0.6221 0.1091 0.0727 0.1444

M-quantile Method

τ
0.05 0.2149 0.0743 0.6667 0.0461 0.0060 0.1298
0.25 0.2255 0.0849 0.6925 0.0764 0.0072 0.1105
0.45 0.194 0.0896 0.6763 0.0587 0.0115 0.1139
0.50 0.2389 0.0855 0.6802 0.1182 0.0186 0.1169
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Table 2: Empirical Mean and MSE of GARCH(1,1) model estimated by QML, Huber, quantile and M-quantile methods,
considering n = 500

(a) Whithout Outliers

Mean MSE

ω̂ α̂1 β̂1 ω̂ α̂1 β̂1
QML Method

0.1554 0.1029 0.7374 0.0233 0.0018 0.0336
Huber Method

0.1445 0.1172 0.7335 0.0212 0.0034 0.0399
Quantile Method

τ
0.05 0.1429 0.0965 0.6570 0.0277 0.0061 0.0840
0.25 0.1394 0.1038 0.6683 0.0254 0.0122 0.0879
0.45 0.1489 0.1035 0.6851 0.0218 0.0060 0.0786
0.50 0.1424 0.1074 0.6586 0.0225 0.0092 0.1052

M-quantile Method

τ
0.05 0.1352 0.0935 0.7697 0.0294 0.0045 0.0531
0.25 0.1057 0.0719 0.7408 0.0098 0.0022 0.0349
0.45 0.0906 0.0660 0.7223 0.0053 0.0014 0.0415
0.50 0.0870 0.0609 0.7051 0.0051 0.0013 0.0402

(b) Whith Outliers

Mean MSE

ω̂ α̂1 β̂1 ω̂ α̂1 β̂1
QML Method

0.2152 0.1176 0.6947 0.0576 0.0098 0.0827
Huber Method

0.1538 0.1036 0.6786 0.0423 0.0062 0.0656
Quantile Method

τ
0.05 0.1922 0.1014 0.6141 0.0593 0.0065 0.1082
0.25 0.2036 0.0992 0.6620 0.0550 0.0157 0.1080
0.45 0.2184 0.1141 0.6800 0.0554 0.0072 0.0795
0.50 0.1908 0.1133 0.6092 0.0533 0.0108 0.1194

M-quantile Method

τ
0.05 0.1832 0.1036 0.7366 0.0314 0.0060 0.0705
0.25 0.1670 0.0661 0.6935 0.0201 0.0039 0.0577
0.45 0.1631 0.0653 0.7150 0.0190 0.0037 0.0468
0.50 0.1637 0.0715 0.7074 0.0209 0.0043 0.0448
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Table 3: Empirical Mean and MSE of GARCH(1,1) model estimated by QML, Huber, quantile and M-quantile methods,
considering n = 1000

(a) Whithout Outliers

Mean MSE

ω̂ α̂1 β̂1 ω̂ α̂1 β̂1
QML Method

0.1206 0.1060 0.7741 0.0033 0.0010 0.0060
Huber Method

0.1396 0.1157 0.7395 0.0097 0.0018 0.0190
Quantile Method

τ
0.05 0.0985 0.0944 0.6911 0.0027 0.0040 0.0653
0.25 0.1040 0.0991 0.6582 0.0032 0.0029 0.0880
0.45 0.0982 0.0955 0.6769 0.0030 0.0033 0.0716
0.50 0.1187 0.1014 0.7266 0.0090 0.0032 0.0444

M-quantile Method

τ
0.05 0.1276 0.1107 0.7872 0.0097 0.0025 0.0200
0.25 0.0808 0.0760 0.8041 0.0047 0.0023 0.0169
0.45 0.0805 0.0836 0.7601 0.0026 0.0019 0.0156
0.50 0.0929 0.0862 0.7718 0.0031 0.0020 0.0109

(b) Whith Outliers

Mean MSE

ω̂ α̂1 β̂1 ω̂ α̂1 β̂1
QML Method

0.1458 0.1030 0.7620 0.0131 0.0032 0.0164
Huber Method

0.1550 0.1146 0.7273 0.0150 0.0024 0.0272
Quantile Method

τ
0.05 0.1419 0.0866 0.6782 0.0128 0.0050 0.0690
0.25 0.1396 0.0954 0.6572 0.0120 0.0028 0.0760
0.45 0.1396 0.1123 0.6830 0.0136 0.0046 0.0807
0.50 0.1461 0.0973 0.7174 0.0132 0.0037 0.0494

M-quantile Method

τ
0.05 0.1329 0.1024 0.7558 0.0172 0.0039 0.0292
0.25 0.1095 0.0700 0.7341 0.0093 0.0029 0.0205
0.45 0.0936 0.0683 0.7524 0.0067 0.0025 0.0203
0.50 0.0930 0.0703 0.7374 0.0088 0.0023 0.0188
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4 Real Application

In this section, we analyzed the daily returns of two financial indices, Contin-
uous Assisted Quotation Index (CAC40) and the São Paulo Stock Exchange
Index (Ibovespa). In each series, CAC40 and Ibovespa, between the period
from January 3, 2011, to December 30, 2021 was generated 2811 and 2719
observations, respectively. Let pt be the price of the financial index in time t
and rt the log return defined as rt = 100 log pt

pt−1

. It is assumed that rt fol-

lows a GARCH process according to the definition given in Equation 1, where
p = q = 1, that is, a GARCH(1,1) model. While the French equity markets are
mature and established over the sample period, the emerging market in Brazil
experienced more considerable volatility and more dramatic jumps in prices.

Fig. 1: Plot of the Daily Return Series of CAC40 and Ibovespa Indices.

As can be perceived there are possible outliers in both series, conform the
figure 1, which is usual phenomenon in financial time series.

Table 4: Descriptive statistics of the daily log-returns of the financial indices
CAC40 and Ibovespa

CAC40 Ibovespa

Mean 0.0217 0.0149

Std. Deviation 1.2672 1.5988

Maximum 8.0561 13.0223

Minimum -13.0983 -15.9930

Skewness -0.7031 -0.8471

Kurtosis 8.5321 11.9224

Table 4 reports some summary statistics of the data. As has been docu-
mented extensively in the literature, both indices display negative skewness
and excess kurtosis. The French CAC40 Index on average returned about
0.0217% per day, slightly above that of the Ibovespa Index. In addition, the
Ibovespa Index came with a much higher risk than the CAC40. Each of both
series was fitted as a GARCH(1,1) model using the QML, Huber, Quantile and
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M-quantile estimators discussed in the previous section. These estimates are
displayed in Tables 5, 6 and 7, respectively. The series contain outliers, thus
important differences estimates are expected, as showed by empirical study.

Table 5: Fitted GARCH(1,1) models for the daily returns series

CAC40 Ibovespa

Estimates ω̂ α̂1 β̂1 ω̂ α̂1 β̂1

QML 0.0545 0.1357 0.8316 0.0993 0.0835 0.8717

Huber 0.0248 0.0890 0.8602 0.0619 0.0565 0.8906

Table 6: GARCH(1,1) models estimated by quantile regression for the daily
returns series

τ 0.01 0.05 0.5 0.95 0.99

CAC40

ω̂ - - - - -

α̂1 0.0722 0.1058 0.1360 0.1435 0.1336

β̂1 0.7120 0.8236 0.7374 0.8307 0.8256

Ibovespa

ω̂ - - - - -

α̂1 0.1047 0.0626 0.0839 0.0883 0.0741

β̂1 0.8201 0.8213 0.8274 0.8653 0.9028

Table 7: GARCH(1,1) models estimated by M-quantile regression for the daily
returns series

τ 0.01 0.05 0.5 0.95 0.99

CAC40

α̂0 0.0460 0.0437 0.0246 0.0127 0.0118

α̂1 0.0762 0.0964 0.1182 0.1284 0.1174

β̂1 0.8256 0.8298 0.8402 0.8453 0.8645

Ibovespa

α̂0 0.0945 0.0924 0.0222 0.0227 0.0201

α̂1 0.0620 0.0619 0.0594 0.0399 0.0386

β̂1 0.8617 0.8634 0.8902 0.9359 0.9391

It is important to mention that in a GARCH(1,1) model, the M-estimators
should consistently estimate β1, as can be observed for QML, Huber and M-
quantile regression estimation, where β̂1 are quite close each other. This is not
necessarily truth to ω̂ and α̂1 parameters, because in a real case we can not

calculate cH satisfying E
(

H
(

εt
cH1/2

))

= 1 for the Huber loss function. This is
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reflected in the Tables 5 and 7. This results are in line with Mukherjee (2008),
Boudt and Croux (2010) and Liu and Mukherjee (2020)

From Table 6 and 7, it is seen that for the CAC40 series, the M-quantile
and quantile regression estimates of α̂1 for τ < 0.50 tend to yield larger values
than those for τ > 0.50. On the other hand, from the same tables, it is seen
that for the Ibovespa series, the M-quantile and quantile regression estimates
of α̂1 for τ < 0.50 tend to yield smaller values than those for τ > 0.50. This
suggests the presence of asymmetry in both series, thus a method based on
average effect can be not recommended.

Fig. 2: Estimated conditional quantiles for CAC40 and Ibovespa returns.

Although we focus on the estimation of robust parameters for GARCH
models, Figure 2 shows the value at risk (VaR) estimated for τ ∈ {0.01, 0.99},
because the proposed estimation procedure also provides an alternative
approach to VaR, since the evaluation of VaR is explicitly a conditional quan-
tile estimation problem, see for example, Xiao and Koenker (2009) and Zheng
et al. (2016).

Estimated GARCH volatilities, using the four methods considered in this
study, are plotted in Figures 3 and 4. For the quantile andM -quantile methods
τ = 0.5 was considered. Clearly, QML tends to estimate larger volatilities
compared to robust methods which may have important implications on real
financial applications. For example, large volatility will provide large VaR,
consequently increasing the uncertainty associated with returns, implying that
the risk will seem larger. Furthermore, in particular, the M -quantile method,
when compared with QML, does not seem to be significantly affected by high
observations of {Xt}. In these senses, the volatilities are well-modelled by using
the M -quantile estimation method.
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Fig. 3: Estimated volatility for the CAC40 index.

Fig. 4: Estimated volatility for the Ibovespa index.

5 Conclusion

In this paper, we propose estimating GARCH models using the M-quantile
regression method, which is robust against aberrant observations (outliers).
When there are no outliers a Monte Carlo study shows that the GARCH(1,1)
model parameters estimated by M-quantile, are quite close to QML, which is
a well-established and commonly method used to model heteroscedastic time
series. On the other hand, was shown that the parameters of the GARCH(1,1)
model estimated by QML suffer dramatic effects due to the contamination of
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the series, which can lead to spurious interpretations. Although other robust
methods were considered, the simulation results showed that the M-quantile
method is more reliable in terms of MSE. In addition, a real application using
financial data set showed that the estimated volatility by M-quantile regression
is not significantly affected by aberrant observations and seems to perform well
in the series considered. Therefore, the use of the MQGARCH(1,1) model is
strongly encouraged.
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